Social ranking rules for incomplete power relations

Hossein Khani, Ulle Endriss, Stefano Moretti Meltem Öztürk, Zoi Terzopoulou
CNRS UMR7243 - LAMSADE, Université Paris-Dauphine, ILLC, University of Amsterdam.

ROADEF 2020-Montpellier, France

Power Relation (Binary relation)

Power Relation (Binary relation)

Social ranking solution \backslash Axiomatization

Linear Order

(3)

Objective

Input :

- A set of individuals : $N=\{1, \ldots, n\}$
- A power relation \succeq on 2^{N} :
$S \succeq T$: The "team" S performs at least as good as T.
We suppose $\succeq \in \mathcal{B}\left(2^{N}\right)$, set of all binary relations.
Output :
- A solution R^{\succeq} ($I \succeq$ the symmetric part, $P \succeq$ the strict part), associates to every power relation (\succeq) a ranking (linear order) over the set of individuals.

Pair-wise Ceteris-Paribus majority rule

Informative part : CP-comparisons

Interpretation : Electoral system

Ceteris Paribus principle transforms the problem to a kind of electoral system with two differences:

- Voters are coalitions : the interaction among the members who form the coalitions (voters) are important,
- Each coalition can do compare individuals that are not in the coalition. Thus one individual can be a part of voter and also be a candidate at the same time.

Coalitions as Voter (Issue 1)

- What interaction between individuals show?

For instance in some context the related questions may be :

- Do the members reach an agreement in democratic way?
- Or is there one who imposes his or her opinion?

Coalitions as voters Issue 2

- What bout the size of coalitions ?

Preferences made by which coalition worth more?

Issue 3

Coalitions have different sets of individuals to compare :

- Let's set N is :

- Coalition 3 can compares individuals
- Coalition

can compare individuals

Weighted version of CP-majority rule

By all these considerations :
会

accompanied by a weight depends

- Other members get compared by the coalition,
- Worth of individuals in the coalition and their isteq.

Ranking more than two individuals

$$
135 \succ 235 \succ 345 \succ 25 \succ 15
$$

The goal is to compare $1,2,3,4,5$

- $\succeq_{S}=\{(i, j) \mid i \cup S \succeq j \cup S$ s.t $i, j \in N, i, j \notin S, i \neq j\}$
- $\succeq_{\{3,5\}}=\{(1,2),(1,4),(2,4)\}, \succeq_{\{5\}}=\{(2,1)\}$
- We refer to space of all linear orders on the set $N=\{1,2,3,4,5\}$
- We choose the one which is closer to the provided preferences by information sets :

$$
F_{w}(\succeq)=\underset{R \in \mathcal{L}(N)}{\operatorname{argmax}} \sum_{S \in 2^{N}} w\left(S, \succeq_{S}\right) \cdot\left|R \cap \succeq_{S}\right|
$$

Ranking more than two individuals (Example)

$$
135 \succ 235 \succ 345 \succ 25 \succ 15
$$

$-\succeq_{\{3,5\}}=\{(1,2),(1,4),(2,4)\}, \succeq_{\{5\}}=\{(2,1)\}$

- $F_{w}(\succeq)=\underset{R \in \mathcal{L}(N)}{\operatorname{argmax}}\left[w\left(\{3,5\}, \succeq_{\{3,5\}}\right) \cdot|R \cap\{(1,2),(1,4),(2,4)\}|\right.$
$\left.+w\left(\{2,1\}, \succeq_{\{2,1\}}\right) \cdot|R \cap\{(2,1)\}|\right]$
- Suppose $w\left(\{3,5\}, \succeq_{\{3,5\}}\right)=2, w\left(\{5\}, \succeq_{\{5\}}\right)=1$ Then: $\{(1,2),(1,4),(2,4),(1,5),(2,5)\} \subset R \subset F_{w}(\succeq)$ $\{(1,2),(1,4),(2,4),(5,1),(5,2)\} \subset R^{\prime} \subset F_{w}(\succeq)$

Problem definition

Input :

- A set N of individuals,
- The informative part of a power relation $\succeq \in \mathcal{B}\left(2^{N}\right)$: $\left\{\succeq_{s}, S \in 2^{N}\right\}$,
- A defined weight function w,

Output :

- A set of linear orders on set N of individuals who are more closer to the preferences in the informative part.

Social ranking problem

Tree Structure

Social ranking problem

Social ranking problem

Tree Structure

Splitting axiom(example)

- $N=\{1,2,3,4,5\}$
- $\succeq_{\{1\}}=\{(3,4)\}, \succeq_{\{2\}}=\{4,5\}$
- $\sqsupseteq_{\{1\}}=\{(3,4),(4.5)\}, \sqsupseteq_{\{2\}}=\{(3,4),(4,5)\}$,
- If F_{w} satisfies Splitting, it holds that $F_{w}(\succeq)=F_{w}(\sqsupseteq)$.

Splitting (Formal definition)

Definition (Splitting axiom)

A ranking rule F satisfies splitting if and only if for any two given power relations $\succeq, \exists \in \mathcal{B}\left(2^{N}\right)$ and a set of individuals $\left\{i_{1}, j_{1}, i_{2}, j_{2}, \ldots, i_{\ell}, j_{\ell}\right\} \subset N, \ell \in \mathbb{N}$ if the two power relations are identical except for a set of coalitions of the same size $\left\{S_{1}, \ldots, S_{\ell}\right\}$ such that $i_{1}, j_{1}, i_{2}, j_{2}, \ldots, i_{\ell}, j_{\ell} \notin S_{1}, \ldots, S_{\ell}$ and $\left\{i_{1} j_{1}\right\}=\succeq s_{1},\left\{i_{2} j_{2}\right\}=\succeq_{s_{2}}, \ldots,\left\{i_{\ell} j_{\ell}\right\}=\succeq s_{\ell}$ while $\left\{i_{1} j_{1}, i_{2} j_{2}, \ldots, i_{\ell} j_{\ell}\right\}=\sqsupseteq_{s_{1}}=\ldots=\sqsupseteq_{\ell}$ then it holds that $F(\succeq)=F(\sqsupseteq)$.

Theorem

Theorem

The only weighted ranking rule of the family $\mathcal{F}_{w_{\# 1}}$ that satisfies splitting is $F_{w_{\# 1}}^{p}$.

- $F_{w_{\# I}}(\succeq)=\underset{R \in \mathcal{L}(N)}{\operatorname{argmax}} \sum_{S \in 2^{N}} w_{\# I}(|\succeq s|) \cdot|R \cap \succeq s|$
- $F_{w_{\# 1}}^{p}(\succeq)=\underset{R \in \mathcal{L}(N)}{\operatorname{argmax}} \sum_{S \in 2^{N}} \frac{1}{|\succeq s|} \cdot|R \cap \succeq s|$

