A Fault-contained Spanning Tree Protocol for Arbitrary Networks

J. El Haddad
Lamsade, UMR 7024
University of Paris Dauphine
Place de Lattre de Tassigny
75775 Paris Cedex 16, France

Abstract

Fault-containing self-stabilizing algorithms, intro-
duced by A. Gupta, fulfill two requirements: they con-
verge to a correct behavior starting from an arbitrary
state and they quickly stabilize starting from a state
corrupted by a single fault. Such algorithms are ob-
tained either by an ad hoc transformation of a self-
stabilizing algorithm or by a generic transformation
which produces a slower stabilization in case of a sin-
gle fault. In this paper, we transform a self-stabilizing
algorithm for constructing a rooted spanning tree in
an arbitrary network. This algorithm has two spe-
cific features with respect to previously adapted al-
gorithms: there is no distinguished node (i.e. each
site execute the same code), and the principle of sta-
bilization involves a global coordination through re-
quests and replies following paths of the communica-
tion graph.

1 Introduction

The design of self-stabilizing distributed algorithms
has emerged as an important research area in recent
years. It was first introduced in a well-known paper
by Dijkstra [3]. Since then self-stabilizing protocols
have been designed for a large variety of problems and
underlying principles have been explored [4, 10, 9].
The principle of self-stabilization is to guarantee con-
vergence of the system to some desired stable state
from an arbitrary initial state arising out of an ar-
bitrarily large number of faults. The first designed
self-stabilizing protocols were global. That is, a small
number of transient faults causes the entire system to
start a global convergence activity. This recovery pro-
cess does not scale to modern large networks. The
above discussion motivates several approaches as fault
local, time adaptive or fault containment to have fast
convergence to a correct configuration of the system

S. Haddad
Lamsade, UMR 7024
University of Paris Dauphine
Place de Lattre de Tassigny
75775 Paris Cedex 16, France

in a graceful way following the occurrence of a limited
number of faults.

We present some of the research works that have in-
troduced or used theses approaches. Kutten and Peleg
introduced the fault locality approach in [8], as well as
a persistent bit algorithm recovering from a corrup-
tion of one bit at some k nodes. Afek and Dolev pre-
sented in [1] a time adaptive algorithm that converts
any algorithm (fixed-output, non-fixed-output, or even
interactive) to cope with f faults within O(f) cycles.
Gupta introduced the fault containment approach in
[5, 6, 7]. The goal of this technique is to ensure that the
system is self stabilizing, and during recovery from a
single transient fault, only a small number of processes
will be allowed to execute recovery actions. Gupta
presented three examples that illustrate the feasibility
of designing efficient fault-containment self-stabilizing
protocols for important problems: a leader election
protocol that recovers in O(1) time from a state with
a single transient fault on oriented ring [5], a breadth-
first search spanning tree construction protocol in an
arbitrary network [7], and spanning-tree protocol in
an undirected network [6].

In this paper, we carry on towards fault contain-
ment by presenting an algorithm for spanning-tree
task. More precisely, we modify an earlier self-
stabilizing algorithm for spanning tree construction on
general networks by Afek, Kutten and Yung [2] to de-
rive a fault-contained self-stabilizing algorithm. Start-
ing from any arbitrary state, our algorithm converges
to a state with a spanning tree rooted at the largest
identity node, in a finite number of steps. The specific
difficulty of this transformation lies on the nature of
the original algorithm. That is, unique identities are
used for the nodes to break symmetry and a global
coordination is involved through requests and replies
following paths of the communication graph.

The rest of the paper is organized as follows. Sec-
tion 2 overviews the model of computation. Section
3 contains a short description of the original spanning

tree algorithm of Afek, Kutten and Yung. Section 4 in-
cludes a detailed description of its transformation into
a fault-contained self-stabilizing algorithm. Section 5
contains some concluding remarks and perspectives.

2 Model

We consider the model of a network of processors
communicating via shared memory. The network is
presented by a graph G = (V, E), where V denotes the
set of nodes representing the processors, and E denotes
the set of edges representing the links. Each node
v € V correspond to a process, and an edge (u,v) €
E means that u and v directly communicate. Each
processor has a unique identity, the only assumption
that make our model non uniform. The total number
of processors, n, is unknown to the processors of the
network.

