An Ordinal Banzhaf Index for Social Ranking

Hossein Khani, Stefano Moretti and Meltem Öztürk

CNRS UMR7243 - LAMSADE, Université Paris-Dauphine

IJCAI 2019- Macao, China

Power index :

Power index indicates the influence of individuals in the society, it can be cardinal or ordinal.

Power Relation (Binary relation)

Power Relation (Binary relation)

Social ranking solution \ Axiomatization

Total preorder

15

Objective

Input :

- A set of individuals : $N = \{1, \ldots, n\}$
- A power relation \succeq on 2^N :
 - $S \succeq T$: The "team" S performs at least as good as T.

We suppose $\succeq \in \mathcal{B}(2^N)$, set of all binary relations.

Output :

A solution R[∠](I[∠] the symmetric part, P[∠] the strict part), associates to every power relation (∠) a ranking (total preorder) over the set of individuals.

Ordinal Banzhaf solution : Motivation

► The Banzhaf value $\beta(v)$ of TU-game (N, v) is the *n*-vector $\beta(v) = (\beta_1(v), \beta_2(v), \dots, \beta_n(v))$, such that for each $i \in N$:

$$\beta_i(\mathbf{v}) = \frac{1}{2^{n-1}} \sum_{\mathbf{S} \in 2^N, i \notin \mathbf{S}} \big(\mathbf{v}(\mathbf{S} \cup \{i\}) - \mathbf{v}(\mathbf{S}) \big).$$

For a cooperative game $(\{ \begin{array}{c} & & \\ & &$

$$\beta(v) - \beta(v) = \frac{1}{2} \left(v(\overrightarrow{\mathbf{p}}) - v(\overrightarrow{\mathbf{p}}) \right) + \frac{1}{2} \left(v(\overrightarrow{\mathbf{p}} - v) - v(\overrightarrow{\mathbf{p}}) \right)$$

Motivation : Robustness

Motivation : Robustness

Solutions : Ordinal Banzhaf Solution

? > **?** = Ordinal Banzhaf rule : ?

Informative part : Marginalistic comparisons

Ordinal Marginal Contribution

$$\frac{2}{3} > \frac{2}{3} = \frac{2}$$

Ordinal Marginal Contribution

$$\mathbf{\hat{r}} > \mathbf{\hat{r}} = \mathbf{\hat{r}} + \mathbf{\hat{r}} + \mathbf{\hat{r}} + \mathbf{\hat{r}} = \mathbf{\hat{r}} + \mathbf{\hat{r}} + \mathbf{\hat{r}} + \mathbf{\hat{r}} = \mathbf{\hat{r}} + \mathbf{\hat{$$

< 0

Banzhaf Score

To compute the Banzhaf Score of individual Red we compute the difference between the times its ordinal marginal contribution is positive and number of times it is negative.

Banzhaf Score

To compute the Banzhaf Score of individual Red we compute the difference between the times its ordinal marginal contribution is positive and number of times it is negative.

3 - 1 = 2

Ordinal Banzhad solution

? > **? ?** > **? ?** > **? ?** > **? ?** > **?** = **?**

10/23

Ordinal Banzhad solution

? > **? ?** > **? ?** > **? ?** > **? ?** > **?** = **?**

Banzhaf Scores :

2 0

Ordinal Banzhad solution

? > **? ?** > **? ?** > **? ?** > **? ?** > **? ?** > **?** > **?** > **?**

Banzhaf Scores :

2 0

Social ranking problem

Definition (Ordinal Banzhaf relation)

Let $\succeq \in \mathcal{B}(2^N)$ and $A \subseteq N$. The *ordinal Banzhaf relation* is the binary relation $\hat{R}_A^{\succeq} \subseteq A \times A$ such that for all $i, j \in A$:

$$i\hat{R}_A^{\succeq}j \Leftrightarrow s_i^{\succeq} \ge s_j^{\succeq}.$$

From the definition it immediately follows that the ranking result is always transitive.

Ordinal Banzhaf solution :

Coalitional Anonymity

Neutrality

Monotonicity

Coalitional Anonymity

Coalitional Anonymity

Coalitional Anonymity

Definition (Coalitional Anonymity(CA))

Let $A \subseteq N$. A solution $R_A : C \subseteq \mathcal{B}(2^N) \to \mathcal{T}(A)$ satisfies the *coalitional anonymity* axiom on *C* if and only if for all power relations $\succeq, \sqsupseteq \in C$, for all players $i, j \in A$ and bijections $\pi^i : U_i \to U_i$ and $\pi^j : U_j \to U_j$ such that $S \cup \{i\} \succeq S \Leftrightarrow \pi^i(S) \cup \{i\} \sqsupseteq \pi^i(S)$ for all $S \in U_i$ and $S \cup \{j\} \succeq S \Leftrightarrow \pi^j(S) \cup \{j\} \sqsupseteq \pi^j(S)$ for all $S \in U_j$, then it holds that $iR_A^{\succeq}j \Leftrightarrow iR_A^{\sqsupset}j$.

