Separation models for elementary closures

Pierre Bonami and Andrea Lodi

LIF, CNRS/Aix-Marseille Université and LabOR, Universitá di Bologna

ISCO 2010 Spring School - Hammamet - March 2010

Reminder Chvátal-Gomory cuts.

We consider the pure integer linear programming problem

$$\min\{c^T x : Ax \le b, x \ge 0, x \in \mathbb{Z}\}\$$

and the two sets:

$$P = \{x \in \mathbb{R}^n_+ : Ax \le b\}$$

$$S = conv\{x \in \mathbb{Z}^n_+ : Ax \le b\} = conv(P \cap \mathbb{Z}^n)$$

A Chvátal-Gomory (CG) cut: $\lfloor u^T A \rfloor x \leq \lfloor u^T b \rfloor$ where $u \in \mathbb{R}^m_+$. The Chvátal closure of P:

$$P^{1} := \{ x \ge 0 : Ax \le b, \lfloor u^{T} A \rfloor x \le \lfloor u^{T} b \rfloor \text{ for all } u \in \mathbb{R}^{m}_{+} \}.$$
(1)

ション ふゆ マ キャット キャット しょう

Chvátal-Gomory separation

Separation problem

Given any point $\hat{x} \in P$ find (if any) a CG cut $\alpha^T x \leq \alpha_0$ that is violated by \hat{x} , i.e., find $u \in \mathbb{R}^m_+$ such that $\lfloor u^T A \rfloor \hat{x} > \lfloor u^T b \rfloor$, or prove that no such u exists.

Optimizing (or separating) over the first Chvátal closure is NP-hard [Eisenbrand, 1999].

MIP model

The following MIP solves the separation problem [Fischetti and Lodi, 2005]

$$\max \alpha^{T} \hat{x} - \alpha_{0}$$

$$\alpha^{T} \leq u^{T} A, \ u \geq 0$$

$$\alpha_{0} + 1 - \epsilon \geq u^{T} b \qquad (CG-MIP)$$

$$\alpha, \ \alpha_{0} \quad \text{integer}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ のへで

Validity of (CG-MIP) follows from the fact that $\alpha^T x \leq \alpha_0$ is a CG cut if and only if:

- 1. (α, α_0) is integral,
- 2. $\alpha^T x \leq \alpha_0 + 1 \epsilon$ is valid for *P*.

Chvátal-Gomory cuts for mixed-integer sets [B., Cornuéjols, Dash, Fischetti and L. 2007]

We now consider the mixed-integer set:

$$S = \{(x, y) \in \mathbb{Z}^n_+ \times \mathbb{R}^p_+ : Ax + Gy \le b\}$$

and its relaxation:

$$P = \{(x, y) \in \mathbb{Z}^n_+ \times \mathbb{R}^p_+ : Ax + Gy \le b\}$$

The **projection** of P onto the space of x variables is:

$$P_x = \{x \in \mathbb{R}^n_+ : \exists y \in \mathbb{R}^p_+ \text{ s.t. } Ax + Gy \le b\}$$
$$= \{x \in \mathbb{R}^n_+ : u^k A \le u^k b, \ k = 1, \dots, K\}$$
$$= \{x \in \mathbb{R}^n_+ : \bar{A}x \le \bar{b}\}$$

where u^1, \ldots, u^K are the (finitely many) extreme rays of the projection cone $\{u \in \mathbb{R}^m_+ : u^T C \ge 0^T\}.$

Projected Chvátal-Gomory cuts

We define a **projected Chvátal-Gomory (pro-CG) cut** as a CG cut derived from the system $\bar{A}x \leq \bar{b}$, $x \geq 0$, i.e., an inequality of the form $|w^T\bar{A}|x \leq |w^T\bar{b}|$ for some $w \geq 0$.

Any row of $\bar{A}x \leq \bar{b}$ can be obtained as a positive combination of the rows of $Ax \leq b$ with multipliers $\bar{u} \geq 0$ such that $\bar{u}^T C \geq 0^T$ \Rightarrow a pro-CG cuts are of the form:

$$\lfloor u^T A \rfloor x \le \lfloor u^T b \rfloor \quad \text{for any } u \ge 0 \text{ such that } u^T C \ge 0^T.$$
(2)

Separation of pro-CG cuts

Separation by a **simple extension** of the CG separating MIP

$$\max \alpha^{T} \hat{x} - \alpha_{0}$$

$$\alpha^{T} \leq u^{T} A$$

$$0^{T} \leq u^{T} C$$

$$\alpha_{0} + 1 - \epsilon \geq u^{T} b$$

$$u \geq 0$$

$$\alpha \in \mathbb{Z}^{n}, \ \alpha_{0} \in \mathbb{Z}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Split cuts separation

