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Reminder Chvátal-Gomory cuts.

We consider the pure integer linear programming problem

min{cTx : Ax ≤ b, x ≥ 0, x ∈ Z}

and the two sets:

P = {x ∈ Rn
+ : Ax ≤ b}

S = conv{x ∈ Zn+ : Ax ≤ b} = conv(P ∩ Zn)

A Chvátal-Gomory (CG) cut: buTAcx ≤ buT bc where
u ∈ Rm

+ .
The Chvátal closure of P :

P 1 := {x ≥ 0 : Ax ≤ b, buTAcx ≤ buT bc for all u ∈ Rm
+}. (1)



Chvátal-Gomory separation

Separation problem

Given any point x̂ ∈ P find (if any) a CG cut αTx ≤ α0 that is
violated by x̂, i.e., find u ∈ Rm

+ such that buTAcx̂ > buT bc, or
prove that no such u exists.

Optimizing (or separating) over the first Chvátal closure is
NP-hard [Eisenbrand, 1999].



MIP model

The following MIP solves the separation problem [Fischetti
and Lodi, 2005]

max αT x̂− α0

αT ≤ uTA, u ≥ 0

α0 + 1− ε ≥ uT b (CG-MIP)
α, α0 integer

Validity of (CG-MIP) follows from the fact that αTx ≤ α0 is a
CG cut if and only if:

1. (α, α0) is integral,
2. αTx ≤ α0 + 1− ε is valid for P .



Chvátal-Gomory cuts for mixed-integer sets [B.,

Cornuéjols, Dash, Fischetti and L. 2007]

We now consider the mixed-integer set:

S = {(x, y) ∈ Zn+ × Rp
+ : Ax+Gy ≤ b}

and its relaxation:

P = {(x, y) ∈ Zn+ × Rp
+ : Ax+Gy ≤ b}

The projection of P onto the space of x variables is:

Px = {x ∈ Rn
+ : ∃ y ∈ Rp

+ s.t. Ax+Gy ≤ b}
= {x ∈ Rn

+ : ukA ≤ ukb, k = 1, . . . ,K}
= {x ∈ Rn

+ : Āx ≤ b̄}

where u1, . . . , uK are the (finitely many) extreme rays of the
projection cone {u ∈ Rm

+ : uTC ≥ 0T }.



Projected Chvátal-Gomory cuts

We define a projected Chvátal-Gomory (pro-CG) cut as a
CG cut derived from the system Āx ≤ b̄, x ≥ 0, i.e., an
inequality of the form bwT Ācx ≤ bwT b̄c for some w ≥ 0.

Any row of Āx ≤ b̄ can be obtained as a positive combination of
the rows of Ax ≤ b with multipliers ū ≥ 0 such that ūTC ≥ 0T

⇒ a pro-CG cuts are of the form:

buTAcx ≤ buT bc for any u ≥ 0 such that uTC ≥ 0T . (2)



Separation of pro-CG cuts

Separation by a simple extension of the CG separating MIP

max αT x̂− α0

αT ≤ uTA
0T ≤ uTC
α0 + 1− ε ≥ uT b
u ≥ 0
α ∈ Zn, α0 ∈ Z



Split cuts separation

We now consider a mixed-integer set of the form:

S = {x ∈ Rn : Ax ≤ b, xi ∈ Z, i ∈ I}

and its relaxation:

P = {x ∈ Rn : Ax ≤ b}

(bounds (if any) are included in Ax ≤ b).
For any (π, π0) ∈ Zn such that πi = 0, ∀i 6∈ I:

P (π,π0) =

conv
((
P ∩

{
x ∈ Rn : πTx ≤ π0

})
∪

(
P ∩

{
x ∈ Rn : πTx ≥ π0 + 1

}))
The split closure is:

Psplit = ∩(π,π0)∈Zn+1:πi=0,∀i 6∈IP
(π,π0).

and is a polyhedron [Cook, Kannan and Schrijver, 1990].
Separating over it is NP-Hard [Caprara and Letchford
2003].



Split closure separation

maxαT x̂− β
s.t.

uTA+ u0π = α

vTA− v0π = α (CGLP)

uT b+ u0π0 ≤ β
uT b− v0(π0 + 1) ≤ β
u0 + v0 = 1
u, v ∈ Rm

+ , u0, v0 ≥ 0
π ∈ Zn, π0 ∈ Z
πi = 0, i 6∈ I



Simplifications to the model [Balas and Saxena 2005]

Using u0 + v0 = 1 one can simplify the model to:

min uT (Ax̂− b) + u0(πT x̂− π0)

uTA− vTA+ π = 0

uT b− vT b+ π0 = u0 − 1
0 < u0 < 1, u, v ≥ 0
π ∈ Zn, π0 ∈ Z
πi = 0, i 6∈ I

I For any fixed value of parameter u0 the model becomes a
regular MIP (w.l.o.g. u0 ∈ (0, 1/2]).

I Balas and Saxena considered a heuristic list of possible
values for parameter u0, say (0.05, 0.1, 0.2, 0.3, 0.4, 0.5) and
then enriched it, on the fly, by inserting new heuristic
points.



Experimental strength of the closures

I The strengthe of the closures, namely CG, pro-CG and
split (or MIR) closures, has been evaluated by running a
cutting plane algorithm for a large (sometimes huge)
computing time.

I Goal of the investigation: show the tightness of the
closures, rather than investigating the practical relevance of
the separation MIPping idea when used within a practical
MIP solver.

I Tightness of the closures for MIPlib 3.0 instances, in terms
of “percentage of gap closed”, computed as

100− 100(opt value(PI)− opt value(P 1))
(opt value(PI)− opt value(P ))



Strength of the closures

Split closure CG closure
% Gap closed Average 71.71 62.59
% Gap closed 98-100 9 instances 9 instances
% Gap closed 75-98 4 instances 2 instances
% Gap closed 25-75 6 instances 7 instances
% Gap closed < 25 6 instances 7 instances

Table: Percentage of gap closed for 25 pure integer linear programs in
the MIPlib 3.0.

Split closure pro-CG closure
% Gap closed Average 84.34 36.38
% Gap closed 98-100 16 instances 3 instances
% Gap closed 75-98 10 instances 3 instances
% Gap closed 25-75 2 instances 11 instances
% Gap closed < 25 5 instances 17 instances

Table: Percentage of gap closed for 33 mixed integer linear programs
in the MIPlib 3.0.



Nice features of rank-1 split cuts

On the practical relevance of rank-1 cuts

• Lesson learned: in most practical cases the inequalities of rank 1 already give a very tight
approximation of the convex hull of integer and mixed-integer programs.

• Nice features of the rank-1 split cuts separated through the MIPping approach: very sparse
disjunctions and numerically stable coefficients (as opposed to, e.g., GMI cuts read from the

tableau)

Figure 1: Disjunction density for split cuts (from Balas and Saxena, 2005)
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Figure: Split cut properties (from Balas and Saxena, 2005)


