Cutting plane methods for Mixed Integer NonLinear Programming

Pierre Bonami and Andrea Lodi

LIF, CNRS/Aix-Marseille Université and LabOR, Universitá di Bologna

ISCO 2010 Spring School - Hammamet - March 2010

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Basic Algorithmic ideas

Basic algorithmic ideas

Mixed Integer Non-Linear Programming

 $\min f(x)$ s.t. $g_j(x) \le 0 \qquad \forall j = 1, \dots, m \qquad (1)$ $x \in X \subseteq \mathbb{R}^n$ $x_j \in \mathbb{Z} \qquad \forall i \in I \subseteq \{1, \dots, n\}$

- ▶ $f : \mathbb{R}^n \to \mathbb{R}$.
- ▶ $g_j : \mathbb{R}^n \to \mathbb{R}$.
- f and g_j sufficiently smooth ($\in C^1$ or better C^2).

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ の Q ()

Because it is not well solved and:

Because it is not well solved and:

▶ Rich source of applications for which solutions are needed.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Because it is not well solved and:

- ▶ Rich source of applications for which solutions are needed.
- ► Many problems which combine non-linear phenomenon and decision making (0 1 variables)
 - In particular problems in chemical engineering or which involve physical phenomenon

Because it is not well solved and:

- ▶ Rich source of applications for which solutions are needed.
- ► Many problems which combine non-linear phenomenon and decision making (0 1 variables)
 - In particular problems in chemical engineering or which involve physical phenomenon

 Some stochastic Integer Programs can be cast as deterministic MINLPs.

Because it is not well solved and:

- ▶ Rich source of applications for which solutions are needed.
- ► Many problems which combine non-linear phenomenon and decision making (0 1 variables)
 - In particular problems in chemical engineering or which involve physical phenomenon

- Some stochastic Integer Programs can be cast as deterministic MINLPs.
- More powerful modeling framework than MILP (and more natural for many engineers)

Because it is not well solved and:

- ▶ Rich source of applications for which solutions are needed.
- ► Many problems which combine non-linear phenomenon and decision making (0 1 variables)
 - In particular problems in chemical engineering or which involve physical phenomenon
- Some stochastic Integer Programs can be cast as deterministic MINLPs.
- More powerful modeling framework than MILP (and more natural for many engineers)
- We can rely on the progresses made in solving subproblems in the last decades.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

From an MILP perspective

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

From an MILP perspective

Remove/neglate non-linearities.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

From an MILP perspective

- Remove/neglate non-linearities.
- Approximate non-linearities by linear functions.

From an MILP perspective

- Remove/neglate non-linearities.
- Approximate non-linearities by linear functions.
- Approximate unidimensional non-linearities by mixed-integer sets: SOS2[Beale1963, Forrest Tomlin 2007].

From an MILP perspective

- Remove/neglate non-linearities.
- Approximate non-linearities by linear functions.
- Approximate unidimensional non-linearities by mixed-integer sets: SOS2[Beale1963, Forrest Tomlin 2007].

 Most clever tricks handle arbitrary separable functions: linked-SOS [Beale Forrest 1976]

From an MILP perspective

- Remove/neglate non-linearities.
- Approximate non-linearities by linear functions.
- Approximate unidimensional non-linearities by mixed-integer sets: SOS2[Beale1963, Forrest Tomlin 2007].

 Most clever tricks handle arbitrary separable functions: linked-SOS [Beale Forrest 1976]

From an NLP perspective

From an MILP perspective

- Remove/neglate non-linearities.
- Approximate non-linearities by linear functions.
- Approximate unidimensional non-linearities by mixed-integer sets: SOS2[Beale1963, Forrest Tomlin 2007].

 Most clever tricks handle arbitrary separable functions: linked-SOS [Beale Forrest 1976]

From an NLP perspective

Remove/neglate integrity.

From an MILP perspective

- Remove/neglate non-linearities.
- Approximate non-linearities by linear functions.
- Approximate unidimensional non-linearities by mixed-integer sets: SOS2[Beale1963, Forrest Tomlin 2007].
- Most clever tricks handle arbitrary separable functions: linked-SOS [Beale Forrest 1976]

From an NLP perspective

- Remove/neglate integrity.
- ► Round solutions to try to get "good" integer feasible solutions.

