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Mixed Integer Linear Programming

min cx
s.t. Ax = b

xj ∈ Z for j = 1, . . . , p
xj ≥ 0 for j = 1, . . . , n.

Common approach to solving MILP:

• First solve the LP relaxation. Basic optimal solution:

xi = fi +
∑

j∈N r jxj for i ∈ B.

• If fi 6∈ Z for some i ∈ B ∩ {1, . . . , p}, add cutting planes:

Gomory 1963 Mixed Integer Cuts, Marchand and Wolsey 2001
MIR inequalities, Balas, Ceria and Cornuéjols 1993 lift-and-project
cuts, for instance, are used in commercial codes.
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Basu, Conforti, Cornuéjols and Zambelli SIDMA 2010

Related work (old)

Corner polyhedron

Gomory LAA 1969
Gomory and Johnson MP 1972

Intersection cuts

Balas OR 1971

The work that motivated me

Andersen, Louveaux, Weismantel and Wolsey IPCO 2007
Dey and Richard MOR 2008
Dey and Wolsey Working paper 2009



Corner Polyhedron Gomory 1969
Relax nonnegativity on basic variables xj .

In our work, we make a further relaxation, as suggested by
Andersen, Louveaux, Weismantel and Wolsey:
Relax integrality on nonbasic variables.

x = f +
∑k

j=1 r jsj
x ∈ Zq

s ≥ 0

Example

f

r 1

r 2

Feasible set {
(

x1

x2

)
∈ Z2 :

(
x1

x2

)
= f + r1s1 + r2s2

where s1 ≥ 0, s2 ≥ 0}



”Formulas” for Deriving Cutting Planes

x = f +
∑k

j=1 r jsj
x ∈ Zq

s ≥ 0

Every inequality cutting off the point (x̄ , s̄) = (f , 0) can be
expressed in terms of the nonbasic variables s only, in the form∑k

j=1 αjsj ≥ 1.
We are interested in “formulas” for deriving such inequalities.
More formally, we are interested in functions ψ : Rq → R such
that the inequality

k∑

j=1

ψ(r j)sj ≥ 1

is valid for every choice of k and vectors r1, . . . , rk ∈ Rq.
We refer to such functions ψ as valid functions (with respect to f ).



Intersection Cuts Balas 1971

Assume f 6∈ Zq. Want to cut off the basic solution s = 0, x = f .

f
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S

Any convex set S with f ∈ int(S) and no integer point in int(S).



Intersection Cuts Balas 1971

Assume f 6∈ Zq. Want to cut off the basic solution s = 0, x = f .

f

r 1

r 2

S

intersection cut

Any convex set S with f ∈ int(S) and no integer point in int(S).

The gauge of S − f , i.e. ψ(r) = inf {λ ≥ 0 : r ∈ λ(S − f )} is a
valid function.

Intersection cut: ψ(r1)s1 + ψ(r2)s2 ≥ 1.



Minimal Valid Functions

Our main interest is in minimal valid functions ψ(r) : Rq → R,

i.e. there is no valid function ψ′ ≤ ψ where ψ′(r) < ψ(r) for at
least one r ∈ Rq.

f

r 1
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S

Bigger convex set: [Balas 1971]



Minimal Valid Functions

Our main interest is in minimal valid functions ψ(r) : Rq → R,

i.e. there is no valid function ψ′ ≤ ψ where ψ′(r) < ψ(r) for at
least one r ∈ Rq.

f

r 1

r 2

S

intersection cut

Bigger convex set: [Balas 1971]

Better cut: ψ(r1)s1 + ψ(r2)s2 ≥ 1.



Theorem Borozan and Cornuéjols MOR 2009

(extension due to Basu, Conforti, Cornuéjols, Zambelli 2009)

Let f ∈ Rq \ Zq.

If ψ : Rq → R is a minimal valid function, then ψ is
• nonnegative
• piecewise linear
• positively homogeneous
• and convex.

Furthermore Bψ := {x ∈ Rq : ψ(x − f ) ≤ 1} is a maximal
lattice-free convex set containing f in its interior.

Conversely, for any maximal lattice-free convex set B containing f
in its interior, the gauge of B − f is a minimal valid function ψ.

DEFINITION A convex set is lattice-free if it does not have any
integral point in its interior. However, it may have integral points
on its boundary.



Maximal Lattice-Free Convex Sets

...are polyhedra (Lovász’ theorem 1989)

I Lattice-free convex set contains no integral point in its interior

f
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f

Maximal: each edge contains an integral point in its relative
interior.
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Maximal: each edge contains an integral point in its relative
interior.



Maximal Lattice-Free Sets in the Plane

Split, triangles and quadrilaterals
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Maximal Lattice-Free Sets in the Plane

Split, triangles and quadrilaterals

f

f
f

generate split, triangle and quadrilateral inequalities
∑

ψ(r)sr ≥ 1,
where the function ψ is the gauge of S − f .

Equivalently: Let S = {x ∈ R2 : ai (x − f ) ≤ 1, i = 1, . . . , t}.
Then ψ(r) = maxi=1,...,t ai r .



Definitions

Let a1, . . . , am ∈ Rn. The set Λ = {λ1a1 + . . . λmam where
λ1, . . . , λm ∈ Z} is called a finitely generated additive group of Rn.

If a1, . . . , am are linearly independent, Λ is called a lattice of the
linear space < a1, . . . , am >. The vectors a1, . . . , am are called a
basis of the lattice.

