Mémoire d’iniciation a la recherche
Deep Reinforcement Learning for Financial Markets
Hugo ABREU

supervised by
Eric Benhamou and David Saltiel

1/07/2020
Contents
1 Introduction 1
2 Financial Trading 2
2.1 Some technical indicators 3
3 Deep Reinforcement Learning 3
3.1 Ideao 3
3.2 Main Notionso 3
3.3 Algorithms 4
4 An implementation of Zhang et al’s ”"Deep Reinforcement
Learning for financial Trading” 4
4.1 Analysis and Interpretation 4
4.1.1 StateSpace 4
4.1.2 Action Space 5
4.1.3 Reward 5
4.2 Implementation L. 6
4.2.1 Environment 7
4.2.2 Feature computation, 9
423 Agent 11
5 Concluding Remarks 11

1 Introduction

In this memoir, I worked on the implementation of Reinforcement Learning
(RL) techniques to financial trading problems. The two topics were new to
me, so I will be explaining them before describing my implementation.

Trading is a very researched topic, that encompasses fields such as mathe-
matics, economics, and computer science. I will present the theoretical basis
of trading in financial markets, the most used technical indicators, as well
as some established approaches.

Reinforcement Learning are machine learning methods that aim to solve
complex problems, where there isn’t a clear description of a solution (as
opposed to supervised learning approach in artificial intelligence). I will be
looking at the theoretical background of RL, and more specifically Deep RL,
and discussing its implementation

I try to implemented the approach described in the article Deep Rein-
forcement Learning for Trading[ZZR19]. T will discuss my interpretation of
the article and how I translated it to a python implementation.

Implementing the reinforcement part was difficult because it was a new
topic for me - I still don’t have a working code. I will finish to implement it
in a later date.

2 Financial Trading

Financial trading involves buying and selling ‘financial instruments’ with
goal of getting some profit. The "financial instruments” can be shares, forex
(currency), or derivatives, such as CFDs, futures, and options. I will be
focusing on Futures.

The implicit objective of trading is, with a given capital, choose a set of
actions (buying or selling stock) that maximizes the return on that initial
capital.

While there exists traders that work by themselves, manually inputting
what trade to execute, most trading is made by algorithms, nowadays. Since
the objective is to minimize risk, clearly defined strategies can make more
profits in the long run.

We can formulate trading as a Markov Decision Process. An agent takes
actions in an environment. Those actions are buying, holding and selling
assets. In the case of trading, the environment corresponds to the market:
the prices of the assets. We can build more complex environments, giving
the agent more data (technical indicators that are correlated to the evolution
of the market, such as volatility), so that it can perform better.

When the agent performs an action, he can receive a reward. The ob-
jective is, with the reward function, to find a set of actions that maximizes
the return.

This problem formulation is good for reinforcement learning, but many
other types of algorithms exist. Just using technical indicators to advise
actions, for instance, can provide good results.

2.1 Some technical indicators

e Relative Strength Index: The RSI is a technical indicator that charts
the current and historical strength or weakness of a stock or market,
based on the closing prices of a recent trading period.

o Moving Average Convergence Divergence: MACD is a trend-following
momentum indicator, that connects two moving averages of an asset’s
price. The MACD is calculated by subtracting the 26-period Expo-
nential Moving Average (EMA) from the 12-period EMA.

3 Deep Reinforcement Learning

3.1 Idea

In a Reinforcement Learning problem, there is a learner and a decision
maker. The learner is the agent, that interacts with an environment. The
environment, in return, provides rewards and a new state, taking into ac-
count the actions of the agent. So, in reinforcement learning, we do not
teach an agent how it should do something - but present it with rewards
based on the consequences of its actions.

3.2 Main Notions

Policies:

e Policy: The function that allows us to compute the next action for a
particular state.

o An optimal Policy is a policy that maximizes the expected reward /re-
inforcement /feedback of a state.

Thus, the task of RL is to use observed rewards to find an optimal policy
for the environment.

Reinforcement Learning can also have different mnodes of learning:

e Passive Learning: Agents policy is fixed and our task is to learn how
good the policy is.

o Active Learning: Agents must learn what actions to take.

o Off-policy learning: learn the value of the optimal policy independently
of the agent’s actions.

e On-policy learning: learn the value of the policy the agent actually
follows.

3.3 Algorithms

Many forms of reinforcement learning exist. We will be looking at deep rein-
forcement learning algorithms. When the decisions to become too complex
for the reinforced learning approach - because the algorithm can’t learn from
all states and determine the reward path - we can use Deep Reinforcement
learning. The ‘deep’ portion refers to the application of a neural network to
estimate the states instead of having to map every solution, creating a more
manageable solution space in the decision process.

