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Abstract combinatorial optimization

E . . . finite ground set (e.g. edges of graph)
F ∈ F feasible solutions F ⊆ E (e.g. spanning trees)
ce : e ∈ E cost elements, c(F ) :=

∑

e∈F ce

Combinatorial optimization problem (COP)

(COP ) min{c(F ) : F ∈ F}

xF ∈ {0, 1}n characteristic vector of F
P := conv{xF : F ∈ F} convex hull of feasible solutions.
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Abstract combinatorial optimization

E . . . finite ground set (e.g. edges of graph)
F ∈ F feasible solutions F ⊆ E (e.g. spanning trees)
ce : e ∈ E cost elements, c(F ) :=

∑

e∈F ce

Combinatorial optimization problem (COP)

(COP ) min{c(F ) : F ∈ F}

xF ∈ {0, 1}n characteristic vector of F
P := conv{xF : F ∈ F} convex hull of feasible solutions.

Classical Polyhedral approach to (COP): use (partial)
description of P in combination with linear optimization

zcop = min{c(F ) : F ∈ F} = min{cT x : x ∈ P}

First problem is min over finite set, last problem is LP.
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Polyhedral approach for (COP)

Classical example: Assignment Problem:

zAP = min{
∑

i

ci,φ(i) : φ ∈ Π}

Π set of permutations. Xφ . . . permutation matrix
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Polyhedral approach for (COP)

Classical example: Assignment Problem:

zAP = min{
∑

i

ci,φ(i) : φ ∈ Π}

Π set of permutations. Xφ . . . permutation matrix

Theorem (Birkhoff): conv{Xφ : φ ∈ Π} = Ω

Ω = {X : Xe = X ′e = e, X ≥ 0} doubly stochastic matrices

zAP = min{〈C,X〉 : X ∈ Ω}

In general P is not easily available.
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Why nonpolyhedral relaxations?

Some graph optimization problems have natural
formulations using quadratic functions. Example Max-Cut:

Given a graph G with edge weights cij , ij ∈ E(G), find
vertex bisection (X,V (G) \ X) of maximum edge weight.
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Why nonpolyhedral relaxations?

Some graph optimization problems have natural
formulations using quadratic functions. Example Max-Cut:

Given a graph G with edge weights cij , ij ∈ E(G), find
vertex bisection (X,V (G) \ X) of maximum edge weight.

Linear model: introduce edge variables yij ∈ {0, 1} for
ij ∈ E. Then

∑

ij∈E cijyij is linear in y but how describe
edge vectors y corresponding to edge sets of cuts ?
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Why nonpolyhedral relaxations?

Some graph optimization problems have natural
formulations using quadratic functions. Example Max-Cut:

Given a graph G with edge weights cij , ij ∈ E(G), find
vertex bisection (X,V (G) \ X) of maximum edge weight.

Linear model: introduce edge variables yij ∈ {0, 1} for
ij ∈ E. Then

∑

ij∈E cijyij is linear in y but how describe
edge vectors y corresponding to edge sets of cuts ?

Quadratic model: introduce node variables xi ∈ {−1, 1} for
i ∈ V . Then cut edges ij are characterized by xixj = −1,
hence we get unconstrained quadratic optimization in −1, 1
variables.

Quadratic structure of problem leads to matrix relaxations.
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Matrix relaxations of (COP)

Consider M := conv(xF xT
F : F ∈ F).

Generalizes polyhedral approach as diag(xF xT
F ) = xF .

• quadratic constraints in xF are linear for X ∈ M.
• M contained also in nonpolyhedral matrix cones.

PSD = {X : aT Xa ≥ 0 ∀a} semidefinite matrices
C = {X : aT Xa ≥ 0 ∀a ≥ 0} copositive matrices
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Matrix relaxations of (COP)

Consider M := conv(xF xT
F : F ∈ F).

Generalizes polyhedral approach as diag(xF xT
F ) = xF .

• quadratic constraints in xF are linear for X ∈ M.
• M contained also in nonpolyhedral matrix cones.