Each processor has a set of local variables. A lo-
cal variable belonging to a process i can be read by
i and any of its neighbors, but can written into only
by ¢. Thus, a process can directly communicate with
only its neighbors in the network by reading their lo-
cal variables, and writing into its own local variables.
Reads of neighbors memory as well as read and write
on local memory are atomic operations. The local
computation at each processor consist of a sequence
of transitions where each transition consists of an op-
eration that moves the processor from its state before
the transition to another state.

We assume that each process ¢ has a program that
consists of a finite set of guarded statements of the
form, label : Precon — Action where, Precon is
a boolean predicate involving the local variables of ¢
and the local variables of its neighbors, and Action
is an assignment that modifies the local variables in
i. The Action is executed only if the corresponding
guard Precon evaluates to true, in which case we say
statement label is enabled.

3 Spanning tree construction

Afek, Kutten, and Yung [2] proposed a stabiliz-
ing algorithm for computing a spanning tree in an
asynchronous network of processors that communicate
through shared memory. The processors have unique
identifiers but are otherwise identical. Informally the
algorithm can be described as follows. Every node
tries to build a tree in the network rooted from it-
self. The construction initiated by a node with a larger

identity overruns the one of a node with a lower iden-
tity. Eventually, the building initiated by the largest
id node will overrun all the other trees constructions.
A node leaves its tree when it detects a local inconsis-
tency. However, to join another tree whose root iden-
tity is larger, a node has to propagate a request mes-
sage along the new tree branches to the root and to re-
ceive a grant message back. This mechanism prevents
the necessity to know additional information such as
the network size. Of course these messages propa-
gate through the shared memories of the nodes via
a sequence of read and write operations. To establish
self-stabilization, Afek et al. defined certain local con-
ditions which enable a node to detect inconsistencies
and to “restart” the building process by considering
itself the root of a single node tree.

A formal description of the algorithm is shown in
figure 1 for the read-all state model. Each node ¢
maintains the variables root;, par; and dis; to de-
scribe the tree structure with the following predicates :

Root (i) = vroot; =iANdis; =0
Child(i,j) = root; =root; > i A
par; = j € Neigh; Ndis; = dis; + 1
Tree(i) = root(i) vV Ij : Child(i, j)
Lmax (i) = Vj € Neigh; : root, > root;
Sat(i) = Tree(i) A Lmax(i)

Moreover each node maintains variables related to
the passing of the request and the grant messages.
Variable req; contains the node whose join request ¢
is currently processing, from; is the neighbor from
whom ¢ read the request, to; is the neighbor to which
1 forwards it, and dir; indicates whether the request
is granted. As for the tree related variables, the
following predicates describe the request forwarding
mechanism :

Idle(i) = req; = from; =to; =dir; = L

Asks(i,j) = ((root(i) Areq; = i)V Child(i, j))A
to; = j A dir; = ask

Forw(i,j) = req =req; A\ from; =j Nto; =iA
to; = par;

Grant(i,j) = Forw(i,j) Adir; = grant

To achieve self-stabilization of the spanning tree
construction, all the nodes must satisfy the condition
defined by Vi : Sat(i). A node ¢ with Sat(i) false
attempts to establish it by becoming the child of its
neighbor j with the highest value of root;. Joining j’s
tree by ¢ is performed in three steps. First, ¢ becomes a
root (action B;), then asks for join permission (action
A;), and finally joins when j grants the permission
(action J;). The remaining four actions (C;, F;, G;
and R;) implement the request forwarding mechanism

B;

Precon : —Tree(i)

Action : root; = par; = i;dist; = 0;

A, req; = from; = to; = dir; = L;

Precon : Tree(i) A —Lmax(i)

Action : Select j € Neigh; with maximal value of root;;
req; = i; from; = i;to; = j; dir; = ask;

Ji

Precon : Tree(i) A —=Lmax(i) A Grant(to;,1)

Action : root; = root;;par; = j; dist; = dist; + 1;

C req; = from; = to; = dir; = L;

