Cutting plane methods for integer and combinatorial optimization

Pierre Bonami, Gérard Cornuéjols, Andrea Lodi

Hammamet, March 22-23, 2010

April 10, 2010

Part I

Cutting Planes for Mixed-Integer Linear Programs

- Mixed-Integer Linear Programming (MILP): notation. The Linear Programming (LP) relaxation. Strengthening the LP relaxation by cutting planes. How much cuts are important in the MILP software?
- 2. Cutting Planes for MILPs.

Families of cutting planes and their relationships.

3. Advanced topics.

Closures and separation.

3. Elementary Closures [Chvátal 1973]

Definition

Consider again the special case of S where $I = \{1, ..., n\}$, we define the Chvátal elementary (or first) closure as

$$P(S) = \{x \in \mathbb{R}^n : uAx \le \lfloor ub \rfloor, u \in \mathbb{R}^m_+, uA \in \mathbb{Z}^n\}.$$

Proposition

$$S \subseteq P(S) \subseteq P = \{x \in \mathbb{R}^n : Ax \le b\}$$

Iterative application

Such a derivation can be iterative applied:

$$P^{2}(S) = P(P(S))$$

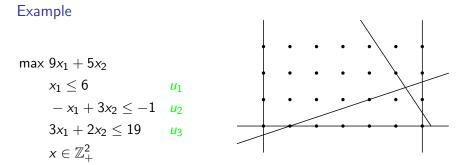
$$\vdots$$

$$P^{k}(S) = P(P^{k-1}(S))$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

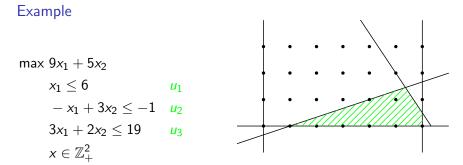
Theorem

If A and b have rational coefficients, then any inequality $\alpha x \leq \beta$ valid for S can be obtained by applying the Chvátal procedure a fixed number of times, i.e., $\operatorname{conv}(S) = P^k(S)$ for fixed k.



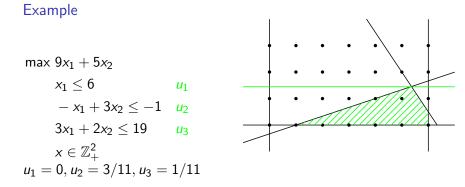
Theorem

If A and b have rational coefficients, then any inequality $\alpha x \leq \beta$ valid for S can be obtained by applying the Chvátal procedure a fixed number of times, i.e., $\operatorname{conv}(S) = P^k(S)$ for fixed k.



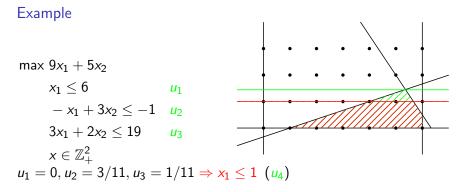
Theorem

If A and b have rational coefficients, then any inequality $\alpha x \leq \beta$ valid for S can be obtained by applying the Chvátal procedure a fixed number of times, i.e., $\operatorname{conv}(S) = P^k(S)$ for fixed k.



Theorem

If A and b have rational coefficients, then any inequality $\alpha x \leq \beta$ valid for S can be obtained by applying the Chvátal procedure a fixed number of times, i.e., $\operatorname{conv}(S) = P^k(S)$ for fixed k.



▲日▼▲□▼▲□▼▲□▼ □ ○○○

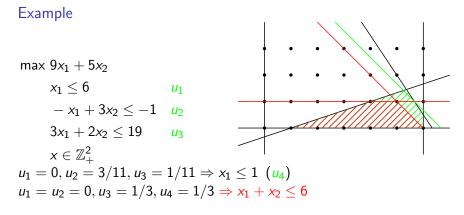
Theorem

If A and b have rational coefficients, then any inequality $\alpha x \leq \beta$ valid for S can be obtained by applying the Chvátal procedure a fixed number of times, i.e., $\operatorname{conv}(S) = P^k(S)$ for fixed k.



Theorem

If A and b have rational coefficients, then any inequality $\alpha x \leq \beta$ valid for S can be obtained by applying the Chvátal procedure a fixed number of times, i.e., $\operatorname{conv}(S) = P^k(S)$ for fixed k.