Let’s explore one reinforcement learning algorithm: Q-Learning. It’s an
off-policy learning process, where the environment is typically formulated as
a Markov Decision Process (MDP). The MDP is formulated as follows:

o Finite sets of states S = {sp, ..., s,} and actions A = {ag, ..., an}.
o Probabilities P,(s,s’) for transitions from state s to s’ with action a.
o Reward function R that adjusts probabilities over time.

o Goal is to learn an optimal policy function Q*(s,a).

4 An implementation of Zhang et al’s "Deep Re-
inforcement Learning for financial Trading”

We will be analysing and implementing Zhang et al’s approach to Financial
Trading, described in "Deep Reinforcement Learning for financial Trading”.
Hereinafter, this paper will be simply referred to as ”the paper”.

4.1 Analysis and Interpretation

In the paper, the authors propose a reinforcement learning approach to
Financial Trading. Contrary to classical trading approaches, no forecasting
step takes place: the models directly output trade positions.

As previously seen, trading can be formalized as a Markov Decision Pro-
cess - which can be addressed with a Deep Reinforcement Learning frame-
work. In this model, an agent interacts with its environment at discrete
time steps.

4.1.1 State Space

The authors introduce 4 features:

o Normalised close price series

We normalize the close prices according to the entire range. With
this information we define a scaler. If we are testing, we will use the
training scaler.

e Past returns, for 1 month, 2 months, 3 months and 1 year

These are normalized by the square root of the number of days in the
period and the daily volatility, which corresponds to the exponentially
weighted moving standard deviation (EMSD) in the last 60 days.

o Moving Average Convergence Divergence (MACD)

It’'s a measure that is more sensitive to recent changes (as defined
previously).

But in this paper, the author propose a variation: They normalize the
MACD histogram by the standard deviation of MACD for the previous
year. We implemented this in our environment function.

I only found one other author that used a similar approach. [MK19]

o Relative Strength Index

Their implementation of RSI is the classical one. Refer to the first par
of the report.

4.1.2 Action Space

We consider a discrete action space:

e Buy: close a short position and open a long position. If there is no
long position, do nothing

e Sell: close a short position and open the short position if having a
short position. If not, do nothing

4.1.3 Reward

In the paper, the reward function is defined as follows:

(o} ¥ (o}
Ry=p (At—1t‘qt7"t —bppr1| LA — tgtAt—QD (1)
O¢—1 Ot—1 0t—2

Let’s define and interpret each term:

e A, corresponds to the action selected at time ¢. Since we use a discrete
action space, A; can take three values:

— A; = 1: the agent buys a stock at time ¢, so it corresponds to a
buy position

— A; = 0: the agent does nothing at time ¢, it corresponds to a hold
position

— A; = —1: the agent buys a stock at time ¢, it corresponds to a
sell position

Note that Ry, the reward at time ¢, is independent of the action A; at
time ¢: it only uses the previous two actions - A;—1 and A;_»

e i depends on the assets being traded. For Futures, it corresponds
to the number of currencies that can be purchased - it is set to 1 as
detailed in the paper.

e oy corresponds to the volatility of close prices at time t.

o 044t I didn’t understand the function of this term - according to the
paper, it’s value corresponds to a percentage of the value of return for
a particular period of time. We are going to attribute a constant value
to it.

e p; corresponds to the price at time t
e 74 returns for time t, = p; — pPr_1

e bp corresponds to the basis point - it’s the percentage of transaction
fees for each transaction. It’s a constant, defined to 0.0001 in the

paper.

The purpose of the reward function is to learn appropriate actions, cor-
responding to input features from the results of transaction in the training
data.

We can interpret the function as follows:

The expression in brackets corresponds to the change in holding status
of a long or short position, for on currency bought and sold one episode ago.
u corresponds to the number of currencies bought and sold.

The first item inside this expression, evaluates the action one episode
earlier: it takes a positive value if the price has gone up and a negative
value if the price has gone down. As such, A;_17; takes a positive value if
we buy, and the price has gone up - or if we sell, and the price has gone
down. If we hold our position, the value is 0. In short, it represents whether
the trade was correct or not.

% is a coefficient for scaling the previous item: in situations of low
volatility, the value will be higher. In situations of high volatility, the value
will be lower. It makes the agent avoid situations of high volatility.

—bp p;_1 represents the transaction cost.