Two classes of MINLP

Mixed Integer Convex Program

If the functions f(x) and $g_j(x)$ are convex.

- The continuous relaxation can be optimized to global optimality using NLP algorithms.
- Problem is NP-Hard.
- ► Important sub-class f(x) and g_j(x) are second-order cone representable.

Two classes of MINLP

Mixed Integer Convex Program

If the functions f(x) and $g_j(x)$ are convex.

- The continuous relaxation can be optimized to global optimality using NLP algorithms.
- ▶ Problem is NP-Hard.
- ► Important sub-class f(x) and g_j(x) are second-order cone representable.

Mixed Integer NonLinear Program

- NLP techniques only give a local optima.
- ▶ Here we will always assume that integer variables are bounded:

Two classes of MINLP

Mixed Integer Convex Program

If the functions f(x) and $g_j(x)$ are convex.

- The continuous relaxation can be optimized to global optimality using NLP algorithms.
- ▶ Problem is NP-Hard.
- ► Important sub-class f(x) and g_j(x) are second-order cone representable.

Mixed Integer NonLinear Program

- NLP techniques only give a local optima.
- ▶ Here we will always assume that integer variables are bounded:
- Problem is undecidable when integer variables are unbounded even if all functions are quadratic [Jeroslow 1973], or are polynomials and problem has 10 variables [De Lorea et. al. 2008].

Software for Mixed Integer Convex Programs

- \blacktriangleright $\alpha\text{-ECP}$ [Westerlund and Lundqvist 2005], academic, available in GAMS
- Bonmin [B. et. al. 2006], open source, available through COIN-OR, NEOS and in GAMS.
- Dicopt, commercial, available in GAMS.
- FilMINT [Abhishek, Leyffer and Linderoth 2010], available through NEOS.
- MINLP_BB [Leyffer 1998] recently upgraded [Leyffer 2010], academic.
- ► SBB [Bussieck and Drud], commercial, available in GAMS.

Second order cone constrained

CPLEX, MOSEK, XPRESS,...

Software for Mixed Integer NonLinear Program

- Baron [Sahinidis, Tawarmalani 2003], commercial, stand-alone and in GAMS.
- Couenne [Belotti et. al. 2009], open source, available through COIN-OR.
- SCIP [Berhold et. al. 2010], academic, right now only quadratic functions, general MINLP upcoming.

LindoGlobal, commercial, available in GAMS.

Basic algorithmic ideas

Problems can be solved to optimality by branch-and-bound using appropriate *convex relaxations*.

Convex relaxations

- for MICP: NLP relaxation obtained by dropping integrality requirements.
- for MICP: Outer approximation linear approximation of the problem.
- for MINLP: Sherali Adams relaxation obtained by convexifying each non-convex term separately.

Use the relaxations to setup a branch-and-cut algorithm.

Outer Approximation [Duran, Grossmann 1986]

(assume linear objective)

 $\min f(x)$
s.t.
 $g(x) \le 0,$

 $x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}.$

Idea: linearize constraints at different points and build an equivalent MILP:

 $\mathcal T$ contains suitably chosen linearization points.

$$(OA) \begin{cases} \min f(x) \\ J_g(x^k)^T (x - x^k) + g(x^k) \leq 0 \\ \forall (x^k) \in \mathcal{T} \\ x \in X, \ x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}. \end{cases}$$

Separable MINLP

- f and g_i can be constructed as finite recursive composition of univariate and bivariate functions.
- ► Usually restricted to $\phi_1(x) = \ln(x)$, $\phi_2(x) = e^x$, $\phi_3(x, y) = x + y$, $\phi_4(x, y) = xy$, $\phi_5(x, \alpha) = x^{\alpha}$.

Example:

$$f(x) = \sqrt{x_1 x_2} + \ln(x_2)$$

is equivalent to:

$$f(x) = x_3 + x_4 = \phi_3(x_3, x_4)$$
$$x_3 = \sqrt{x_5} = \phi_5(x_5, \frac{1}{2})$$
$$x_4 = \ln(x_2) = \phi_1(x_2)$$
$$x_5 = x_1x_2 = \phi_4(x_1, x_2)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Building convex relaxation for separable MINLP

- ► Adding appropriate number of variables, decompose each separable function into atomic elements of the form: $x_{n+k} = \phi_j(x_{k'}) \text{ or } x_{n+k} = \phi_j(x_{k'}, x_{k''})$
- ► Using bounds on original variables, infer bounds on new variables: l_i ≤ x_{n+k} ≤ u_i.