▲日▼▲□▼▲□▼▲□▼ □ ののの

3. The cutting plane algorithm

Algorithm

- 1. $\mathcal{C} \leftarrow \emptyset$
- Solve the LP relaxation max{cx : Ax ≤ b, αx ≤ β, ∀α, β ∈ C, x ≥ 0}. Let x* the optimal solution.
- 3. If $x^* \in \mathbb{Z}^n$, then **STOP**.
- 4. Solve the associated separation problem to find $\alpha x \leq \beta$ such that $\alpha x^* > \beta$ while $\alpha x \leq \beta$ for all $x \in S$.

▲日▼▲□▼▲□▼▲□▼ □ ののの

5. Add α, β to C and go to 2.

We assume A having integer coefficients.

3. Solving the LP relaxation

Complexity [Eisenbrand 1999] proved that finding a Chvátal-Gomory cut separating an arbitrary x^* is \mathcal{NP} -hard. However, in the special case where x^* is a vertex of the LP relaxation the separation is trivial. This is indeed the case if the LP relaxation is solved by the simplex

algorithm:

at the optimal solution, we have a basis and the so-called "tableau". A row of the tableau has the form

$$x'_i + \sum_{j \notin B} \overline{a}_{ij} x'_j = \overline{a}_{i0}$$

The optimal solution x^* has $x_i^{*,\prime} = 0$ for $i \notin B$ and $x_i^{*,\prime} = \overline{a}_{i0}$ for $i \in B$.

3. Gomory's Algorithm

We assume A having integer coefficients.

1. $\mathcal{C} \leftarrow \emptyset$

- Solve through the simplex algorithm the LP relaxation max{cx : Ax ≤ b, αx ≤ β, ∀α, β ∈ C, x ≥ 0}. Let x* be the optimal solution and B the optimal basis.
- 3. If $x^* \in \mathbb{Z}^n$, then **STOP**.
- 4. Select a row of the simplex tableau

$$x'_i + \sum_{j
ot \in B} \overline{a}_{ij} x'_j = \overline{a}_{i0}$$

such that $\overline{a}_{i0} \notin \mathbb{Z}$.

5. Derive and add the Gomory cut

$$x'_i + \sum_{j \notin B} \lfloor \overline{a}_{ij} \rfloor x'_j \leq \lfloor \overline{a}_{i0} \rfloor$$
 and got to 2.

▲日▼▲□▼▲□▼▲□▼ □ ののの

3. Finiteness of Gomory's Algorithm

Lexicographic simplex

A solution x^* is lexicographically optima if:

- it is optimal;
- ▶ it is maximal in the lexicographic order: any other solution x̄ is such that

$$x_1^* > \overline{x}_1$$
 or $(x_1^* = \overline{x}_1 \text{ and } x_2^* > \overline{x}_2)$ or \dots

or
$$(x_i^* = \overline{x}_i \text{ for } i = 1, \dots, n-1 \text{ and } x_n^* > \overline{x}_n)$$

Theorem [Gomory 1958]

The algorithm converges within a finite number of iterations if the lexicographically optimal solution is used at each iteration.

3. Other closures

${\sf Split}/{\sf MIG}/{\sf MIR}\ {\sf closure}$

Exactly in the same way as for the Chvátal closure one can define the Split Closure.

In particular the elementary split closure as the mixed-integer set composed by the original problem plus all split cuts which can be derived only using the original set of constraints.

Complexity

[Caprara & Letchford 2001] proved that, if x^* is arbitrary, then the separation of split cuts is NP-hard as well.

However, as for Chvátal-Gomory cuts, MIG separation is trivial if x^* is a vertex of the LP relaxation.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

3. Closures and polyhedra

$P^{(i)}$ is a rational polyhedron

In other words, A and b have integral entries.

The Elementary Chvátal closure is a polyhedron

In other words, although infinitely many rank-1 inequality exist, only a finite number of them is enough to define the Elementary Chvátal closure.

One can prove that it is enough to restrict in the CG derivation to u < 1.

Thus, $\{uA \in \mathbb{R}^n : 0 \le u < 1\}$ is bounded, which implies $\{uA \in \mathbb{Z}^n : 0 \le u < 1\}$ is finite.

Therefore, only a finite number of CGs are enough.

The Elementary Split closure is a polyhedron Much more complicated to prove [Cook, Kannan & S

Much more complicated to prove [Cook, Kannan & Schrijver 1990, Andersen, Cornuéjols & Li 2005, Dash, Günlük & Lodi 2010]