Ceteris paribus majority for social ranking

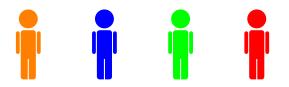
Adrian Haret¹, Hossein Khani³, Stefano Moretti^{2,3}and Meltem Öztürk³

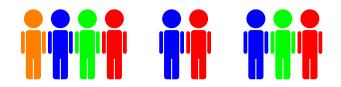
¹TU Wien - ²CNRS UMR7243 - ³LAMSADE, Université Paris-Dauphine

ljcai2018- Stockholm

Problem definition

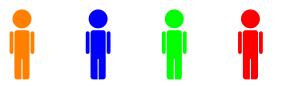
Individuals

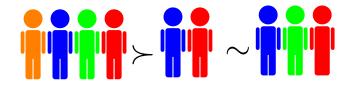




Problem definition

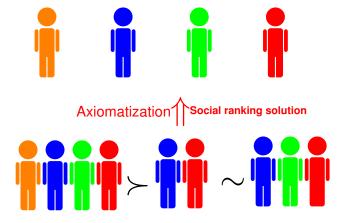
Individuals





Problem definition

Individuals



Objective

Input :

- A set of individuals : $N = \{1, \ldots, n\}$
- A power relation \succeq on 2^N :
 - $S \succeq T$: The "team" S performs at least as good as T.

We suppose $\succeq \in \mathcal{B}(2^N)$, set of all binary relation.

Output :

A solution R[∠](I[∠] the symmetric part, P[∠] the strict part), associates to every power relation (∠) a ranking (total preorder) over the set of individuals.

Critical information

Ceteris Paribus comparisons :

Ceteris Paribus Comparisons :

$$24 > 14$$

 $13 > 23$
 $234 > 134$

Ranking two alternatives?

Ceteris Paribus Majority solution

 $2345 \succ 245 \succ 1234 \succ 13 \sim 23 \succ 12 \succ 145 \succ 35 \succ 24 \succ 14$

Coalition	Comparison
45	2 45 ≻ 1 45
3	$1\ 3\sim 2\ 3$
4	24 > 14

$$D_{12} = \{\}, |D_{12}| = d_{12} = 0$$
$$D_{21} = \{45, 4\}, |D_{21}| = d_{21} = 2$$

Ranking two alternatives?

Ceteris Paribus Majority solution

 $2345 \succ 245 \succ 1234 \succ 13 \sim 23 \succ 12 \succ 145 \succ 35 \succ 24 \succ 14$

Coalition	Comparison	
45	2 45 ≻ 1 45	
3	$1\ 3\sim 2\ 3$	
4	24 > 14	

 $D_{12} = \{\}, |D_{12}| = d_{12} = 0$ $D_{21} = \{45, 4\} |D_{21}| = d_{21} = 2$ $2R \succeq 1$

Ceteris Paribus Majority rule because it utilizes comparison of Ceteris Paribus coalitions

Majority because it counts number of times each researcher is winner

Ceteris Paribus Majority

Definition (Ceteris Paribus Majority)

Let $\succeq \in \mathcal{B}(2^N)$. The *ceteris paribus majority relation* (CP-majority) is the binary relation $R^{\succeq} \subseteq N \times N$ such that for all $x, y \in N$:

$$xR^{\succeq}y \Leftrightarrow d_{xy}(\succeq) \geq d_{yx}(\succeq).$$

Property driven approach

Inspiring from classical social choice theory three axioms are defined :

- Equality of Coalitions
- Neutrality
- Positive Responsiveness

Equality of Coalitions

Equality of coalitions says that each coalition should influence the social ranking of two alternatives *x* and *y* equally.

\succeq		
245 ≻ 145	2 <mark>345</mark>	
$13 \sim 23$	$14 \simeq 24$	
24 ≻ 14	2 34 ⊐ 134	
Therefore :		
2 <i>B</i> ≿1 ⇔ 2 <i>B</i> ⊒1		

Equality of Coalitions

Definition (Equality of Coalitions)

Let $A \subseteq N$. A solution $R_A : \mathcal{B}(2^N) \longrightarrow \mathcal{T}(A)$ satisfies the property of *Equality of Coalitions* (EC) if and only if for all power relations $\succeq, \exists \in \mathcal{B}(2^N), x, y \in A$ and bijection $\pi : 2^{N \setminus \{x,y\}} \rightarrow 2^{N \setminus \{x,y\}}$ such that $S \cup \{x\} \succeq S \cup \{y\} \Leftrightarrow \pi(S) \cup \{x\} \supseteq \pi(S) \cup \{y\}$ for all $S \in 2^{N \setminus \{x,y\}}$, it holds that $xR_A^{\succeq}y \Leftrightarrow xR_A^{\Box}y$.

Neutrality

Neutrality states that a solution should not favor any candidate in $A \subseteq N$: if the name of two elements in A is reversed, the social ranking remains the same.

The solution is not biased in favor of one researcher

Coalitions	\succeq	
45	<mark>2</mark> 45 ≻ 145	<mark>1</mark> 45
3	$13\sim 23$	$23 \simeq 13$
4	<mark>2</mark> 4 ≻ 14	14
If $2R_A^{\succeq}$ 1 then $1R_A^{\Box}$ 2		

Neutrality

Definition (Neutrality)

Let $A \subseteq N$. A solution $R_A : \mathcal{B}(2^N) \longrightarrow \mathcal{T}(A)$ satisfies the property of *Neutrality* (N) if and only if for all power relations $\succeq, \supseteq \in \mathcal{B}(2^N)$ and $x, y \in A$ such that $S \cup \{x\} \succeq S \cup \{y\} \Leftrightarrow S \cup \{y\} \supseteq S \cup \{x\}$ for all $S \in 2^{N \setminus \{x,y\}}$, it holds that $xR_A^{\succeq}y \Leftrightarrow yR_A^{\supseteq}x$.