Precon : Sat(i) A =35 : Forw(i,j) A —Idle(i)

Action : req; = from; = to; = dir; = 1;

F;

Precon : Sat(i) A Idle(i) N Asks(j,1)

Action : req; = req;; from; = j;to; = par;; dir; = ask;
G;

Precon : Sat(i) A Root(i) A Forw(i,j) A dir; = ask
Action : dir; = grant;

R;
Precon : Sat(i) A Grants(pari,i) A dir; = ask
Action : dir; = grant;

Figure 1: Afek, Kutten and Yung’s spanning tree al-
gorithm

and are only executed by a node i with Sat(i) true.

However, Afek, Kutten and Yung’s algorithm has a
poor fault-containment features during recovery from
a single transient fault. In fact faults are detected lo-
cally but corrected by global operation. Consider the
graph shown in figure 2(a). The solide lines show edges
in the constructed spanning tree, with the arrows indi-
cating the parent of each node. The root and the level
of each node are shown beside the node. The dashed
lines show edges in the graph that are not in the con-
structed spanning tree. Let a fault at node i set par;
to k, resulting in the state shown in figure 2(b). In this
1-faulty state, B; is enabled since —tree(i) is true, as
dist; = disty + 1. After node i executes action B;, it
becomes a root and make a join request to j’s tree.
Then each node p between i and the root r will par-
ticipate in the request/reply mechanism by executing
the actions Cp, F,, and R;,. As for the root, it exe-
cutes once actions C, and G, before i joins the tree
by executing J;. Moreover, in the worst case (i.e. the
tree is a chain), all nodes in the system may change
their states before the system comes back to a correct
state.

In the following section, we show how to mod-
ify Afek, Kutten, and Yung’s algorithm to obtain

Figure 2: A fault not locally contained

a fault-contained self-stabilizing spanning tree algo-
rithm. Starting from a 1-faulty state (a state result-
ing from a single transient fault occurring in a correct
state), only the faulty node or one of its neighbors
make any local state changes during recovery to a cor-
rect state.

4 Fault-contained spanning tree

Our algorithm requires that a node checks the state
of some neighbors within distance 2 from it. Thereby,
we will strengthen our model of computation by as-
suming that each node i, in addition to having read-
access to neighbors’ local variables, also has a read-
access to the local variables of neighbors’ neighbors.

The idea of the fault-contained spanning tree ver-
sion of the algorithm is that when a node detects a
local inconsistency, it does not necessarily make a cor-
rection move, instead it first attempts to determine
the cause of this local inconsistency. If a node ¢ finds
that the local inconsistency may be due to a fault at
1 alone, then it corrects its local state appropriately.
Otherwise, inconsistency may be due to a fault at a
neighbor j, then the node i waits for j to correct its
fault.

We now precise this idea. Let IN; be a finite interval
of IN that denotes the set of identities in the network
and Neigh; be the set of neighbors of i. In the rest
of this paper, we denote by i the identity of a node ¢
that maintains two groups of variables :

1. The variables related to the tree structure:

— root; holds the identity of the root of the
tree to which node ¢ belongs. root; is equal
to some node in IN;

— dist; is the distance from node i to its root.
It is an integer in the range [1...|INf|];

— par; is the identity of a neighbor of i which
is the parent of 7 in the tree. It is equal to
some node in Neigh; U {i}.

2. The variables related to passing the request and
grant messages:

— regq; is either the identity of a node that is
currently requesting to join the tree to which
i belongs, or equal to i if ¢ itself is trying to
join another tree. It is equal to some node
in INyU{Ll};

— from; is either the identity of the neighbor
from which ¢ copied the value of req;, or i
if 4 has initiated a request in an attempt to
join a new tree. It is equal to some node in
Neigh; U {i} U{Ll};

— to; is the identity of neighbor of ¢ through
which it is trying to propagate the request
message. It is equal to some node in
Neigh; U {i} U{Ll};

— dir; is either ask, to signify that the node
whose identity is in req; wishes to join the
tree, or grant to signify that this request has
been granted. It is equal to some value in
{ask, grant, L}.

