Social ranking rules for incomplete power relations

Hossein Khani, Ulle Endriss, Stefano Moretti Meltem Öztürk, Zoi Terzopoulou

CNRS UMR7243 - LAMSADE, Université Paris-Dauphine, ILLC, University of Amsterdam.

ROADEF 2020-Montpellier, France

Power Relation (Binary relation)

Power Relation (Binary relation)

Social ranking solution \ Axiomatization

Linear Order

Objective

Input :

- A set of individuals : $N = \{1, \ldots, n\}$
- A power relation \succeq on 2^N :
 - $S \succeq T$: The "team" S performs at least as good as T.

We suppose $\succeq \in \mathcal{B}(2^N)$, set of all binary relations.

Output :

A solution R[∠](I[∠] the symmetric part, P[∠] the strict part), associates to every power relation (∠) a ranking (linear order) over the set of individuals.

Pair-wise Ceteris-Paribus majority rule

Informative part : CP-comparisons

Interpretation : Electoral system

Ceteris Paribus principle transforms the problem to a kind of electoral system with two differences :

 Voters are coalitions : the interaction among the members who form the coalitions (voters) are important,

Each coalition can do compare individuals that are not in the coalition. Thus one individual can be a part of voter and also be a candidate at the same time.

Coalitions as Voter (Issue 1)

What interaction between individuals show?

For instance in some context the related questions may be :

- Do the members reach an agreement in democratic way?
- Or is there one who imposes his or her opinion?

Coalitions as voters Issue 2

▶ What bout the size of coalitions?

Preferences made by which coalition worth more?

Issue 3

Coalitions have different sets of individuals to compare :

Let's set N is :

Weighted version of CP-majority rule

By all these considerations :

- Other members get compared by the coalition,
- Worth of individuals in the coalition and their interaction

Ranking more than two individuals

$$135 \succ 235 \succ 345 \succ 25 \succ 15$$

The goal is to compare 1, 2, 3, 4, 5

 $\triangleright \succeq_{\mathcal{S}} = \{(i,j) | i \cup \mathcal{S} \succeq j \cup \mathcal{S} \text{ s.t } i, j \in \mathcal{N}, i, j \notin \mathcal{S}, i \neq j\}$

▶
$$\succeq_{\{3,5\}} = \{(1,2), (1,4), (2,4)\}, \succeq_{\{5\}} = \{(2,1)\}$$

- We refer to space of all linear orders on the set N = {1,2,3,4,5}
- We choose the one which is closer to the provided preferences by information sets :

$$F_w(\succeq) = rgmax_{R \in \mathcal{L}(N)} \sum_{S \in 2^N} w(S, \succeq_S) \cdot |R \cap \succeq_S|$$

Ranking more than two individuals (Example)

$135 \succ 235 \succ 345 \succ 25 \succ 15$

▶
$$\succeq_{\{3,5\}} = \{(1,2), (1,4), (2,4)\}, \succeq_{\{5\}} = \{(2,1)\}$$

►
$$F_w(\succeq) = \underset{R \in \mathcal{L}(N)}{\operatorname{argmax}} [w(\{3,5\}, \succeq_{\{3,5\}}) \cdot |R \cap \{(1,2), (1,4), (2,4)\}|$$

+ $w(\{2,1\}, \succeq_{\{2,1\}}) \cdot |R \cap \{(2,1)\}|]$

▶ Suppose $w({3,5}, \succeq_{{3,5}}) = 2, w({5}, \succeq_{{5}}) = 1$ Then : $\{(1,2), (1,4), (2,4), (1,5), (2,5)\} \subset R \subset F_w(\succeq)$ $\{(1,2), (1,4), (2,4), (5,1), (5,2)\} \subset R' \subset F_w(\succeq)$

Problem definition

Input :

- ► A set *N* of individuals,
- The informative part of a power relation ≽∈ B(2^N) : {≿_S, S ∈ 2^N},
- ► A defined weight function *w*,

Output :

A set of linear orders on set N of individuals who are more closer to the preferences in the informative part.

Tree Structure

Social ranking rules for incomplete power relations

Social ranking problem

Social ranking rules for incomplete power relations

Social ranking problem

14/18

Tree Structure

15/18

Splitting axiom(example)

▶
$$N = \{1, 2, 3, 4, 5\}$$

▶
$$\succeq_{\{1\}} = \{(3,4)\}, \succeq_{\{2\}} = \{4,5\}$$

▶
$$\exists_{\{1\}} = \{(3,4), (4.5)\}, \exists_{\{2\}} = \{(3,4), (4,5)\},$$

▶ If F_w satisfies Splitting, it holds that $F_w(\succeq) = F_w(\sqsupseteq)$.

Splitting (Formal definition)

Definition (Splitting axiom)

A ranking rule *F* satisfies splitting if and only if for any two given power relations $\succeq, \sqsupseteq \in \mathcal{B}(2^N)$ and a set of individuals $\{i_1, j_1, i_2, j_2, ..., i_\ell, j_\ell\} \subset N, \ell \in \mathbb{N}$ if the two power relations are identical except for a set of coalitions of the same size $\{S_1, ..., S_\ell\}$ such that $i_1, j_1, i_2, j_2, ..., i_\ell, j_\ell \notin S_1, ..., S_\ell$ and $\{i_1 j_1\} = \succeq_{S_1}, \{i_2 j_2\} = \succeq_{S_2}, ..., \{i_\ell j_\ell\} = \succeq_{S_\ell}$ while $\{i_1 j_1, i_2 j_2, ..., i_\ell j_\ell\} = \sqsupset_{S_1} = ... = \sqsupset_{S_\ell}$ then it holds that $F(\succeq) = F(\sqsupseteq)$.

Theorem

Theorem

The only weighted ranking rule of the family $\mathcal{F}_{w_{\# l}}$ that satisfies splitting is $F^{\rho}_{w_{\# l}}$.

$$F_{w_{\#l}}(\succeq) = \operatorname*{argmax}_{R \in \mathcal{L}(N)} \sum_{S \in 2^N} w_{\#l}(|\succeq_S|) \cdot |R \cap \succeq_S$$
$$F_{w_{\#l}}^p(\succeq) = \operatorname*{argmax}_{R \in \mathcal{L}(N)} \sum_{S \in 2^N} \frac{1}{|\succeq_S|} \cdot |R \cap \succeq_S|$$