MIP Formulations for Production/Distribution and Production/Sequencing

Laurence A. Wolsey

(ISCO) International Symposium on Combinatorial Optimization, Hammamet, Tunisia, 24-26/3/2010. Work in part with C. Gicquel, R. Melo, M. Di Summa, M. Conforti

Contents

Some basic results on lot-sizing

۲

- A. Lot-Sizing with constant capacity and sales (with M. Di Summa and M. Conforti)
- B. 2-Level Lot-Sizing (with Rafael Melo)
- C. Multi-item with joint set-up variables

٢

- D. The multi-item/multi-warehouse/multi-client problem (with R. Melo)
- E. The multi-item/multi-machine/changeover cost problem (with C. Gicquel)

۲

Using large extended formulations in practice

ト くぼ ト く ヨ ト く ヨ ト

The Single-Item Lot-Sizing Set X^{LS-C}

$$s_{t-1} + x_t = d_t + s_t \quad \forall t,$$

$$x_t \leq C_t y_t \quad \forall t,$$

$$x, s \geq 0, y \in \{0, 1\}^T.$$

When $C_t = C$ for all *t*, we call it "Constant Capacity", denoted X^{LS-CC} .

When $C_t = M > d_{1t}$ for all *t*, we call it "Uncapacitated", denoted X^{LS-U} .

Notation. Throughout we use $d_{kl} \equiv \sum_{u=k}^{l} d_u$.

(日)

The Uncapacitated Lot-Sizing Set LS-U

We consider X^{LS-U}

$$\begin{aligned} s_{t-1} + x_t &= d_t + s_t \ \forall t, \\ x_t &\leq M y_t \ \forall t, \\ x, s &\geq 0, y \in \{0, 1\}^T. \end{aligned}$$

Optimization is easy by Shortest Path/Dynamic Programming. $O(T^2)$ or even $O(T \log T)$

Thus by Grötschel, Lovasz and Schrijver, one can separate in polynomial time.

Thus there is some hope to find a nice description of conv(X)!

Valid Inequalities

A first inequality

$$s_{k-1} \geq d_k(1-y_k).$$

Generalizing

$$\mathbf{s}_{k-1} \geq \sum_{u=k}^{t} d_u (1 - y_k - \cdots - y_u) \ \forall \ 1 \leq k \leq t \leq T.$$

Generalizing further

$$s_{k-1} + \sum_{j \in S} x_j \geq \sum_{u=k}^t d_u (1 - \sum_{j \in [k,u] \setminus S} y_j) \forall 1 \leq k \leq t \leq T,$$

Equivalently with $L = \{1, \ldots, l\}$ and $S \subseteq L$

$$\sum_{j\in L\setminus S} x_j + \sum_{j\in S} d_{jl} y_j \ge d_{1l}.$$

< □ > < 同 > < 回 > <

-

Multi-commodity/facility location reformulation LS - U

 w_{ut} is fraction of demand in t produced in u

$$\sum_{u=1}^{t} w_{ut} = 1 \quad \forall t$$
$$w_{ut} \leq y_{u} \quad \forall 1 \leq u \leq t \leq T$$
$$x_{u} = \sum_{t=u}^{T} d_{t} w_{ut} \quad \forall u$$

Solving this an a linear program, one solves the lot-sizing problem. More generally, view objects delivered in period t as the distinct t^{th} commodity.

イロト イボト イヨト・

Discrete Constant Capacity Lot-sizing DLSI – CC

$$s_0 + C \sum_{u=1}^{t} y_u \ge d_{1t} \ 1 \le t \le T$$

 $s \in \mathbb{R}^1_+, y \in \{0, 1\}$

$$n = 3, d = (6, 3, 5), C = 10$$

 $s_0 \ge 6(1-y_1), \qquad s_0 \ge 4(2-y_1-y_2-y_3)$

 $s_0 \geq 4(2-y_1-y_2-y_3) + (6-4)(1-y_1) + [(10-6)(1-y_1-y_2-y_3)]$

Constant Capacity Lot-sizing: WW-CC

The Wagner-Whitin relaxation $s_{t-1} + x_t = d_t + s_t$, $x_t \le Cy_t$

$$s_{k-1} + C \sum_{u=k}^{t} y_u \ge d_{kt} \ 1 \le k \le t \le T$$
$$s \in \mathbb{R}^1_+, y \in \{0, 1\}$$

With typical non-speculative costs $(p_t + h_t \ge p_{t+1} \forall t)$, WW - CC solves LS - CC.