We now consider a mixed-integer set of the form:

$$S = \{x \in \mathbb{R}^n : Ax \le b, x_i \in \mathbb{Z}, i \in I\}$$

and its relaxation:

$$P = \{x \in \mathbb{R}^n : Ax \le b\}$$

(bounds (if any) are included in $Ax \leq b$). For any $(\pi, \pi_0) \in \mathbb{Z}^n$ such that $\pi_i = 0, \forall i \notin I$:

 $P^{(\pi,\pi_0)} =$ conv $\left(\left(P \cap \left\{ x \in \mathbb{R}^n : \pi^T x \le \pi_0 \right\} \right) \cup \left(P \cap \left\{ x \in \mathbb{R}^n : \pi^T x \ge \pi_0 + 1 \right\} \right) \right)$ The **split closure** is:

$$P_{split} = \cap_{(\pi,\pi_0)\in\mathbb{Z}^{n+1}:\pi_i=0,\forall i\notin I} P^{(\pi,\pi_0)}.$$

and is a polyhedron [Cook, Kannan and Schrijver, 1990]. Separating over it is NP-Hard [Caprara and Letchford 2003].

Split closure separation

$$\max \alpha^{T} \hat{x} - \beta$$

s.t.
$$u^{T} A + u_{0} \pi = \alpha$$
$$v^{T} A - v_{0} \pi = \alpha$$
(CGLP)
$$u^{T} b + u_{0} \pi_{0} \leq \beta$$
$$u^{T} b - v_{0} (\pi_{0} + 1) \leq \beta$$
$$u_{0} + v_{0} = 1$$
$$u, v \in \mathbb{R}^{m}_{+}, u_{0}, v_{0} \geq 0$$
$$\pi \in \mathbb{Z}^{n}, \pi_{0} \in \mathbb{Z}$$
$$\pi_{i} = 0, i \notin I$$

Simplifications to the model [Balas and Saxena 2005]

Using $u_0 + v_0 = 1$ one can simplify the model to:

min
$$u^{T}(A\hat{x} - b) + u_{0}(\pi^{T}\hat{x} - \pi_{0})$$

 $u^{T}A - v^{T}A + \pi = 0$
 $u^{T}b - v^{T}b + \pi_{0} = u_{0} - 1$
 $0 < u_{0} < 1, u, v \ge 0$
 $\pi \in \mathbb{Z}^{n}, \pi_{0} \in \mathbb{Z}$
 $\pi_{i} = 0, i \notin I$

- ▶ For any fixed value of parameter u_0 the model becomes a regular MIP (w.l.o.g. $u_0 \in (0, 1/2]$).
- Balas and Saxena considered a heuristic list of possible values for parameter u₀, say (0.05, 0.1, 0.2, 0.3, 0.4, 0.5) and then enriched it, on the fly, by inserting new heuristic points.

Experimental strength of the closures

- ► The strengthe of the closures, namely CG, pro-CG and split (or MIR) closures, has been evaluated by running a cutting plane algorithm for a large (sometimes huge) computing time.
- Goal of the investigation: show the tightness of the closures, rather than investigating the practical relevance of the separation MIPping idea when used within a practical MIP solver.
- ► Tightness of the closures for MIPlib 3.0 instances, in terms of "percentage of gap closed", computed as

$$100 - \frac{100(opt_value(P_I) - opt_value(P^1))}{(opt_value(P_I) - opt_value(P))}$$

Strength of the closures

		Split closure	CG closure
% Gap closed	Average	71.71	62.59
% Gap closed	98-100	9 instances	9 instances
% Gap closed	75 - 98	4 instances	2 instances
% Gap closed	25 - 75	6 instances	7 instances
% Gap closed	< 25	6 instances	7 instances

Table: Percentage of gap closed for 25 *pure* integer linear programs in the MIPlib 3.0.

		Split closure	pro-CG closure
% Gap closed	Average	84.34	36.38
% Gap closed	98-100	16 instances	3 instances
% Gap closed	75 - 98	10 instances	3 instances
% Gap closed	25 - 75	2 instances	11 instances
% Gap closed	< 25	5 instances	17 instances

Table: Percentage of gap closed for 33 *mixed* integer linear programs in the MIPlib 3.0

Nice features of rank-1 split cuts

Pure IP Instance	#Int Variables	Mean Support Size
nw04	87482	2.084
air05	7195	8.210
seymour	1372	5.263
misc03	159	3.771
p0033	33	4.847

Mixed IP Instance	# Int Variables	Mean Support Size
qnet1_o	1417	6.690
gesa2_o	720	4.937
arki001	538	3.146
vpm1	168	4.503
pp08aCUTS	64	3.850

Figure: Split cut properties (from Balas and Saxena, 2005)