To describe the tree structure, we introduce the fol-
lowing predicates:
Child(i) = {j € Neigh; : par; =i}
Tree(i) = (root; =i A dist; =0 A par; =1) V
(par; #1i A root; = rootpar, > i\
dist; = distper, + 1)

Ownrmax(i) = if (Vk € Neigh; : root; > rooty) then i
else j = {Mingeneigh,; : To0t; > rooty}

Sat(i) = Tree(i) A Ownrmaz(i) =1

To describe the request/reply mechanism, we intro-
duce the following predicates :

Idle(i) =reqi =L A from; =L A to, =L A dir, =L

Asks(i,j) = j € Neigh; A reqi =1 A from; =i
to; =j A dir; = ask A Sat(j) A
root; =1 < root; A par;=j N
Vk € Neigh; :
(rooty, = root; = disty = dist; + 2)

ForwNa(i,j) = j € Neigh; U{i} A to, =7 A
par; =j A dir; = ask A Sat(i) A
from; £ N req; #1i A req; = LA
reg; = reqfrom; N Vk € Child(i) :
(rooty, = root; = disty, = dist; + 1)

ForwA(i,j) = j € Neigh; U{i} A to;, =jA
par; =j A dir; = grant A Sat(i) A
from; £i AN req; #1i N req; £ LA
reg; = reqfrom; N Yk € Child(i) :
(rooty, = root; = disty, = dist; + 1)

Rgcorrect(i) = Idle(i) v 3j : ForwNa(i,j) V
(3j : ForwA(i,j) N dirfrom, = ask)

Grants(i,j) = from; =j A dir; = grant

Before we give a detailed description of the algo-
rithm, we investigate the behavior of the algorithm
under a single transient fault. Let a legitimate state
of the system be defined as follows. A global state
of the system is a legitimate state, if and only if the
neighborhood of each node 7 in the graph is coherent,
that is
Coherent(i) = Tree(i) A

Vk € Chlld(l) cdisty, = dist; + 1N
Vk € Neigh; : rooty, = root;

It is easy to show that if a single transient fault occurs
at a node i and this node is the root of the tree, then a
stable state is reached again by a single move of node i
setting its parent and root variables values to itself, its
distance variable value to 0 and resetting its requests
variables. Otherwise, node i tries to determine the
reasons of the local incoherence by checking predicate
Onelocal fault(i,d, j) with d the current value of the
distance variable of i, j a neighbor of i as well as its
parent with the value d — 1 in dist;. Note that, if
node 7 is a leaf then many couples (d, j) are possible.
Otherwise, only one value of d is possible and hence
the number of couples (d, j) is restrained. First, node
i checks if all its neighbors have the same root value
r, what is greater than ¢ and greater than or equal
to their identities, a parent different from it and a
positive distance value. If root node r is a neighbor of
1, then it checks whether r has a distance value equal
to 0 and a parent id equal to r. In this case, node
1 concludes that incoherency may be due to either a
false value in its root variable or an incorrect, value
in its distance variable, towards its parent or one of
its children. A formal and detailed description of this
predicate follows.

Incoherent(i) = —~Coherent(i)

Onelocal fault(i,d,j) = j € Neigh; A Ir > i:
1. Incoherent(i) (*one fault at i*)
2. Yk € Neigh; : (*coherent neighborhood*)

e rooty, =r ANk <r A(k=r=dist,= 0 A
par, =r)

o k#r=pary #k A dist, >0

3. 3k : Neigh; = {k} = (*case of a unique neigh-
bor*)

o Vk' € Neighi \ {i} : rootr =7 A K <r A
(k' =r = dist, =0 A par, =)

o (k#1r A pary #1i) = disty = distpar, + 1

o VK’ # i € Child(k) : disty = disty, + 1

4. Yk € Child(i) : disty, = d+ 1 A dist; = d—1
(*eventual correction with the help of j*)
5. (*elimination of false detection due to a unique
fault at a child*)
root; =r A dist; = distper, +1 A Idle(i) =
o |Child(i)| > 1V
o Jk: Child(i) = {k} N K" # i € Child(k) A
(VK # i € Child(k) : disty = disty, + 1V
par; = k)