4.2 Implementation

We created two distinct python programs: one for the environment and one
for the agent. The agent program will call the environment program.

10

11

12

13

14

15

16

17

18

19

20

4.2.1 Environment

We create a class Environment that takes care of creating the features rep-
resenting the a given state, and that feeds them to the Agent. It is also in
Environment that we compute the reward, and create the training/testing
separation.

4.2.1.1 Data retrieval

We use cls files - which are the standard format for market price history -
that contain 5 seperate indicators, for each time step t: the date, the high
price, the low price, the close price and the daily returns (in percentage).
We first normalize all the data. It’s important that we don’t normalize
testing data with a min-max approach, so when testing, we will use python’s
standard scaler. In the paper, only the close price are said to be normalized.

<> Input program 1: Data extraction <S>

class Data(object):

def __init__(self, path, file, thousands = ','):
self.file = file
self.full = pd.read_csv(path + file, thousands =

< thousands)
self.ohlc = self.full[['Date', 'Open', 'High',
'Low', 'Price', 'Change

= h'110::-1]

self.ohlc['Change %'] = self.ohlc['Change
< %'].str.rstrip('%') .astype('float') / 100.0

self.ohlc.columns = ['Date', 'Open', 'High',
'Low', 'Close', 'Change']

def preprocess_data(self, scaler=None):
if scaler == None:
scaler = StandardScaler()
scaler.fit(data)

scaled_data = scaler.transform(self.raw_data)
self .norm_close_price = scaled_data

4.2.1.2 State computation

For each state, we need to provide the past 60 observations of each feature.
So we dynamically access the raw data to be able to compute each indicator.
The features for a given time ¢ will be in the form of a pandas DataFrame.

<> Input program 2: Compute features for a given state <P

def compute_state(self):
60 observations indexes

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

indexes = [index for index in range(self.step - 59,

— self.step + 1)]

feature dictionary init

features = {

'close price' : self.norm_close_price,
'1 month returns' : [],

'2 month returns' : [],

'3 month returns' : [],

'l year returns' : [],

'macd’ : self.compute_macd(),
'rsi' : self.compute_rsi()

retrieve observations for the current step

for index in indexes:

print("in index", index)
1f observation doesn't exist, compute it
if index not in self.observations:

self .observations[index] =

< self.compute_observation(index)

add observation to feature dictionary
feature_list = self.observations[index]

features['close price'].append(feature_list[0])

features['l month returns'].append(feature_list[1])
features['2 month returns'].append(feature_list[2])
features['3 month returns'].append(feature_list[3])
features['l year returns'].append(feature_list[4])

compute normalised close price series from close
— month price series

34

35

36

37

38

39

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

features['normalised close price series'] = cp_norm
del features['close price']

features_df = pd.DataFrame(data=features, index =
— 1indexes)

self.current_state = features_df

4.2.2

Feature computation

I built functions in the Environment class to compute the features:

<>

def

Input program 3: MACD <>

compute_macd(self):
def compute_qt(self, index):
print("in compute_qt")
obs_63 = self.raw_datal[index - 62 : index + 1]

m_S = obs_63['Close'].ewn(span=self.short_window,

— adjust=False) .mean()

m_L = obs_63['Close'] .ewm(span=self.long_window,
adjust=False) .mean()

rolling_std = obs_63['Close'].std()
return ((m_S - m_L) / rolling_std).values.tolist()
def compute_qt_list(self):

qt_list = []

for index in range(self.step - 251, self.step + 1):
compute qt
qt_list.append(compute_qt(self, index))

return np.array(qt_list)

gt = compute_qt(self, self.step) [3:]

qt_std = np.std(compute_qt_list(self), axis=0).mean()
print(qt_std)

return [x / qt_std for x in qt]

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

<>

Input program 4: MACD <>
def normalised_returns(self, index):
periods
period_1m = self.raw_datalindex - self.nb_days_month +
— 1:

index + 1]
period_2m self.raw_data[index - 2 *
— self.nb_days_month + 1:
index + 1]
period_3m = self.raw_datalindex - 3 *
— self.nb_days_month + 1:
index + 1]
period_ly = self.raw_datalindex - self.nb_days_year +
- 1:

index + 1]

daily_volatility

daily_volatility_ly = period_1y['Change'].ewmn(span =
— 60).std() .mean()

daily_volatility_3m = period_3m['Change'].ewm(span =
— 20).std() .mean()

daily_volatility_2m = period_2m['Change'].ewm(span =
< 10) .std() .mean()

daily_volatility_1im = period_im['Change'].ewm(span =
< 5).std() .mean()

normalised returns
returns_1y_norm = ((period_1y['Close'][-1:].item()
< period_1y['Close'][:1].item())