Positive Responsiveness

Positive Responsiveness states that a solution should be coherent with changes of the power relation of coalitions.

Coalition	\succ	
45	245 ≻ 145	245 🗆 145
3	13 <mark>~</mark> 23	13 <mark> </mark> 23
4	24 ≻ 14	24 🗆 14

1*R*[≽]2 ⇔ 1*P*[⊒]2

Positive Responsiveness

Definition (Positive Responsiveness)

Let $A \subseteq N$. A solution $R_A : \mathcal{B}(2^N) \longrightarrow \mathcal{T}(A)$ satisfies the property of *Positive Responsiveness* (PR) if and only if for all power relations $\succeq, \supseteq \in \mathcal{B}(2^N)$, $x, y \in A$ with $xR_A^{\succeq}y$ and such that for some $T \in 2^{N \setminus \{x,y\}}$, $[T \cup \{x\} \sim T \cup \{y\}$ and $T \cup \{x\} \supseteq T \cup \{y\}]$, or, $[T \cup \{y\} \succ T \cup \{x\}$ and $T \cup \{x\} \simeq T \cup \{y\}]$ and $S \cup \{x\} \succeq S \cup \{y\} \Leftrightarrow S \cup \{y\} \supseteq S \cup \{x\}$ for all $S \in 2^{N \setminus \{x,y\}}$ with $S \neq T$, it holds that $xP_A^{\Box}y$.

Characterization

Theorem

Let $A = \{x, y\} \subseteq N$ be a set with only two alternatives. A solution $R_A : \mathcal{B}(2^N) \longrightarrow \mathcal{T}(A)$ associates to each $\succeq \in \mathcal{B}(2^N)$ the corresponding CP-majority relation $R^{\succeq} \cap A \times A$ if and only if it satisfies axioms EC, N and PR.

Condorcet-like paradox

Suppose :

 $2\succ 1\succ 3\succ 23\succ 13\succ 12\succ 14\succ 34\succ 24\succ 134\sim 124\sim 234$

 $A = \{1, 2, 3\}$

1 vs. 2	2 vs. 3	1 vs. 3
2 ≻ 1	2 ≻ 3	1 ≻ 3
23 ≻ 13	13 ≻ 12	23 ≻ 12
14 ≻ 24	34 ≻ 24	14 ≻ 34
$134\sim234$	$124 \sim 134$	$124\sim234$

 $2P_A^{\succ}1, 3P_A^{\succ}2, 1P_A^{\succ}3$

Restriction on the power relation

Question

Consider three alternatives $i, j, k \in N$. Under which restrictions on the power relation $\succeq \in \mathcal{B}(2^N)$ the social ranking solution results in a transitive ranking over individuals?

Social Single Peakedness

Definition (Social single peakedness)

The (linear) power relation \succ is socially single-peaked if there exists a linear order \triangleleft on the set of items N such that for any $i, j, k \in N$ for which $i \triangleleft j \triangleleft k$ and any $S \in 2^{N \setminus \{i, j, k\}}$, none of the following conditions holds :

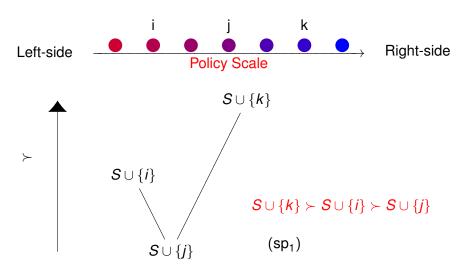
 $(sp_1) \ S \cup \{i\} \succ S \cup \{j\} \text{ and } S \cup \{k\} \succ S \cup \{j\},$

(sp₂) $S \cup \{i, k\} \succ S \cup \{i, j\}$ and $S \cup \{i, k\} \succ S \cup \{j, k\}$.

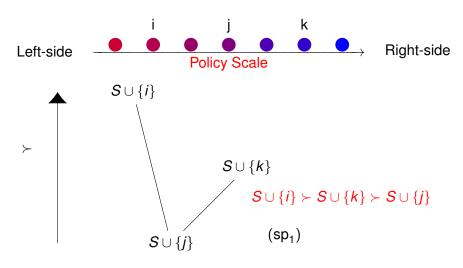
- Political interest can provide a scale to linearly order individuals.
- Researchers in a lab can be ordered linearly based on their level of experience.

Restriction one

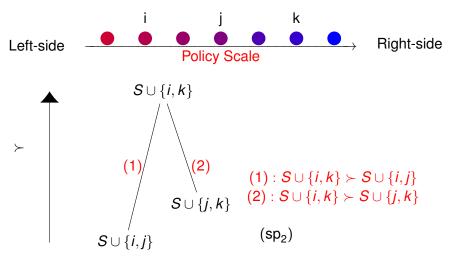
Restriction one



Restriction one



Restriction two



Theorem

Theorem

If the power relation \succeq is socially single-peaked, then for any items $i, j, k \in N$, it does not hold that $iR^{\succ}jR^{\succ}kR^{\succ}i$ (i.e., the ceteris paribus majority solution does produce any non-transitive cycles).

Conclusion

- ► Big literature is available about the inverse problem : Ranking over individuals → ranking over teams
- ► Ordinal ranking over teams → Ordinal ranking over individuals
 - ✓ Equality of Coalitions, Neutrality, Positive Responsiveness.
 - ✓ Social single peakedness.

Future works

Our way is to utilize more information in the power relaiton

- Extending Shapley value and Banzhaf intex to ordinal case.
- Considering possibility of forming coalitions in order to rank individuals.
- Complexity issues of applying the solution on real application.