**Applications of** combinatorial optimization in statics (rigidity of frameworks)



Hammamet, 2010

#### András Recski

**Budapest University of Technology and Economics** 





### Rigid









## Rigid Non-rigid (mechanism)











## Rigid in the plane

# Non-rigid in the space





### Rigid

## Non-rigid (has an *infinitesimal* motion)

(although the graphs of the two frameworks are isomorphic)



Non-rigid

Rigid



#### When is *this* framework rigid?

- For certain graphs (like C<sub>4</sub>) every realization leads to nonrigid frameworks.
- For others, some of their realizations lead to rigid frameworks.

These latter type of graphs are called *generic rigid*.

#### What can combinatorialists do?

 They either study "very symmetric" structures, like square or cubic grids,

 or prefer "very asymmetric" ones, that is, the generic structures.  Deciding the rigidity of a framework (that is, of an actual realization of a graph) is a problem in linear algebra.

- Deciding whether a graph is generic rigid, is a combinatorial problem.
- Special case: minimal generic rigid graphs (when the deletion of any edge destroys rigidity).

#### The 1-dimensional case is easy:

A 1-dimensional framework is rigid if and only if its graph is connected.

In particular, a graph corresponds to a 1-dimensional minimally rigid framework if and only if it is a tree. We wish to characterize those graphs which are (minimally) generic rigid in the plane.

Let us find some examples at first.

The simple trusses:













### Simple trusses (in the plane)



All the simple trusses satisfy e = 2n - 3 ( $n \ge 3$ ) and they are minimally rigid,

but not every minimally rigid framework is a simple truss (consider the Kuratowski graph  $K_{3,3}$ , for example).

#### A famous minimally rigid structure:







#### Szabadság Bridge, Budapest

## Does *e* = 2*n*-3 imply that the framework is minimally rigid?





#### Certainly not:



If a part of the framework is "overbraced", there will be a nonrigid part somewhere else...

### Maxwell (1864):

If a graph G is minimal generic rigid in the plane then, in addition to e = 2n - 3, the relation  $e' \leq 2n' - 3$  must hold for every (induced) subgraph G' of G.

#### Laman (1970):

A graph *G* is minimal generic rigid in the plane if and only if e = 2n - 3 and the relation  $e' \le 2n' - 3$  holds for every (induced) subgraph *G*' of *G*. This is a "good characterization" of minimal generic rigid graphs in the plane, but we do not wish to check some 2<sup>n</sup> subgraphs...

#### Lovász and Yemini (1982):

A graph *G* is minimal generic rigid in the plane if and only if

e = 2n - 3 and doubling any edge the resulting graph, with 2(n-1) edges, is the union of two edge-disjoint trees.

#### A slight modification (R., 1984):

A graph G is minimal generic rigid in the plane if and only if e = 2n - 3 and joining any two vertices with a new edge the resulting graph, with 2(n-1) edges, is the union of two edge-disjoint trees.

#### Maxwell (1864):

If a graph G is minimal generic rigid in the space then, in addition to e = 3n - 6, the relation  $e' \leq 3n' - 6$  must hold for every (induced) subgraph G' of G.

## However, the 3-D analogue of Laman's theorem is not true:



#### The double banana graph (Asimow – Roth, 1978)

Rigid rods are resistant to compressions and tensions:  $\|\mathbf{x}_{i}-\mathbf{x}_{k}\| = c_{ik}$  Rigid rods are resistant to compressions and tensions:  $\|\mathbf{x}_{i}-\mathbf{x}_{k}\| = c_{ik}$ 

Cables are resistant to tensions only:  $\|\mathbf{x}_{i}-\mathbf{x}_{k}\| \leq c_{ik}$ 

Rigid rods are resistant to compressions and tensions:  $\|\mathbf{x}_{i}-\mathbf{x}_{k}\| = c_{ik}$ 

Cables are resistant to tensions only:  $\|\mathbf{x}_{i} - \mathbf{x}_{k}\| \leq C_{ik}$ Struts are resistant to compressions only:  $\|\mathbf{x}_{i} - \mathbf{x}_{k}\| \geq C_{ik}$ 

Frameworks composed from rods (bars), cables and struts are called *tensegrity frameworks*.






Frameworks composed from rods (bars), cables and struts are called *tensegrity frameworks*.

A more restrictive concept is the *r-tensegrity framework*, where rods are not allowed, only cables and struts. (The letter r means rod-free or restricted.) We wish to generalize the above results for tensegrity frameworks:

When is a graph minimal generic rigid in the plane as a tensegrity framework (or as an r-tensegrity framework)?

### Which is the more difficult problem?

#### Which is the more difficult problem?

If rods are permitted then why should one use anything else?

#### Which is the more difficult problem?

- If rods are permitted then why should one use anything else?
- "Weak" problem: When is a graph minimal generic rigid in the plane as an r-tensegrity framework?

"Strong" problem: When is a graph *with a given tripartition* minimal generic rigid in the plane as a tensegrity framework?

## The 1-dimensional case is still easy

## R. – Shai, 2005:

Let the cable-edges be red, the strut-edges be blue (and replace rods by a pair of parallel red and blue edges).

The graph with the given tripartition is realizable as a rigid tensegrity framework in the 1-dimensional space if and only if

- it is 2-edge-connected and
- every 2-vertex-connected component contains edges of both colours.