For each x_{n+k} build an approximation of conv({x_{n+k} = ψ_i(x_{k'}), I_{k'} ≤ x_{k'} ≤ u_{k'}})

Building convex relaxation for separable MINLP

- ► Adding appropriate number of variables, decompose each separable function into atomic elements of the form: $x_{n+k} = \phi_j(x_{k'}) \text{ or } x_{n+k} = \phi_j(x_{k'}, x_{k''})$
- ► Using bounds on original variables, infer bounds on new variables: *l_i* ≤ *x*_{n+k} ≤ *u_i*.
- For each x_{n+k} build an approximation of conv({x_{n+k} = ψ_i(x_{k'}), I_{k'} ≤ x_{k'} ≤ u_{k'}})

Building convex relaxation for separable MINLP

- ► Adding appropriate number of variables, decompose each separable function into atomic elements of the form: $x_{n+k} = \phi_j(x_{k'}) \text{ or } x_{n+k} = \phi_j(x_{k'}, x_{k''})$
- ► Using bounds on original variables, infer bounds on new variables: *l_i* ≤ *x*_{n+k} ≤ *u_i*.
- For each x_{n+k} build an approximation of conv({x_{n+k} = ψ_i(x_{k'}), I_{k'} ≤ x_{k'} ≤ u_{k'}})

Consider the problem of finding (x₁, x₂) ≥ 0 above the two parabolas which minimizes x₁ + x₂

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

- Consider the problem of finding (x₁, x₂) ≥ 0 above the two parabolas which minimizes x₁ + x₂
- Convex relaxation for each of the constraints can be built by taking secant approximation

- Consider the problem of finding (x₁, x₂) ≥ 0 above the two parabolas which minimizes x₁ + x₂
- Convex relaxation for each of the constraints can be built by taking secant approximation

- Consider the problem of finding (x₁, x₂) ≥ 0 above the two parabolas which minimizes x₁ + x₂
- Convex relaxation for each of the constraints can be built by taking secant approximation

<ロ> <問> <問> < 回> < 回>

æ

Solve convex relaxation.

- Solve convex relaxation.
- Solution is not feasible, branch on

 $x_2 \geq x_2^* \lor x_2 \leq x_2^*$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

- Solve convex relaxation.
- Solution is not feasible, branch on

 $x_2 \geq x_2^* \lor x_2 \leq x_2^*$

► First child add constraint x₂ ≥ x₂^{*} and update convex relaxation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
- Solve convex relaxation.
- Solution is not feasible, branch on

 $x_2 \geq x_2^* \lor x_2 \leq x_2^*$

► First child add constraint x₂ ≥ x₂^{*} and update convex relaxation.

◆□> ◆□> ◆三> ◆三> ・三 のへで

- Solve convex relaxation.
- Solution is not feasible, branch on

 $x_2 \geq x_2^* \lor x_2 \leq x_2^*$

► First child add constraint x₂ ≥ x₂^{*} and update convex relaxation.

◆□> ◆□> ◆三> ◆三> ・三 のへで

- Solve convex relaxation.
- Solution is not feasible, branch on

 $x_2 \geq x_2^* \lor x_2 \leq x_2^*$

- ► First child add constraint x₂ ≥ x₂^{*} and update convex relaxation.
- Second child add x₂ ≤ x₂^{*} and update.

- Solve convex relaxation.
- Solution is not feasible, branch on

 $x_2 \geq x_2^* \lor x_2 \leq x_2^*$

- ► First child add constraint x₂ ≥ x₂^{*} and update convex relaxation.
- Second child add x₂ ≤ x₂^{*} and update.

- Solve convex relaxation.
- Solution is not feasible, branch on

 $x_2 \geq x_2^* \lor x_2 \leq x_2^*$

- ► First child add constraint x₂ ≥ x₂^{*} and update convex relaxation.
- Second child add x₂ ≤ x₂^{*} and update.