PSD = {X : aT Xa ≥ 0 ∀a} semidefinite matrices
C = {X : aT Xa ≥ 0 ∀a ≥ 0} copositive matrices

dual cone of PSD is again PSD
dual cone of C:
C∗ = conv{aaT : a ≥ 0} completely positive matrices

Bad news: X /∈ C NP-hard to decide.
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Semidefinite and Copositive Programs

Problems of the form

max〈C,X〉 s.t. A(X) = b, X ∈ PSD

are called Semidefinite Programs.
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Semidefinite and Copositive Programs

Problems of the form

max〈C,X〉 s.t. A(X) = b, X ∈ PSD

are called Semidefinite Programs.

Problems of the form

max〈C,X〉 s.t. A(X) = b, X ∈ C

or
max〈C,X〉 s.t. A(X) = b, X ∈ C∗

are called Copositive Programs, because the primal or the
dual involves copositive matrices.
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Summary: LP versus SDP

Linear Optimization :
• Simplex method efficient for polyhedral approach,
• natural dimension: IRn
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Summary: LP versus SDP

Linear Optimization :
• Simplex method efficient for polyhedral approach,
• natural dimension: IRn

Semidefinite Optimization :

min〈C,X〉 subject to A(X) = b, X � 0.

• Can be solved in polynomial time (for given precision).
• Strong duality: holds under some technical condition.
• natural dimension: n × n symmetric matrices.
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Summary: LP versus SDP

Linear Optimization :
• Simplex method efficient for polyhedral approach,
• natural dimension: IRn

Semidefinite Optimization :

min〈C,X〉 subject to A(X) = b, X � 0.

• Can be solved in polynomial time (for given precision).
• Strong duality: holds under some technical condition.
• natural dimension: n × n symmetric matrices.

SDP should be considered (only) if
• original formulation has something quadratic
• other (easier) approaches fail
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Semidefinite Relaxations (SDP)

• First results by Lovasz (1979) for coloring, max-clique
• Goemans-Williamson rounding for Max-Cut (1994)
• Interior-Point methods generalized to SDP

• Approximation results for:

- Max-k-Cut (Frieze, Jerrum, DeKlerk, Pasechnik, etc),
- Coloring (Karger, Motwani, Sudan, Arora, Chlamtac),
- Max-2-Sat (Goemans, Williamson 1995)
- Max-Sat (Asano, Williamson 2002)
- Bandwidth minimization (Blum et al 2000)
- Vertex Cover (Goemans, Kleinberg, Halperin 1998,2002)
- and many others
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Text book example: Max Cut

Max-Cut as a binary quadratic problem.

max xT Lx such that x ∈ {−1, 1}n

Linearize (and simplify) to get tractable matrix relaxation
xT Lx = 〈L, xxT 〉. New variable is X= xxT .
Basic SDP relaxation:

max{〈L,X〉 : diag(X) = e, X � 0}

This model goes back to A. Schrijver.
See also Poljak, R. (1995) primal-dual formulation, and
Goemans, Williamson (1995) for the hyperplane rounding
analysis.
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A fundamental SDP Problem

The SDP relaxation of Max-Cut

max{〈L,X〉 : diag(X) = e, X � 0}

appears in many other matrix relaxations of graph
optimization problems.

For instance:
• max-k-cut
• coloring
• ordering problems
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Basic SDP Relaxation of Max-Cut

We solve max〈L,X〉 : diag(X) = e, X � 0.
Matrices of order n, and n simple equations xii = 1

n seconds
1000 12
2000 102
3000 340
4000 782
5000 1570

Seconds on a PC. Implementation of primal-dual
interior-point method in MATLAB, 30 lines of source code

ISCO 2010 - Hammamet – p.21/72



Max-k-Cut

Max-k-Cut asks to partition the vertices of a graph G into k
pieces S1, . . . , Sk, so that the total weight between the
pieces (=partition blocks) is maximized.
Partitions modeled by n × k matrices S = (s1, . . . , sk). si is
characteristic vector of Si.
Use Laplacian L of G to express edges cut by S as

zcut =
1

2
〈S, LS〉 = 〈L, SST 〉.
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Max-k-Cut

Max-k-Cut asks to partition the vertices of a graph G into k
pieces S1, . . . , Sk, so that the total weight between the
pieces (=partition blocks) is maximized.
Partitions modeled by n × k matrices S = (s1, . . . , sk). si is
characteristic vector of Si.
Use Laplacian L of G to express edges cut by S as

zcut =
1

2
〈S, LS〉 = 〈L, SST 〉.

Matrix lifting: Y = SST . Then zcut = 1
2〈L, Y 〉.