The convex hull is known either using valid inequalities, or with an extended formulation.

$$\operatorname{conv}(X^{WW-CC}) = \cap_{k=1}^{T} \operatorname{conv}(X_k^{DLSI-CC})$$

Also compact extended formulation with $O(T^2)$ constraints and variables.

(日)

LS-LIB is a collection of subroutines/global constraints providing automatically reformulations or cutting plane separation routines for a variety of single item lot-sizing problems. It is implemented in Mosel (Xpress-MP).

Examples: Reformulations and Cut Separation Routines

- LS-U Uncapacitated Lot-Sizing: Facility location reformulation
- WW-CC Wagner-Whitin Relaxation with Constant Capacity
- DLS-CC-SC Discrete Lot-Sizing with Start-up variables

The Challenge

Find ways to use what we have learnt on modeling single item problems to tackle problems with

- more complicated variants
- multiple items
- multiple production levels
- multiple machines

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A. Discrete Lot-Sizing with Sales

Set:
$$s_{t-1} + Cy_t = d_t + w_t + s_t$$
, $w_t \le u_t \forall t$. Equivalently

$$s_0 + \sum_{j=1}^t v_j + C \sum_{j=1}^t y_j \ge b_{1t}, 0 \le v_t \le u_t \ t = 1, \dots, T$$

For all $R \subseteq N$, consider the Wagner-Whitin relaxation

$$(s_0 + \sum_{j \in \mathbb{R}} v_j) + C \sum_{j=1}^t y_j \ge b_{1t} - \sum_{j \in \mathbb{N} \setminus \mathbb{R}: j \le t} u_j \quad t = 1, \dots, T$$

Intersection of 2^{*n*} discrete lot-sizing sets. For a given objective function min $h_0 s_0 + pv + fy$ with $0 \le p_{i_1} \le \cdots \le p_{i_n}$, it suffices to take $R = N, N \setminus \{i_1\}, N \setminus \{i_1, i_2\}, \cdots, \emptyset$, where $N = \{1, \dots, T\}$.

B. Discrete Batch Production with Start-Ups

 y_t is number of machines producing at capacity in period t. z_t is increase in number of machines

$$s_{t-1} + Cy_t = d_t + s_t \forall t$$
$$z_t \ge y_t - y_{t-1} \forall t$$
$$z_t \le y_t \forall t$$
$$s \in \mathbb{R}_+^T, y, z \in \mathbb{Z}_+^T$$

WLOG C = 1.

Suppose that, given s_{t-1} , the next *p* units of demand arise in periods t_1, \dots, t_p . Then

$$s_{t-1} \geq \sum_{u=1}^{p} (1 - y_{t+u-1} - z_{t+u} - \cdots - z_{t_u}).$$

(DLSI - CC - SC) (Van Eijl and Van Hoesel) when $y_t, z_t, d_t \in \{0, 1\}.$

C. Lot-Sizing in Series with 2 Levels

$$\begin{array}{rcl} s^{0}_{t-1} + x^{0}_{t} & = & x^{1}_{t} + s^{0}_{t} \; \forall \; t \\ s^{1}_{t-1} + x^{1}_{t} & = & d_{t} + s^{1}_{t} \; \forall \; t \\ & x^{i}_{t} & \leq & My^{i}_{t} \; i = 0, 1, \; \forall \; t \\ x, s \in \mathbb{R}^{2T}_{+}, & y \in \{0, 1\}^{2T} \end{array}$$

Laurence A. Wolsey MIP Formulations for Production/Distribution and Production/Se

• • • • • • • • • • • •

э

Multi-commodity Reformulation

$$\begin{split} \sigma_{t-1}^{0q} + w_t^{0q} &= w_t^{1q} + \sigma_t^{0q} \; \forall \; t, q, \; t \leq q \\ \sigma_{t-1}^{1q} + w_t^{1q} &= d_q \delta_{tq} + \sigma_t^{1q} \; \forall \; t, q, \; t \leq q \\ w_t^{iq} &\leq d_q y_t^i \; i = 0, 1, \; \forall \; t, q, \; t \leq q \\ w_t^{iq}, \sigma_t^{iq} \in \mathbb{R}_+^1, \qquad y \in \{0, 1\}^{2T} \\ x_t^i &= \sum_{q=t}^T w_t^{iq} \\ s_t^i &= \sum_{q=t}^T \sigma_t^{iq} \end{split}$$

The multi-commodity reformulation is good in practice, but it is not tight even for just two levels.

Two levels corresponds to the simplest production/transportation or single warehouse/single retailer model.