Part II

Disjunctive cuts for non-convex MINLPs

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ● ○ ○ ○ ○

QCP

$$\min a_0^T x \\ s.t. \\ x^T A_k x + a_k^T x + b_k \le 0 \quad k = 1 \dots m \\ l \le x \le u$$

- *A_k* are symmetric but usualy not positive semi-definite.
- All variables appearing in quadratic expressions have finite bounds.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Reformulation of QCP

```
Introduce variables y_{ij} = x_i x_j:

min a_0^T x

s.t.

\langle A_k, \mathbf{Y} \rangle + a_k^T x + b_k \leq 0 \quad k = 1 \dots m

\mathbf{Y} = x \mathbf{x}^T

l < x < u
```

• The only non-linearity of the problem is in the constraint $Y = xx^{T}$.

Reformulation of QCP

Introduce variables $y_{ij} = x_i x_j$: min $a_0^T x$ s.t. $\langle A_k, Y \rangle + a_k^T x + b_k \le 0$ $k = 1 \dots m$ $Y = xx^T$ $l \le x \le u$

• The only non-linearity of the problem is in the constraint $Y = xx^T$.

• $Y - xx^T \ge 0$ is convex (can be handled by conic optimization),

Reformulation of QCP

Introduce variables $y_{ij} = x_i x_j$: min $a_0^T x$ s.t. $\langle A_k, Y \rangle + a_k^T x + b_k \le 0$ $k = 1 \dots m$ $Y = xx^T$ $l \le x \le u$

- The only non-linearity of the problem is in the constraint $Y = xx^T$.
 - $Y xx^T \ge 0$ is convex (can be handled by conic optimization),
 - $xx^T Y \succeq 0$ is non-convex.

Replace $y_{ij} = x_i x_j$ by its convex envelope given by RLT inequlities min $a_0^T x$ s.t. $\langle A_k, Y \rangle + a_k^T x + b_k \leq 0$ $k = 1 \dots m$ $l \leq x \leq u$ max $\begin{cases} l_j x_i + l_i x_j - l_j l_i \\ u_j x_i + u_i x_j - u_j u_i \end{cases} \leq y_{ij} \leq \min \begin{cases} l_i x_j + u_j x_i - l_i u_j \\ l_j x_i + u_i x_j - l_j u_i \end{cases}$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Replace $y_{ij} = x_i x_j$ by its convex envelope given by RLT inequlities

$$\min a_0^T x$$
s.t.
$$\langle A_k, Y \rangle + a_k^T x + b_k \leq 0 \quad k = 1 \dots m$$

$$I \leq x \leq u$$

$$\max \left\{ \begin{array}{l} l_j x_i + l_i x_j - l_j l_i \\ u_j x_i + u_i x_j - u_j u_i \end{array} \right\} \leq y_{ij} \leq \min \left\{ \begin{array}{l} l_i x_j + u_j x_i - l_i u_j \\ l_j x_i + u_i x_j - l_j u_i \end{array} \right\}$$

Our reference relaxation

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Replace $y_{ij} = x_i x_j$ by its convex envelope given by RLT inequlities min $a_0^T x$ s.t. $\langle A_k, Y \rangle + a_k^T x + b_k \leq 0$ $k = 1 \dots m$ $l \leq x \leq u$ max $\begin{cases} l_j x_i + l_i x_j - l_j l_i \\ u_j x_i + u_i x_j - u_j u_i \end{cases} \leq y_{ij} \leq \min \begin{cases} l_i x_j + u_j x_i - l_i u_j \\ l_j x_i + u_i x_j - l_j u_i \end{cases}$

We know

Can be strengthened by the LMI inequality $Y - xx^T \succeq 0$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Replace $y_{ij} = x_i x_j$ by its convex envelope given by RLT inequlities min $a_0^T x$ s.t. $\langle A_k, Y \rangle + a_k^T x + b_k \leq 0$ $k = 1 \dots m$ $l \leq x \leq u$ max $\begin{cases} l_j x_i + l_i x_j - l_j l_i \\ u_j x_i + u_i x_j - u_j u_i \end{cases} \leq y_{ij} \leq \min \begin{cases} l_i x_j + u_j x_i - l_i u_j \\ l_j x_i + u_i x_j - l_j u_i \end{cases}$

We know

Can be strengthened by the LMI inequality $Y - xx^T \succeq 0$

Research Question?

Can we use the non-convex constraint $xx^T - Y \succeq 0$ to produce cuts for this relaxation?