In this definition :

►
$$U_i = \{S \in 2^N \text{ s.t } i \notin S\}.$$

Neutrality

Neutrality

Neutrality(Ordinal Banzhaf)

Definition (Neutrality (N))

Let $A \subseteq N$. A solution $R_A : C \subseteq \mathcal{B}(2^N) \to \mathcal{T}(A)$ satisfies the *neutrality* axiom on *C* if and only if for all power relations $\succeq, \supseteq \in C$ and each bijection $\sigma : N \to N$ such that $\sigma(A) = A$ and $S \succeq T \Leftrightarrow \sigma(S) \supseteq \sigma(T)$ for all $S, T \in 2^N$, then it holds that $iR_A^{\succeq}j \Leftrightarrow \sigma(i)R_A^{\Box}\sigma(j)$ for every $i, j \in A$.

In this definition :

$$\bullet \ \sigma : \mathbf{N} \to \mathbf{N} \text{ s.t} \\ \mathbf{S} = \{i, j, k, ..., t\} \subseteq \mathbf{N} \Rightarrow \sigma(\mathbf{S}) = \{\sigma(i), \sigma(j), \sigma(k), ..., \sigma(t)\}.$$

Monotonicity

Monotonicity

Monotonicity

Definition (Monotonicity (M))

Let $A \subseteq N$. A solution $R_A : C \subseteq \mathcal{B}(2^N) \to \mathcal{T}(A)$ satisfies the *monotonicity* axiom on C if and only if for all power relations $\succeq, \supseteq \in C$ and $i, j \in A$ such that :

- ▶ there exists a coalition $S \in U_i$ such that $S \succ S \cup i$ and $S \cup i \supseteq S$, and
- ► $T \cup i \succ T \Leftrightarrow T \cup i \sqsupset T$ and $T \cup j \succ T \Leftrightarrow T \cup j \sqsupset T$ for all the other coalitions $T \in 2^N, T \neq S$,

then it holds that $iR_A^{\succeq}j \Rightarrow iP_A^{\Box}j$.

In this definition :

►
$$U_i = \{S \in 2^N \text{ s.t } i \notin S\}.$$

Characterization : Ordinal Banzhaf Solution

► For the set of all linear orders we have proved that :

Theorem

Let $A \subseteq N$. A solution $R_A : \mathcal{A}(2^N) \to \mathcal{T}(A)$ is the ordinal Banzhaf solution if and only if it satisfies the three axioms CA, N and M on $\mathcal{A}(2^N)$.

Ceteris Paribus Majority rule(IJCAI18)

20/23

Ceteris Paribus Majority rule(IJCAI18)

Ceteris Paribus Majority rule(IJCAI18)

 Ceteris Paribus majority rule and Ordinal Banzhaf solution belong to the same family of weighted majority rules.

HOW??

 Ceteris Paribus majority rule and Ordinal Banzhaf solution belong to the same family of weighted majority rules.

HOW??

 Ceteris Paribus majority rule and Ordinal Banzhaf solution belong to the same family of weighted majority rules.

HOW??

Ceteris Paribus Majority :

 Ceteris Paribus majority rule and Ordinal Banzhaf solution belong to the same family of weighted majority rules.

HOW??

Family of weighted majority relations

Definition (Weighted majority relation)

Let $\succeq \in \mathcal{B}(2^N)$, $A \subseteq N$ and let $\mathbf{w} = [w_{ij}^S]_{i,j \in A, S \in 2^N: i, j \notin S}$ be a *weight scheme* such that $w_{ij}^S \ge 0$ for all $i, j \in A$ and $S \in U_{ij}$. The *weighted majority relation* associated to \mathbf{w} is the binary relation $R_A^{\succeq, \mathbf{w}} \subseteq A \times A$ such that for all $i, j \in A \subseteq N$:

$$i \mathcal{R}^{\succeq, \mathbf{w}}_{\mathcal{A}} j \; \Leftrightarrow \; \sum_{S \in U_{ij}} w^S_{ij} \overline{d}^S_{ij}(\succeq) \geq 0.$$

In this definition :

d_{ij}(*⊵*) is the number of times that *i* performs better than *j* in power relation *⊵*.

►
$$U_{ij} = \{S \in 2^N \text{ s.t } i, j \notin S\}.$$

Future work

- More general axioms composing two parts of Normative and Informative.
- ▶ Find out other members of the Family of weighted majority.
- Looking for practical applications to model it as the mentioned problem.
- To compare the solutions, applying the inverse of the problem to retrieve the power relation.