/ (period_1y['Close'][:1].item() =*

— daily_volatility_1y *

< np.sqrt(self.nb_days_year)))
returns_3m_norm = ((period_3m['Close'][-1:].item() -
< period_3m['Close'][:1].item())

/ (period_3m['Close'][:1].item() *

— daily_volatility_3m *

< np.sqrt(3*self.nb_days_month)))
returns_2m_norm = ((period_2m['Close']l[-1:].item() -
— period_2m['Close'][:1].item())

10

25

26

27

28

29

10

11

/ (period_2m['Close'][:1].item() *

— daily_volatility_2m *

— np.sqrt(2xself.nb_days_month)))
returns_1m_norm = ((period_1im['Close'][-1:].item() -
< period_im['Close'][:1].item())

/ (period_1im['Close'][:1].item() =*

« daily_volatility_1m *

< np.sqrt(self.nb_days_month)))

return returns_1m_norm, returns_2m_norm,
— returns_3m_norm, returns_ly_norm

<> Input program 5: RSI <S>

def compute_rsi(self, price_arr, cur_pos, period = 30):
if self.step <= 60:
return O
else:
s = cur_pos - 61
tmp_arr = self.raw_dats[s :self.step]['Close']
prices = np.array(tmp_arr, dtype=float)

we can use the ta-lib library to compute RSI
rsi_val = ta.RSI(prices, timeperiod = 60)[-1]
return rsi_val

4.2.3 Agent

I made several attempts to make an Agent class, but didn’t manage to have
a full working code.

5 Concluding Remarks

I discovered two new topics that were unknown to me: Reinforcement Learn-
ing and Financial Markets. I got a good understanding of how to represent
a market, the tools that we use to modelize its trends and make intelligent
choices.

I implemented the representation of the features, which seem to describe
well the trend of the price.

I haven’t reached the memoir’s objectives. Nevertheless, I learned a lot
about financial trading and Reinforcement Learning. I liked this subject a
lot, so I will be working on it to arrive at the goals that were set. The Agent
part still needs to be developped, which I want to do with more time this

11

summer. When I have a working reinforcement learning implementation,
I can see if I can develop an extrinsic reward signal - as is described in

[PAED17].

References

[BGH'15] Jamil Baz, Nicolas M Granger, Campbell R. Harvey, Nicolas

[BK12]

[Klal9]

[LZR19]

[MakO6]

[MK19]

[MOP12]

[PAED17]

[Sch17]

Le Roux, and Sandy Rattray. Dissecting Investment Strategies
in the Cross Section and Time Series. SSRN Electronic Journal,
2015.

Akindynos-Nikolaos Baltas and Robert Kosowski. Improving
Time-Series Momentum Strategies: The Role of Trading Signals
and Volatility Estimators. SSRN Electronic Journal, 2012.

Jannes Klaas. Machine Learning for finance: The practical guide
to using data-driven algorithms in banking, insurance, and in-

vestments, 2019. OCLC: 1137786464.

Bryan Lim, Stefan Zohren, and Stephen Roberts. Enhancing
Time Series Momentum Strategies Using Deep Neural Networks.
SSRN Electronic Journal, 2019.

Don K. Mak. Mathematical techniques in financial market
trading. World Scientific, Hackensack, N.J, 2006. OCLC:
ocm63117060.

Terry Lingze Meng and Matloob Khushi. Reinforcement Learn-
ing in Financial Markets. Data, 4(3):110, July 2019.

Tobias J. Moskowitz, Yao Hua Ooi, and Lasse Heje Peder-
sen. Time series momentum. Journal of Financial Fconomics,
104(2):228-250, May 2012.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor
Darrell. Curiosity-Driven Exploration by Self-Supervised Predic-
tion. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 488-489, Honolulu, HI,
USA, July 2017. IEEE.

Jack D. Schwager. A complete guide to the futures market: tech-
nical analysis and trading systems, fundamental analysis, op-
tions, spreads, and trading principles. Wiley trading series. Wi-
ley, Hoboken, New Jersey, second edition edition, 2017.

12

[ZZR19] Zihao Zhang, Stefan Zohren, and Stephen Roberts. Deep Re-
inforcement Learning for Trading. arXiv:1911.10107 [cs, g-fin],
November 2019. arXiv: 1911.10107.

13