Separation Problem

Given $\hat{x} \in P$ show that $\hat{x} \in P_D$ or find an inequality separating \hat{x} from P_D .

A D M 4 目 M 4 日 M 4 1 H 4

Disjunctive Programming

Theorem

 $\hat{x} \in P_D$ if and only if the optimal value of the following Cut-Generation Linear Program (CGLP) is non-negative.

 $\begin{array}{l} \min \alpha \hat{x} - \beta \\ s.t. \\ \alpha = u^{k}A + v^{k}D^{k} , \quad k = 1 \dots q ; \\ \beta \leq u^{k}b + v^{k}d^{k} , \quad k = 1 \dots q ; \\ u^{k}, v^{k} \geq 0 , \qquad \qquad k = 1 \dots q ; \end{array}$ (CGLP)

A D M 4 目 M 4 日 M 4 1 H 4

Applying Disjunctive Programming to QCP?

Polyhedral Relaxation

Disjunction

 $P = \{x : Ax \ge b\}$

 $\int \left[D^k x \ge d^k \right]$ k=1

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Applying Disjunctive Programming to QCP?

Polyhedral Relaxation

Disjunction

 $P = \{x : Ax \ge b\}$

 $\bigvee \left[D^k x \ge d^k \right]$ k=1

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Integrality Constraints

- ► $x_j \in \mathbb{Z}$, $j \in N_I$
- Elementary disjunctions

$$(x_j \leq k) \lor (x_j \geq k+1)$$

- GUB disjunctions
- Split disjunctions

Applying Disjunctive Programming to QCP?

Polyhedral Relaxation

Disjunction

 $P = \{x : Ax \ge b\}$

 $\bigvee \left[D^k x \ge d^k \right]$ k=1

Integrality Constraints

- ► $x_j \in \mathbb{Z}, j \in N_{\mathcal{I}}$
- Elementary disjunctions
 - $(x_j \leq k) \lor (x_j \geq k+1)$
- GUB disjunctions
- Split disjunctions

= 900

Cutting plane procedure

► Solve $\min a_0^T x$ s.t. $\langle A_k, Y \rangle + a_k^T x + b_k \le 0 \quad l = 1 \dots m$ $l \le x \le u$ $\max \begin{cases} l_j x_i + l_i x_j - l_j l_i \\ u_j x_i + u_i x_j - u_j u_i \end{cases} \le y_{ij} \le \min \begin{cases} l_i x_j + u_j x_i - l_i u_j \\ l_j x_i + u_i x_j - l_j u_i \end{cases}$

- Let (\hat{x}, \hat{Y}) be the solution and $\hat{Z} = \hat{Y} \hat{x}\hat{x}^{T}$.
- If $\hat{Z} = 0$ the solution satisfies $Y xx^T = 0$.
- Otherwise can we find inequalities that cut off (\hat{x}, \hat{Y}) ?

Eigenvalues of $\hat{Z} = \hat{Y} - \hat{x}\hat{x}^{T}$

Eigenvalues of $\hat{Z} = \hat{Y} - \hat{x}\hat{x}^{T}$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ● ●

Cuts from > 0 eigenvalues?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Applying Disjunctive Programming to QCP

Polyhedral Relaxation

Disjunction

 $P = \{x : Ax \ge b\}$

 $\bigvee \left[D^k x \ge d^k \right]$ k=1

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Applying Disjunctive Programming to QCP

Polyhedral Relaxation

Disjunction

 $P = \{x : Ax \ge b\}$

 $\bigvee \left[D^k x \ge d^k \right]$ k=1

Integrality Constraints

- ► $x_j \in \mathbb{Z}$, $j \in N_I$
- Elementary disjunctions

 $(x_j \leq 0) \lor (x_j \geq 1)$

- Split disjunctions
- GUB disjunctions

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Cutting Plane Algorithm (I)

~ ~ ~ ~

Error in secant approximation

Proposition

Let $f(t) = t^2$, and let g(t) = t(a + b) + ab represent the secant approximation of f(t) in the interval [a, b]; then $\max_{t \in [a,b]} (f(t) - g(t)) = \frac{(a-b)^2}{4}$.