EXAMPLES

Λ1 = {λ1

(
2
2

)
+ λ2

(√
2√
2

)
where

λ1, λ2 ∈ Z} is a finitely generated
additive group but is not a lattice.

Λ2= {λ1

(
2
0

)
+ λ2

(
2
1

)
where

λ1, λ2 ∈ Z} is a lattice.

Λ2

Λ1



Lovász’ theorem

Let Λ be a lattice of Rn.

DEFINITION A linear subspace
L ⊆ Rn is a lattice subspace if
there exists a basis of L
contained in Λ.

Λ

lattice subspace of Λ

THEOREM Lovász 1989
Every unbounded maximal lattice-free
convex set is a cylinder above a polytope
in some lattice subspace.

cylinder



Lovász’ Theorem
Actually, the correct statement is the following.

THEOREM
Every unbounded maximal lattice-free convex set S is either
• a cylinder above a polytope in some lattice subspace, or
• an affine hyperplane v + L where v ∈ S and L is not a
lattice-subspace of Rn.

cylinder

irrational hyperplane



Ingredients of the proof of Lovász’ theorem

THEOREM
Let Λ be an additive group generated by a1, . . . , am ∈ Rn.
Then Λ is a lattice of the linear space < a1, . . . , am > if and only if
there exists ε > 0 such that ||y || ≥ ε for every y ∈ Λ \ {0}.

(See, for example, Barvinok 2002: A Course in Convexity.)

THEOREM Dirichlet
Given any real numbers α1, . . . , αn, ε with 0 < ε < 1,
there exist integer p1, . . . , pn, q such that

|αi − pi

q
| < ε

q
, for i = 1, . . . , n, and 1 ≤ q ≤ 1

ε
.



Ingredients of the proof of Lovász’ theorem

Let L be a linear subspace of Rn.

LEMMA If L is not a lattice-subspace of Rn then for every ε > 0,
there exists y ∈ Λ \ L at distance less than ε from L.

LEMMA Suppose dim L = n− 1, and let v ∈ Rn. Then H = v + L
is a maximal Λ-free convex set if and only if L is not a lattice
subspace of Rn.

PROOF SKETCH Let S be a maximal Λ-free convex set.
If dim S < n then S is contained in some affine hyperplane
H = v + L and by maximality of S we have S = H. The above
lemma shows that L is not a lattice subspace of Rn.

Therefore we assume dim S = n.
Let C be the recession cone of S and L its lineality space. We
show first that C = L and then that L is a lattice subspace of Rn.
Finally, if S ⊂ Rn is a full-dimensional bounded maximal Λ-free
convex set, then S is a polytope.



Proof sketch of the Borozan-Cornuéjols theorem

THEOREM A minimal valid function ψ is nonnegative, piecewise
linear, positively homogeneous and convex.

IDEA OF PROOF Nonnegativity, positive homogeneity and
convexity are proved directly.

To prove that ψ is piecewise linear, consider
Bψ := {x ∈ Rq : ψ(x − f ) ≤ 1}.
First we prove that Bψ is a maximal lattice-free convex set. Thus
by Lovász’ theorem, Bψ is a polyhedron.

Second, we prove that f is in its interior.
Thus Bψ = {x ∈ Rq : ai (x − f ) ≤ 1, i = 1, . . . , t}.
It follows that ψ is piecewise linear (one piece per facet of Bψ). ¤



A Stronger Model Dey and Wolsey 2009

x = f +
∑k

j=1 r jsj
x ∈ S = Zq∩P
s ≥ 0

where P is a rational polyhedron.

conv(S)

S-free

S

S-free

THEOREM Basu, Conforti, Cornuéjols, Zambelli 2009
A set B ⊂ Rq is a maximal S-free convex set if and only if:

(i) B is a polyhedron s.t. B ∩ conv(S) has nonempty interior, or

(ii) B is a half-space supporting conv(S), or

(iii) B is an irrational hyperplane of Rq.



Theorem Basu, Conforti, Cornuéjols, Zambelli 2009
Let S = Zq ∩ P where P is a rational polyhedron and
f ∈ conv(S) \ Zq.

Let B be a maximal S-free convex set with f in its interior
B = {x ∈ Rq : ai (x − f ) ≤ 1, i = 1, . . . , t}
and let ψB(r) = maxi=1,...,t ai r .

Then ψB is a minimal valid function.

Conversely, for every valid function ψ, there exists a maximal S-free
convex set B with f in its interior such that ψB dominates ψ.

S-free

S
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Idea of the proof

LEMMA Every valid function is dominated by a sublinear valid
function.

Let ψ be a sublinear valid function and K = {r ∈ Rn : ψ(r) ≤ 1}.
Let K̂ = {y ∈ K ∗ : ∃x ∈ K such that xy = 1} and
let ρK (r) = supy∈K̂ ry be the support function of K̂ .

ρK is a sublinear valid function and K = {r ∈ Rn : ρK (r) ≤ 1}.
LEMMA ρK ≤ ψ. [our proof uses Straszewicz’ theorem]

LEMMA There exists a maximal S-free convex set
B = {x ∈ Rq : ai (x − f ) ≤ 1, i = 1, . . . , k} such that
ai ∈ cl(conv(K̂ )) for i = 1, . . . , k.

Then ψ(r) ≥ ρK (r) = supy∈K̂ yr = supy∈cl(conv(K̂)) yr

≥ maxi=1,...,k ai r = ψB(r). ¤