We also have diag(Y ) = e, because Se = e and
diag(sis

T
i ) = si

Asking that Y � 0 can be strengthened
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Partition Lemma

Let S = (s1, . . . , sk) be 0-1 matrix and λi ≥ 0 be such that
Sλ =

∑

i λisi = e. Let t =
∑

i λi > 0. Let Y =
∑

i λisis
T
i .

Then diag(Y ) = e and tY − J � 0.
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Partition Lemma

Let S = (s1, . . . , sk) be 0-1 matrix and λi ≥ 0 be such that
Sλ =

∑

i λisi = e. Let t =
∑

i λi > 0. Let Y =
∑

i λisis
T
i .

Then diag(Y ) = e and tY − J � 0.
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Partition Lemma

Let S = (s1, . . . , sk) be 0-1 matrix and λi ≥ 0 be such that
Sλ =

∑

i λisi = e. Let t =
∑

i λi > 0. Let Y =
∑

i λisis
T
i .

Then diag(Y ) = e and tY − J � 0.

Proof:
∑

i

λi

(

1

si

)(

1

si

)T

=

(

t eT

e Y

)

� 0.
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Partition Lemma

Let S = (s1, . . . , sk) be 0-1 matrix and λi ≥ 0 be such that
Sλ =

∑

i λisi = e. Let t =
∑

i λi > 0. Let Y =
∑

i λisis
T
i .

Then diag(Y ) = e and tY − J � 0.

Proof:
∑

i

λi

(

1

si

)(

1

si

)T

=

(

t eT

e Y

)

� 0.

Max-k-Cut has λi = 1 and we get stronger condition
kY − J � 0 (instead of Y � 0) and SDP relaxation

max{
1

2
〈L, Y 〉 : diag(Y ) = e, kY − J � 0, Y ≥ 0}
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Summary Max-Cut and Max-k-Cut

• Convexification of Max-Cut in the node space used by
Billionet and Elloumi (2006) in combination with convex QP
and Branch and Bound
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Summary Max-Cut and Max-k-Cut

• Convexification of Max-Cut in the node space used by
Billionet and Elloumi (2006) in combination with convex QP
and Branch and Bound

• SDP relaxation with triangle inequalities using
interior-point methods in combination with bundle method
and Branch and Bound: problems with n ≈ 150 routinely
manageable, see BIQMAC-website ( R., Rinaldi, Wiegele
(2006)).
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Summary Max-Cut and Max-k-Cut

• Convexification of Max-Cut in the node space used by
Billionet and Elloumi (2006) in combination with convex QP
and Branch and Bound

• SDP relaxation with triangle inequalities using
interior-point methods in combination with bundle method
and Branch and Bound: problems with n ≈ 150 routinely
manageable, see BIQMAC-website ( R., Rinaldi, Wiegele
(2006)).

• SDP relaxation for Max-k-Cut used by Frieze, Jerrum
(1997) to get approximation results

• Max-k-Cut relaxation used by Ghaddar, Anjos, Liers
(2008) in a Branch-and-Cut approach.
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Graph Coloring

{s1, . . . , sk} stable sets (=pairwise non adjacent) with
characteristic vectors xi in G. A Coloring is partition of
vertices into stable sets. The chromatic number χ(G) is the
smallest k such that G has k-partition into stable sets.

χ = min{
∑

λi :
∑

λixi = e, λi ∈ {0, 1}}
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Graph Coloring

{s1, . . . , sk} stable sets (=pairwise non adjacent) with
characteristic vectors xi in G. A Coloring is partition of
vertices into stable sets. The chromatic number χ(G) is the
smallest k such that G has k-partition into stable sets.

χ = min{
∑

λi :
∑

λixi = e, λi ∈ {0, 1}}

The fractional chromatic number χf is obtained by replacing
λi ∈ {0, 1} by λi ≥ 0.
This is LP with exponential number of variables λi, and
NP-hard.
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Graph Coloring

{s1, . . . , sk} stable sets (=pairwise non adjacent) with
characteristic vectors xi in G. A Coloring is partition of
vertices into stable sets. The chromatic number χ(G) is the
smallest k such that G has k-partition into stable sets.