6. (*elimination of false detection due to a unique
fault at the parent*)
(root; = r A Yk € Child(i) : dist, = dist; + 1 A
Idie(i) N parper, # 1) =
(distpar, = distpar,,,, T1AVK" # i € Child(par;) :
disty = distpar, + 1)

7. (*elimination of cross parent™)
(root; =r A Idle(i) A parper, =1 A par; # i) =
Vk € Child(par;) \ {i} : disty, = distper, +1

In order to achieve fault containment, in a state where
a single transient fault occurred at a node i, we must
inhibit each child of i to presume that it is the faulty
node of the system and hence to leave the tree by be-
coming a root. This allows us to define a new predicate
Onelocalpar fault(i,d, j) under which each child of a
node may check if its parent estimates to be the faulty
node of the system.

Onelocalpar fault(i,d, j) = par; # iNj € Neighpar, A
Ir > par; :
1. Incoherent(par;) (*one fault at par;*)
2. VEk € Voisinspar, : (*coherent neighborhood*)
e rooty, =r Nk<r A (k=r=dist, = 0 A
par, =1)
o k#r=pary #k N disty >0
3. Voisinsper, = {i} = (*case of a unique neigh-
bor*)
o Vk' € Neigh;\{par;} : rooty =r ANk < 1A
(k' =r = dist, =0 A par, =)
o Vk' # par; € Child(3) : disty = dist; +1

4. Vk € Child(par;) : disty =d+1 A dist; =d —1
(*eventual correction with the help of j*)

5. (*elimination of false detection due to a unique
fault at a child*)
(rootpar, = 1 A distper, = distpary,,, + 1 A
Idle(par;)) =

o |Child(par;)| > 1V

o Child(par;) = {i} A 3k’ # par; € Child(i) A
(V' # par; € Child(i) : disty = dist; +1 V
Pparpar, = 1)

6. (*elimination of cross parent™®)

(rootper, = v A Idle(par;) N parper, = i A
par; # i) = Yk € Child(i) \ {par;} : disty, =
dist; +1

Next, we introduce a predicate analogous to
Onelocalpar fault(i,d, j) where the parent of the
node i is the faulty node and the root of the tree

Onerootpar fault(i) = par; £ i A
Vk € Neighpar, : (k < par;) A (rooti, = par;) A
Vk € Neigh; \ {par;} : k < par; A rooty,, = par; \
Vk € Child(par;) : disty, = 1

The following predicate prevents a node i from leaving
the tree in case of a faulty parent par; # i

Onepar fault(i) = Onerootpar fault(i) V
3(d, j) : Onelocalpar fault(i,d, j)

A formal description of the algorithm is given in
Figure 3. A more detailed description of the guarded
statements follows. After the occurrence of a fault,
if a non-root node i estimates being the only faulty
node in the network, it executes the statement O;(j),
J being its parent. Joining j’s tree is done in three
steps. First, if node 7 estimates having an incoherent
tree structure, it attempts to establish T'ree() by be-
coming a root (action B;) if it doesn’t estimates that
its parent is the only faulty node in the network. This
action consists of becoming a root and resetting re-
quest variables. Then node ¢, with a coherent tree
structure and a root value smaller then any root value
of its neighbors, attempts to join a tree by becoming
the child of its neighbor j with the highest root value
and asking it for a join permission (action A;). In
order to execute this action, node ¢ must not assume
that j is the only faulty node in the network, and all
its children with the same root value as 7 must have
a correct distance value. Finally, node ¢ joins the tree
when j grants the permission (action J;).