# An example to the 2-dimensional case:



The graph  $K_4$  can be realized as a rigid tensegrity framework with struts {1,2}, {2,3} and {3,1} and with cables for the rest (or *vice versa*) if '4' is in the convex hull of {1,2,3} ...



...or with cables for two independent edges and struts for the rest (or *vice versa*) if none of the joints is in the convex hull of the other three. Critical rods cannot be replaced by cables or struts if we wish to preserve rigidity



## Jordán – R. – Szabadka, 2007

A graph can be realized as a rigid *d*-dimensional r-tensegrity framework

## if and only if

it can be realized as a rigid *d*dimensional rod framework and none of its edges are critical.

## Corollary (Laman – type):

A graph *G* is minimal generic rigid in the plane as an rtensegrity framework if and only if

e = 2n - 2 and the relation  $e' \le 2n' - 3$  holds for every proper subgraph G' of G.

## Corollary (Laman – type):

A graph *G* is minimal generic rigid in the plane as an rtensegrity framework if and only if

e = 2n - 2 and the relation  $e' \le 2n' - 3$  holds for every proper subgraph G' of G.

## Corollary (Lovász-Yemini – type):

A graph is minimal generic rigid in the plane as an r-tensegrity framework if and only if it is the union of two edge-disjoint trees and remains so if any one of its edges is moved to any other position.

- A graph is generic rigid in the 1dimensional space as an r-tensegrity framework if and only if it is 2-edgeconnected.
- For the generic rigidity in the plane as an r-tensegrity framework, a graph must be 2vertex-connected and 3-edge-connected. Neither 3-vertex-connectivity nor 4-edgeconnectivity is necessary.



## Let us return to the bar and joint frameworks

## What can combinatorialists do?

 They either study "very symmetric" structures, like square or cubic grids,

 or prefer "very asymmetric" ones, that is, the generic structures.

## Square grids with diagonals



## Rigidity of square grids

- Bolker and Crapo, 1977: A set of diagonal bars makes a k X l square grid rigid if and only if the corresponding edges form a *connected* subgraph in the bipartite graph model.
- Baglivo and Graver, 1983: In case of diagonal cables, *strong connectedness* is needed in the (directed) bipartite graph model.

## Minimum # diagonals needed:

#### $B = k + \ell - 1$ diagonal bars

#### $C = 2 \cdot \max(k, \ell)$ diagonal cables

(If  $k \neq \ell$  then C - B > 1)

## Rigidity of one-story buildings

Bolker and Crapo, 1977: If each external vertical wall contains a diagonal bar then instead of studying the roof of the building one may consider a  $k \ge \ell$  square grid with its four corners pinned down.

## Rigidity of one-story buildings

Bolker and Crapo, 1977: A set of diagonal bars makes a *k* X *l* square grid (with corners pinned down) rigid if and only if the corresponding edges in the bipartite graph model form either a *connected* subgraph or a *2-component asymmetric forest*.

For example, if k = 8,  $\ell = 18$ , k' = 4,  $\ell' = 9$ , then the 2-component forest is symmetric  $(L = K, where \ell'/\ell = L, k'/k = K).$ 

## Minimum # diagonals needed:

#### $B = k + \ell - 2$ diagonal bars

 $C = k + \ell - 1 \text{ diagonal cables}$ (except if  $k = \ell = 1 \text{ or } k = \ell = 2$ ) (Chakravarty, Holman, McGuinness and R., 1986)

### Rigidity of one-story buildings

Which (k + l - 1)-element sets of cables make the  $k \ge l$  square grid (with corners pinned down) rigid?

Let X, Y be the two colour classes of the directed bipartite graph. An XY-path is a directed path starting in X and ending in Y.
If X<sub>0</sub> is a subset of X then let N(X<sub>0</sub>) denote the set of those points in Y which can be reached from X<sub>0</sub> along XY-paths.

## R. and Schwärzler, 1992:

A (k + l - 1)-element set of cables makes the  $k \ge l$  square grid (with corners pinned down) rigid if and only if

 $|N(X_0)| \cdot k > |X_0| \cdot \ell$ holds for every proper subset  $X_0$  of X and  $|N(Y_0)| \cdot \ell > |Y_0| \cdot k$ holds for every proper subset  $Y_0$  of Y.

## Which one-story building is rigid?



## Which one-story building is rigid?



## Solution:

Top:  $k = 7, \ell = 17, k_0 = 5, \ell_0 = 12, L < K$ (0.7059 < 0.7143)

Bottom: k = 7,  $\ell = 17$ ,  $k_0 = 5$ ,  $\ell_0 = 13$ , L > K(0.7647 > 0.7143)

where  $\ell_0 / \ell = L$ ,  $k_0 / k = K$ .



## Hall, 1935 (König, 1931):

A bipartite graph with colour classes X, Y has a perfect matching if and only if

 $|N(X_0)| \ge |X_0|$ holds for every -proper subset  $X_0$  of X and  $|N(Y_0)| \ge |Y_0|$ holds for every -proper subset  $Y_0$  of Y.

## Hetyei, 1964:

A bipartite graph with colour classes X, Y has perfect matchings **and every edge is contained in at least one** if and only if

 $|N(X_0)| > |X_0|$ holds for every proper subset  $X_0$  of X and  $|N(Y_0)| > |Y_0|$ holds for every proper subset  $Y_0$  of Y.

## Thank you for your attention



#### recski@cs.bme.hu