χ = min{
∑

λi :
∑

λixi = e, λi ∈ {0, 1}}

The fractional chromatic number χf is obtained by replacing
λi ∈ {0, 1} by λi ≥ 0.
This is LP with exponential number of variables λi, and
NP-hard.

Matrix lifting: Y =
∑

λixix
T
i . Partition lemma shows:

diag(Y ) = e, χfY − J � 0.
partition into stable sets implies yuv = 0 if uv ∈ E(G).
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SDP relaxation of Coloring

min{t : diag(Y ) = e, tY − J � 0, yuv = 0 ∀uv ∈ E(G)}≤ χf

Optimum is called Lovasz theta function (Lovasz 1979). Its
dual SDP:

ϑ = max{〈J,X〉 : tr(X) = 1, xuv = 0 uv /∈ E,X � 0}
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SDP relaxation of Coloring

min{t : diag(Y ) = e, tY − J � 0, yuv = 0 ∀uv ∈ E(G)}≤ χf

Optimum is called Lovasz theta function (Lovasz 1979). Its
dual SDP:

ϑ = max{〈J,X〉 : tr(X) = 1, xuv = 0 uv /∈ E,X � 0}

Can be interpreted as SDP relaxation of Max-Clique
(ω(G) . . . size of largest clique in G).

Lovasz sandwich theorem: ω(G) ≤ ϑ(G) ≤ χf (G)
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SDP relaxation of Coloring

min{t : diag(Y ) = e, tY − J � 0, yuv = 0 ∀uv ∈ E(G)}≤ χf

Optimum is called Lovasz theta function (Lovasz 1979). Its
dual SDP:

ϑ = max{〈J,X〉 : tr(X) = 1, xuv = 0 uv /∈ E,X � 0}

Can be interpreted as SDP relaxation of Max-Clique
(ω(G) . . . size of largest clique in G).

Lovasz sandwich theorem: ω(G) ≤ ϑ(G) ≤ χf (G)

Many theoretical implications: Grötschel, Lovasz, Schrijver
use it to compute χ(G) and α(G) for perfect graphs G in
polynomial time.
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Computing the theta function

The number of constraints depends on the edge set |E|. If
m is small, then the SDP can be solved efficiently using
interior point methods.

n m = 1
2

(

n
2

)

time (secs.) n m = 5n time (secs.)
100 2475 21 500 2500 28
150 5587 180 1000 5000 200
200 9950 925 1500 7500 618

Times in seconds for computing ϑ(G) on random graphs
with different densities( |E| = 1

4n2, 5n ).
In each iteration, a linear equation with |E| variables has to
be solved, so no hope if |E| > 10,000.
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Theta function: big DIMACS graphs

Boundary point method (Malick, Povh, R., Wiegele (2006))

graph n m ϑ ω

keller5 776 74.710 31.00 27
keller6 3361 1026.582 63.00 ≥59
san1000 1000 249.000 15.00 15
brock800-1 800 112.095 42.22 23
p-hat500-1 500 93.181 13.07 9
p-hat1000-3 1000 127.754 84.80 ≥68
p-hat1500-3 1500 227.006 115.44 ≥94

The theta number for the bigger instances has not been
computed before.
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Summary Coloring

• SDP relaxation (ϑ function) currently the basis for the best
approximation results for coloring: Arora, Chlamtac (2007)
color a three-colorable graph with at most O(n0.211) colors.

• No combinatorial algorithm to find coloring (or clique)
number for perfect graphs.
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Ordering Problems

Data: Objects 1, . . . , n and numbers cij for i 6= j.
For a given ordering of the objects, say

i1, i2, . . . , in

we associate the weight: ci1,i2 + ci1,i3 + . . . + cin−1,in .

Problem: find order with maximum weight.

Or more general: costs cij,kl to be gained if i is before j and
k before l. Leads to Ordering problem with quadratic
objective.

General and powerful modeling tool.
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Linear Ordering Problems

Linear Ordering Problem: Given n × n Matrix C = (cij), find
a permutation φ maximizing

∑

i<j

cφ(i)φ(j)

Equivalently:
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Linear Ordering Problems

Linear Ordering Problem: Given n × n Matrix C = (cij), find
a permutation φ maximizing

∑

i<j

cφ(i)φ(j)

Equivalently:
Find a simultaneous permutation of rows, columns of C,
maximizing sum of the entries in the upper triangle.

Equivalently:
Find a complete acyclic subgraph in the complete directed
graph with weights given by C.