The remaining actions (C;, F;(j), G; and R;) im-
plement the request/reply mechanism and are exe-
cuted by a node ¢ with Sat(i) true. A node ¢ clears

O;(j) (*One fault begins to be corrected*)
Precon : 3d : Onelocal fault(i, d, j) AVEk : ~Asks(i, k)
Action : root; = i;par; = j;req; = i;

from; = i;to; = j; dir; = ask;

B; (*Become root*)

Precon : V(k,d) : ~Onelocal fault(i, d, k) A —=Tree(i)A
Vk : = Asks(i, k) A =Onepar fault(i)

Action : root; = par; = i;dist; = 0;
req; = from; = to; = dir; = L;

A, (*Ask permission to join¥)

Precon : Tree(i) A Ownrmaz (i) # i A Sat(Ownrmaz(i))A
Vk € Child(i) : (rooty = rootownrmas(i) =
disty = diStOwnrmaac(i) + 2)

Action : reg; = i; from; = i;to; = Ownrmax(i);
dir; = ask;root; = i; par; = Ownrmax(i)

J; (*Join tree*)
Precon : 3j : Asks(i,j) A Grants(j,i) A dist; +1 € INy
Action : root; = root;;par; = j; dist; = dist; + 1;

req; = from; = to; = dir; = L;

C; (*Clear request variables*)

Precon : V(k,d) : ~Onelocal fault(i, d, j) A Sat(i)A
—Rgcorrect (i)

Action : req; = from; = to; = dir; = L;

Fi(j) (*Forward request¥)
Precon : Sat(i) A Idle(i) A (Asks(j,i) V ForwNa(j,1))
Action : req; = req;; from; = j;to; = pars; dir; = ask;

G; (*Grant join request™®)
Precon : Sat(i) Ai = root; A ForwNa(i, 1)
Action : dir; = grant;

R; (*Relay grant™®)
Precon : Sat(i) A 3j : (ForwNa(i,j) A Grants(j,1))
Action : dir; = grant;

Figure 3: The fault-contained algorithm

the variables for request processing (action C;) if it is
not currently processing a request or a grant has been
received by the descendant of ¢ and the variables are
not already undefined. A non-root node participates
in the process of forwarding requests and grants in its
tree in order to enable addition of new nodes to the
tree. More precisely if a node i is idle but has a child
j with a request for ¢ (a root that wants to join, or
a child of ¢ forwarding a request), node i may start
forwarding the request (action F;(j)). If a node i is
a root and forwards a request, it will grant it (action
G,), and if i forwards the request to its parent and the
parent grants it, then ¢ relays the grant (action R;).

5 Summary

In this paper, we have presented a self-stabilizing
algorithm for building a spanning tree in an arbitrary
asynchronous network. The interest of this work is
that the effects of a single fault are tightly contained in
a very small neighborhood around it. The proposed al-
gorithm runs under the strong assumption that a node
i can directly read the local variables of it’s neighbor’s
neighbors. The next stage of our research is to prove
that it is possible to extend our result by a simple
scheme that removes this additional assumption.

References

[1] Y. Afek and S. Dolev. Local stabilizer. In Pro-
ceedings of the 5th Israel Symposium on Theory
of Computing and Systems, 1997.

[2] Y. Afek, S. Kutten, and M. Yung. Memory-
efficient self-stabilizing protocols for general net-
works. In WDAG90: Distributed Algorithms
4th International Workshop Proceedings, LNCS,
486:15-28, 1990.

[3] E. W. Dijkstra. Self-stabilizing systems in spite
of distributed control. Communications of the
ACM, 17(11):643-644, 1974.

[4] S. Dolev. Self-Stabilization. MIT Press, 2000.

[5] S. Ghosh and A. Gupta. An exercise in fault-
containment, : self-stabilization leader election.
Information Processing Letters, 59:281-288, 1996.

[6] S. Ghosh, A. Gupta, and S. V. Pemmaraju.
A fault-containing self-stabilizing algorithm for
spanning trees. Journal of Computing and In-
formation, 2:322-338, 1996.

[7] S. Ghosh, A. Gupta, and S. V. Pemmaraju. Fault-
containing network protocols. In Proceedings of
the 12th Annual ACM Symposium on Applied
Computing, 1997.

[8] S. Kutten and D. Peleg. Fault-local distributed
mending. In Proceedings of the 14th Annual ACM
Symposium on Principles of Distributecd Com-
puting, 1995.

[9] M. Schneider. Self-stabilization. ACM Sympo-
suim Computing Surveys, 25:45—67, 1993.

[10] G. Tel. Introduction to Distributed Algorithms.
Cambridge University Press, second edition,
2000.