Laurence A. Wolsey

MIP Formulations for Production/Distribution and Production/Se

Uncapacitated Lot-Sizing in Series with 2 Levels: Solution Structure

Solution Structure and DP

If $x_j^1 = d_{jt}$ is produced/shipped at level 1, then $x_i^0 = d_{pq}$ for some periods *i*, *p*, *q* with $i \le p \le j \le t \le q$.

Let G(t) be the minimum cost of the two-level problem restricted to the periods 1 up to t, and H(i, t) be the minimum cost of satisfying demands from i to t at level one.

$$G(t) = \min_{1 \le j \le t} \{G(j-1) + \min_{1 \le i \le j} (f_i^0 + p_i^0 d_{jt}) + H(j,t)\},\$$
$$H(i,t) = \min_{i \le j \le t} \{H(i,j-1) + f_j^1 + p_j^1 d_{jt}\}.$$

Algorithm in $O(T^2 \log T)$.

< ロ > < 同 > < 三 > < 三 > 、

Lot-Sizing in Series with 2 Levels: Solution Structure

$$v_{ijt} = 1$$
 if $x_i^0 = d_{jt}$.
 $\omega_{pjt} = 1 x_j^1 = d_{jt}$ and $x_i^0 = d_{pq}$ with $[j, t]$ a subinterval of $[p, q]$.

Figure: Solution with $v_{113} = v_{245} = 1$ and $\omega_{113} = \omega_{444} = \omega_{455} = 1$

(4) (5) (4) (5)

Corresponding Dual

$$\min \sum_{i=1}^{T} \sum_{j=i}^{T} v_{ijk} (f_i^0 + p_i^0 d_{jk}) + \sum_{i=1}^{T} \sum_{j=i}^{T} \sum_{k=j}^{T} \omega_{ijk} (f_j^1 + p_j^1 d_{jk})$$

$$\sum_{i=1}^{T} \sum_{j=i}^{T} v_{ijT} = 1,$$

$$\sum_{i=1}^{t} \sum_{j=i}^{t} v_{ijt} - \sum_{i=1}^{t+1} \sum_{j=t+1}^{T} v_{i,t+1,j} = 0 \quad \text{for } 1 \le t \le T - 1,$$

$$\sum_{i=t}^{I} \omega_{til} - \sum_{i=l+1}^{T} \omega_{t,l+1,i} - \sum_{i=1}^{t} v_{itl} = 0 \quad \text{for } 1 \le t \le I \le T,$$

$$v_{ijk} \in \mathbb{R}_+ \quad \text{for } 1 \le i \le j \le k \le T,$$

$$\omega_{ijk} \in \mathbb{R}_+ \quad \text{for } 1 \le i \le j \le k \le T.$$

イロト イヨト イヨト イヨト

D. Multiple Items. Constant Capacity. Joint Set-up Costs

$$\begin{aligned} \mathbf{s}_{t-1}^{i} + \mathbf{x}_{t}^{i} &= \mathbf{d}_{t}^{i} + \mathbf{s}_{t}^{i} \forall i, t\\ \sum_{i} \mathbf{x}_{t}^{i} &\leq \mathbf{Q} \mathbf{Y}_{t} \forall t\\ \mathbf{s}, \mathbf{x} \in \mathbb{R}_{+}^{IT}, \mathbf{Y} \in \mathbb{Z}_{+}^{T}. \end{aligned}$$

Consider a surrogate item consisting of the aggregation of all the items in $V \subseteq \{1, ..., m\}$.

Let $X_t^V = \sum_{i \in V} x_t^i$, $S_t^V = \sum_{i \in V} s_t^i$ and $D_t^V = \sum_{i \in V} d_t^i$ be surrogate variables and demands. We obtain:

$$S_{k-1}^V + Q \sum_{u=k}^t Y_u \ge D_{kt}^V \ 1 \le k \le t \le n.$$

Add conv(X^{WW-CC}) for the *m* surrogate items $V = \{1\}, \{1, 2\}, \dots, \{1, 2, \dots, m\}.$

Optimal integer solution for typical Wagner-Whitin type costs.

E. The multi-item/multi-warehouse/multi-client problem

Two-level problem with multiple items, warehouses and clients. $l \ge 1$ is the number of items, $P \ge 1$ is the number of production sites (warehouses) and $C \ge 1$ is the number of clients.