See recent survey by Marti, Reinelt (2009)
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0-1 Linear Integer Formulation

Grötschel, Jünger, Reinelt (1984): xij = 1 if i before j.

xij + xji = 1 used to eliminate xji for j > i.

Three-cycle constraints: ∀ distinct i, j, k:

xij + xjk + xki ≤ 2.

Together with xij ∈ {0, 1}, these constraints describe edge
set of complete acyclic graph.

(LOR) max
∑

i<j

cijxij such that

xik ≤ xij + xjk ≤ 1 + xik ∀i < j < k

xij ∈ {0, 1}
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Linear relaxation

The 3-cycle relaxation has 2
(

n
3

)

≈ 1
3n3 inequality constraints.

LP can be solved for n up to n ≈ 250.

Branch and Bound computations: works for smaller values
of n ≈ 40.

Typical gap at root using 3-cycle relaxation: 3 − 10%

More facets are known, but difficult to separate.

LOP could also be formulated as Quadratic Assignment
Problem, but Branch and Bound computations already hard
for n ≈ 30.
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SDP relaxation

Variable transformation: yij = 2xij − 1 gives y ∈ {−1, 1}.
3-cylces become:

−1 ≤ yij + yjk − yik ≤ 1 ∀i < j < k

Matrix lifting idea:

(

1

y

)(

1

y

)T

=

(

1 yT

y yyT

)

=

(

1 yT

y Y

)

The matrix yyT is replaced by a new matrix Y . Matrix order
is
(

n
2

)

+ 1. Note that diag(Y ) = e.

How should the linear inequalities be lifted (=made
quadratic)?
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Squared 3-cycles

The special form of 3-cycles

yij + yjk − yik ∈ {−1, 1} ∀i < j < k

suggests squared form:

yij,jk − yij,ik − yjk,ik = −1 ∀i < j < k.

Note that the inequalities become equations after lifting.

Other forms, like diagonal lifting are weaker, see Helmberg,
R., Weismantel (2000).

Lovasz-Schrijver lifting is stronger (multiply each constraint
with each (binary) variable), but has much higher
complexity.
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Further Cutting Planes

We could also multiply 3-cycles by (1− ylm) or (1 + ylm), see
Lovasz, Schrijver (1981).

Since Y should be -1,1 matrix, we can also include the
triangle inequalities defining the metric polytope.

−yij,rs − yrs,uv − yij,uv ≤ 1,

yij,rs + yrs,uv − yij,uv ≤ 1

There are roughly 1
12n6 such constraints for LOR.
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SDP relaxation of LOR

max cT y such that Y − yyT � 0

diag(Y ) = e

Y satisfies squared 3-cycle equations and triangle
inequalities.

Matrix order:
(

n
2

)

+ 1

Equations:
(

n
2

)

+
(

n
3

)

+ 1

Inequalities: 1
12n6

Direct solution using standard interior-point based software
not practical.

Dualize inequalities and 3-cycle equations. See
Dissertation Hungerländer, Klagenfurt, in preparation
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Facets forn = 7

Some typical results for facets of linear ordering polytope
n = 7.

graph n opt LP 3C 3C+M 3C+LSM all
FC4 7 8 8.5 8.40 8.05 8.13 8
FC9 7 10 10.5 10.42 10.14 10.28 10

FC14 7 10 10.5 10.50 10.35 10.50 10.22
FC26 7 11 11.5 11.46 11.25 11.32 11

Only one out of 27 different classes of facets could not be
recovered exactly.
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Larger instances

We also consider larger instances from the literature and
compare with the 3-cycle LP bound (3C-LP).

name n opt 3C-LP gap SDP gap
P50-02 50 43835 44866 2.35 44100 0.60
P50-05 50 42907 44196 3.00 43285 0.82
P50-06 50 42325 43765 3.40 42775 1.06
P50-18 50 46897 48152 2.68 47401 1.07
Pal-31 31 285 300 5.26 297 4.21
Pal-43 43 543 597 9.94 569 4.79

T1d100 100 106852 114468 7.13 109966 2.91

SDP bound much better but also computationally much
more expensive
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Summary: Ordering Problems

• Grötschel, Jünger, Reinelt (1984): Polyhedral approach,
LP-based Branch and Bound

• Anjos, Vanelli (2008): Single-Row Facility Layout (special
case of linear ordering with quadratic cost) first SDP based
model

• Buchheim, Wiegele, Zheng (2009): linear ordering with
quadratic cost: polyhedral investigations and SDP
relaxations

• Approximation Results: 2-approximation is trivial, 2 − ǫ
approximation is open.
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Vertex Separators

Given adjacency matrix A of a graph G. Does G have
Sk ⊆ V (G) such that G \ Sk decomposes into k − 1 pieces
S1, . . . , Sk−1 of (roughly) equal size?