Laurence A. Wolsey MIP Formulations for Production/Distribution and Production/Se

A basic MIP formulation is

$$\begin{split} \min \sum_{i,p,t} p_t^{0ip} x_t^{0ip} + \sum_{i,p,t} q_t^{0ip} y_t^{0ip} + \sum_{i,p,c,t} p_t^{1ipc} x_t^{1ipc} + \sum_{p,c,t} f_t^{1pc} Y_t^{1pc} \\ s_{t-1}^{0ip} + x_t^{0ip} &= \sum_{c=1}^{C} x_t^{1ipc} + s_t^{0ip} \quad \text{for } 1 \leq i \leq I, \ 1 \leq p \leq P, \ 1 \leq t \leq T, \\ s_{t-1}^{1ic} + \sum_{p=1}^{P} x_t^{1ipc} &= d_t^{i,c} + s_t^{1ic} \quad \text{for } 1 \leq i \leq I, \ 1 \leq c \leq C, \ 1 \leq t \leq T, \\ x_t^{0ip} \leq M y_t^{0ip} \quad \text{for } 1 \leq i \leq I, \ 1 \leq p \leq P, \ 1 \leq t \leq T, \\ \sum_{i=1}^{I} x_t^{1ipc} \leq Q Y_t^{1pc} \quad \text{for } 1 \leq p \leq P, \ 1 \leq c \leq C, \ 1 \leq t \leq T, \\ s^0, x^0 \in \mathbb{R}_+^{I \times P \times T}, \ s^1 \in \mathbb{R}^{I \times C \times T}, \ x^1 \in \mathbb{R}^{I \times P \times C \times T}, \\ y^0 \in \{0, 1\}^{I \times P \times T}, \ Y^1 \in \{0, 1\}^{P \times C \times T}. \end{split}$$

Uncapacitated when Q = M (large trucks can transport all the items)

<ロト < 四ト < 回ト < 回ト

Some Computational Results: Single Production Site, Uncapacitated

Group	Dimensions
G4	I = 5, C = 10, T = 15
G5	I = 5, C = 20, T = 18
G6	$l = 20, \ C = 10, \ T = 15$

Table: Instances

	Standard			Echelon stock				MC		New
	LP	XLP	Gap	LP	XLP	Gap	Sec	LP	Sec	Sec
G4	68	83	21	99.3	99.8	0	41	100	2	13
G5	72	86	20	99.3	99.6	3.5	300	100	22	129
G6	58	80	22	99.4	99.7	3.7	300	100 ^a	75	247

Table: Results for instances with multiple items and multiple clients

< ロト < 同ト < ヨト < ヨト

And Then?

- Conclusion 1: Best to use Multi-commodity Formulation add indices i, c, p, q to each variable!
- Conclusion 2: Use the multi-item family set-up model D to deal with vehicle capacities
- What about larger problems?
 - Use an approximate multi-commodity formulation to handle larger problems
 - Improve separation of valid inequalities in the original space
 - Other extensions: sales, etc.

< ロト < 同ト < ヨト < ヨト

Computation: Capacitated Vehicles

Capacitated Vehicles, Single Production Site 5 items, 12 clients, 12 periods

	LP	XLP	BLB	BIP	gap	secs	nodes
Xpress	6662	7277	7809	8749	10.7	300	6542
mc	8461	8464	8492	8563	0.8	300	1301
mc+WW-CC	8490	8539	8559	8559	0	29	323

Table: Capacities at transportation level

・ロト ・ 四ト ・ ヨト ・ ヨ

F. The multi-item/**multi-machine**/changeover cost problem

I is the number of items, *K* is the number of machines. One item is produced per period, and (later) discrete/all or nothing production.

$$\min \sum_{i,k} p_t^{ik} x_t^{ik} + \sum_i h_t^i s_t^i + \sum_{i,j,k,t} q^{ijk} \chi_t^{ijk} \\ s_t^i + \sum_k C y_t^{ik} = d_t^i + s_t^i \ \forall \ i, t \\ \sum_i y_t^{ik} = 1 \ \forall \ k, t \\ \chi_t^{ijk} \ge y_{t-1}^{ik} + y_t^{jk} - 1 \ \forall \ i, j, k, t \\ s \in \mathbb{R}_+^1, x \in \{0, 1\}, \chi \in \{0, 1\}$$

伺下 イヨト イヨト

Improved Formulation of Changeovers for Machine k

$$\begin{split} \sum_{i} y_{1}^{i} &= 1\\ \sum_{i} \chi_{t}^{ij} &= y_{t}^{j} \forall j, t\\ \sum_{j} \chi_{t}^{ij} &= y_{t-1}^{i} \forall j, t > 1\\ 0 &\leq y_{t}^{i}, \chi_{t}^{ij} \forall i, j, t. \end{split}$$

A (10) × A (10) × A (10)

Linking Changeovers and Lot-Sizing

Define the start-up and switch-off variables in terms of the changeover variables

$$z_t^j = \sum_{i:i\neq j} \chi_t^{ij}$$
 and $w_{t-1}^i = \sum_{j:j\neq i} \chi_t^{ij}$.