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 2090

Here k = 5, last block separates the first four.
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Partition Model

As before, we model partitions as n × k 0-1 matrices
X = (x1, . . . , xk) such that Xe = e,XT e = m, where
mT = (α, . . . , α, β) and (k − 1)α + β = n.

As a consequence: XT X = diag(m) = M .

B =



















0 1 . . . 1 0

1 0
. . . ...

...
... . . . . . . 1 0

1 . . . 1 0 0

0 . . . . . . 0 0



















The total number of edges between the first k − 1 blocks is
given by cut(S1, . . . , Sk−1) = 1

2 tr(AXBXT ).

ISCO 2010 - Hammamet – p.56/72



Hoffman-Wielandt relaxation

We use the Hoffman-Wielandt theorem

min
XT X=I

tr(AXBXT ) =
∑

i

λi(A)λn+1−i(B),

and get

2cut ≥ min
X∈F

tr(AXBXT ) = α

k−1
∑

i=2

λi(L) −
k − 2

n
αβλn(L) = f(L).

Here L is the Laplacian associated to A and the set
F = {X : Xe = e, XT e = m, XT X = diag(m)}. The proof of
this result is rather technical, see forthcoming paper with A.
Lisser.
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Estimates for Separators

We would like to know whether cut(S1, . . . , Sk−1) > 0 or not,
in which case the desired separator exists.
If f(L) > 0 then there can not exist a separator of size β
with the required properties, because cut ≥ f(L). This
involves computing λ2(L), . . . , λk−1(L) and λn(L). The
function f(L) is concave. Now consider

Aǫ = {A :
∑

i<j

aij = |E|, aij = 0 if ij /∈ E, aij ≥ ǫ},

so A ∈ Aǫ exactly if A =
∑

ij∈E aijEij with
aij ≥ ǫ,

∑

ij aij = |E|.
See also Helmberg et al (2008), Boyd et al (2004)
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Optimizing the bound

We would like to redistribute the edge weights aij so that
the lower bound f(L) is maximized. This leads to

min{λmax(LA) : A ∈ Aǫ}.

Here, LA denotes the Laplacian of A. This can be solved as
SDP, or directly through eigenvalue optimization.

Preliminary computational results are encouraging.
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Overview

Combinatorial optimization and matrix liftings

Cut Problems

Coloring Problems

Ordering Problems

Graph separators

Copositive relaxations
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Stable-Set and other matrix cones

Let X = 1
xT x

xxT where x is characteristic vector of stable
set. Lovasz uses X � 0.

ϑ = max{〈J,X〉 : tr(X) = 1, xij = 0 ij ∈ E,X � 0}

Schrijver, McEliece et al consider X � 0, X ≥ 0.

In this case we can add constraints xij = 0 into a single
equation (using adjacency matrix A) 〈A,X〉 = 0.

Lovasz-Schrijver number ϑ+ (1979):

ϑ(G)+ := max{〈J,X〉 : 〈A,X〉 = 0, trX = 1, X � 0, X ≥ 0}.

Clearly
α(G) ≤ ϑ(G)+ ≤ ϑ(G).

ISCO 2010 - Hammamet – p.61/72



Stable-Set and Copositive Programs

Recall X = 1
xT x

xxT . Lovasz uses X � 0.
Schrijver considers X � 0, X ≥ 0.
X is in fact completely positive X ∈ C∗.
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Stable-Set and Copositive Programs

Recall X = 1
xT x

xxT . Lovasz uses X � 0.
Schrijver considers X � 0, X ≥ 0.
X is in fact completely positive X ∈ C∗.

DeKlerk and Pasechnik (2002)

α(G) = max{〈J,X〉 : 〈A + I,X〉 = 1, X ∈ C∗}

= min{y : y(A + I) − J ∈ C}.

This is a copositive program with only one equation (in the
primal problem).
This is a simple consequence of the Motzkin-Straus
Theorem and is implicitly contained in Bomze et al (2000).
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Birkhoff’s theorem - lifted version

Π set of permutations. Xφ . . . permutation matrix
Theorem (Birkhoff): conv{Xφ : φ ∈ Π} = Ω

Ω = {X : Xe = X ′e = e, X ≥ 0} doubly stochastic matrices

We now consider the matrix lifting of this result.
xφ = vec(Xφ), hence xφ ∈ IRn2

.

P := conv{xφxT
φ : φ ∈ Π}
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Birkhoff’s theorem - lifted version

Π set of permutations. Xφ . . . permutation matrix
Theorem (Birkhoff): conv{Xφ : φ ∈ Π} = Ω

Ω = {X : Xe = X ′e = e, X ≥ 0} doubly stochastic matrices

We now consider the matrix lifting of this result.
xφ = vec(Xφ), hence xφ ∈ IRn2

.

P := conv{xφxT
φ : φ ∈ Π}

This set is contained in the space of n2 × n2 matrices.
We describe permutation matrices Xφ by the following
quadratic constraints:

XT X = XXT = I, ‖JX‖2 = (
∑

ij

xij)
2 = n2
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Birkhoff’s theorem - lifted version (2)

Any Y ∈ P is completely positive (Y ∈ C∗). The quadratic
equations become linear equations on Y which can be
partitioned into n × n blocks Y ij.

Y =







Y 11 . . . Y 1n

...
...

Y n1 . . . Y nn







The quadratic equations in X turn into:

(∗)
∑

Y ii = I, tr(Y ij) = δij ,
∑

yij = n2.
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Birkhoff’s theorem - lifted version (2)

Any Y ∈ P is completely positive (Y ∈ C∗). The quadratic
equations become linear equations on Y which can be
partitioned into n × n blocks Y ij.

Y =







Y 11 . . . Y 1n

...
...

Y n1 . . . Y nn







The quadratic equations in X turn into:

(∗)
∑

Y ii = I, tr(Y ij) = δij ,
∑

yij = n2.

Povh and R. (2008): P = {Y : Y ∈ C∗, Y satisfies (∗)}
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Application: QAP as copositive program

Quadratic assignment problem:

zqap = min{〈AXB,X〉 : X permutation matrix}.

We also get, using previous result

zqap = min〈B ⊗ A, Y 〉 such that

∑

Y ii = I, tr(Y ij) = δij ,
∑

yij = n2, Y ∈ C∗.

Replacing Y ∈ C∗ by the tractable constraint Y � 0, Y ≥ 0
gives the currently strongest bounds for QAP, see Sotirov,
R. (2005), Sun and Toh (2008).
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A general copositive modeling theorem

Burer (2007) shows the following general result for the
power of copositive programming:
The optimal values of P and C are equal: opt(P) = opt(C)

(P ) min xT Qx + cT x

aT
i x = bi, x ≥ 0, xi ∈ {0, 1} ∀i ≤ m.

Here x ∈ IRn and m ≤ n.

(C) min tr(QX) + cT x, s.t. aT
i x = bi,

aT
i Xai = b2

i , Xii = xi ∀i ≤ m,

(

1 xT

x X

)

∈ C∗
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Last Slide

• Copositive relaxations are often exact, but intractable: find
good tractable approximations

- higher liftings
- optimization with polynomials, using Sum of Squares idea
- local solutions give primal heuristic
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• Copositive relaxations are often exact, but intractable: find
good tractable approximations

- higher liftings
- optimization with polynomials, using Sum of Squares idea
- local solutions give primal heuristic

• SDP modeling joins nonlinear, integer programming and
theoretical computer science:
- reliable large-scale SDP solvers not yet available
- new approximation ideas with hyperplane rounding?
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• Copositive relaxations are often exact, but intractable: find
good tractable approximations

- higher liftings
- optimization with polynomials, using Sum of Squares idea
- local solutions give primal heuristic

• SDP modeling joins nonlinear, integer programming and
theoretical computer science:
- reliable large-scale SDP solvers not yet available
- new approximation ideas with hyperplane rounding?

• Optimize over X � 0, X ≥ 0??

• Basic SDP relaxation of Max-Cut for n ≥ 10, 000??
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