Now can use single item models with stocks, set-up and start-up variables z_t^j .

Use relaxations WW - U - SC and WW - CC for which the convex hull is known and relatively compact, and DLSI - CC - SC assuming $d_t^i \in \{0, 1\}$.

Symmetry-breaking?

・ 一下・ ・ コート

K Identical Machines and Discrete Lot-Sizing

Let
$$Y_t^i = \sum_{k=1}^K y_t^{ik}, Z_t^i = \sum_{k=1}^K z_t^{ik}$$
.

New flow model with integer flows between 0 and K, and demands that are integer between 0 and K. This leads to a much more compact model.

Obs 1: Same LP value for integer and disaggregated models. Obs 2: Integer flows decompose into a flow on each machine.

Subproblem is discrete batching with start-ups

$$\begin{aligned} \mathbf{s}_{t-1}^{i} + \mathbf{Y}_{t}^{i} &= \mathbf{d}_{t}^{i} + \mathbf{s}_{t}^{i} \\ \mathbf{Y}_{t} \geq \mathbf{Z}_{t} &\geq \mathbf{Y}_{t} - \mathbf{Y}_{t-1} \\ \mathbf{S} \in \mathbb{R}_{+}^{T}, \mathbf{Y}_{t}, \mathbf{Z}_{t} &\in \{0, 1, \dots, K\} \end{aligned}$$

Batch start-up Inequalities presented above.

Extended formulation due to Eppen and Martin - very large Vanderbeck and Wolsey - cutting planes -special purpose separation heuristics

Computation: identical machines, start-ups

DLS-Identical parallel Machines - Integer Start-Ups 5 machines, 10 items, 60 periods

	LP	XLP	BLB	BIP	gap	secs	nodes
XPress	5060	8723	8979	10150	11.5	300	27200
VI	9722	9847	98916	9891	0	25	87
EF	9883	9889	9891	9891	0	214	1

Table: Start-up Costs

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How to use large extended formulations?

- Up to a certain size, the large extended formulation solves the most rapidly, because it provides a very tight LP bound and requires very few nodes in the tree.
- At a certain stage, the LP bound is still very good, but resolving in the branch-and-bound tree takes too long, and very few nodes are enumerated. Adding cuts in the original space produces a weaker bound, but good feasible solutions can be found in the tree.
- At a certain stage, even the LP becomes too big.

Some possible solutions

- Use (approximate) extended formulation for dual bound, and tightened weaker reformulation for primal bounds.
- Use LP solution of extended formulation for variable fixing to find good feasible solutions with the weaker reformulation.
- Use extended formulation for separation while running the weaker formulation.
- Use LP solution of extended formulation to separate different points.(yoyo - Fischetti)
- Use bound of extended formulation in running the weaker formulation. How?

イロト イポト イヨト イヨト

I=10,K=2,T=150 Formulations and Heuristics

	LP	XLP	BLB	BIP	Gap%	Sec	nodes	т	n
Xpress	8968	11325	11621	20611	43.6	600	19500	4	4
VI(30)	15246	15560	15642	16526	5.3	600	5400	9	4
EF	15889	15889				600	0	139	267
EFA(10)	15881	15890				600	0	98	178

Combining Formulations

	LB	UB	Gap%	secs
EF-VI	15899	17011	6.6	300
Heur-EF-VI	15899	16478	3.6	300

Separation with Extended Formulation

LB	LP(10)	XLP	BIP(300)
14246	15514	15591	16477

<ロト < 四ト < 回ト < 回ト

Heuristic I = 10, K = 10, T = 50

Extended Formulation Approx with $\delta = 20$ for initial LP and Tk = 20 for Batch Inequalities

Ι	Κ	Т	instance	LB	BIP	gap	secs1	secs2
10	10	50	pb21	15622	15763	0.9%	105	3
10	10	50	pb22	16127	16314	1.1%	89	1
10	10	50	pb23	14072	14260	1.3%	105	7
10	10	50	pb24	13427	13588	1.2%	85	2
10	10	50	pb25	14005	14075	0.5%	97	6

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

To conclude

- MIRs and Wagner-Whitin (Mixing) sets are everywhere in lot-sizing.
- Extended formulations are great fun and very useful.
- Approximate extended formulations can help.
- How to combine what is good for the primal with what is good for the dual?

< ロト < 同ト < ヨト < ヨト

Thank you for your attention.

イロト イロト イヨト イヨト