Secant approximation is better if the width of [a, b]is smaller

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Finding disjunctions in directions of small width

The width of outer approximation in direction c

$$\eta(c) = \max_{(x,Y)\in OA} c^T x - \min_{(x,Y)\in OA} c^T x$$

We want c such that:

- $\eta(c)$ is as small as possible
- $\triangleright \ c^T \hat{Y} c > (c^T \hat{x})^2$
 - Take c to be in the vector space spanned by the eigenvectors of $\hat{Y} \hat{x}\hat{x}^{T}$ with positive eigenvalue.

UGMIP

Problem can be formulated as an MILP

- ► Add a penalty term to favor solutions with large curvature.
- ► A diversification scheme is used to obtain several disjunctions.
Cutting Plane Algorithm (II)

Cutting Plane Algorithm (II) Version 1

Cutting Plane Algorithm (II)

Version 2

Cutting Plane Algorithm (II)

Version 3

Experimental testing

Solvers

- Convex relaxations IPOPT
- Eigenvalues computations LAPACK
- LP & MILP CPLEX10.1
- **BONMIN** based implementation.

Test bed

- ▶ 129 GlobalLIB instances (\leq 50 vars) reformulated as QCP.
 - $x_1 x_2 x_3 x_4 x_5$
 - $(x_1 + x_2)/x_3 \ge 2x_1$

Experimental setup

1 hour time limit.

► report % gap closed: $\frac{\text{opt(final relaxation) - opt(initial)}}{\text{opt(QCP) - opt(initial)}} \times 100$

・ロ・・ 日・・ エ・・ 日・ ・ つくつ

Gap closed for the 129 globallib instances with non-zero duality gap

	V1	V2	V3
>99.99 $%$ gap closed	16	23	23
98-99.99 % gap closed	1	44	52
75-98 % gap closed	10	23	21
25-75 % gap closed	11	22	20
0-25 % gap closed	91	17	13
Average Gap Closed	24.80%	76.49%	80.86%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Gap closed for the 129 globallib instances with non-zero duality gap

	V1	V2	V3
>99.99 % gap closed	16	23	23
98-99.99 % gap closed	1	44	52
75-98 % gap closed	10	23	21
25-75 % gap closed	11	22	20
0-25 % gap closed	91	17	13
Average Gap Closed	24.80%	76.49%	80.86%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ V3 closes more than 98% gap on 75 instances.

Versions 2 and 3 vs. Version 1

	gap closed				
Instance	V1	V2	V3		
ex2_1_1	0.00%	72.62%	99.92%		
ex2_1_5	0.00%	99.98%	99.99%		
ex2_1_6	0.00%	99.95%	99.97%		
ex2_1_9	0.00%	98.79%	99.73%		
ex3_1_3	0.00%	99.99%	99.99%		
ex3_1_4	0.00%	86.31%	99.57%		
ex5_2_4	0.00%	79.31%	99.92%		
prob05	0.00%	99.78%	99.49%		
st_bpv2	0.00%	99.99%	99.99%		
st_bsj2	0.00%	99.98%	99.96%		
st_bsj4	0.00%	99.86%	99.80%		
st_e02	0.00%	99.88%	99.95%		
st_e07	0.00%	99.97%	99.97%		
st_e08	0.00%	99.81%	99.89%		
st_e24	0.00%	99.81%	99.81%		
st_e26	0.00%	99.96%	99.96%		
st_e33	0.00%	99.94%	99.95%		
st_fp1	0.00%	72.62%	99.92%		
st_fp5	0.00%	99.98%	99.99%		
st_fp6	0.00%	99.92%	99.97%		
st_glmp_kk92	0.00%	99.98%	99.98%		

	gap closed			
Instance	V1	V2	V3	
st_glmp_kky	0.00%	99.80%	99.71%	
st_ht	0.00%	99.81%	99.89%	
st_jcbpaf2	0.00%	99.47%	99.61%	
st_kr	0.00%	99.93%	99.95%	
st_m1	0.00%	99.96%	99.96%	
st_pan1	0.00%	99.72%	99.92%	
st_pan2	0.00%	68.54%	99.91%	
st_ph1	0.00%	99.98%	99.98%	
st_ph11	0.00%	99.46%	98.19%	
st_ph12	0.00%	99.49%	99.62%	
st_ph13	0.00%	99.38%	98.80%	
st_ph14	0.00%	99.85%	99.86%	
st_ph15	0.00%	99.83%	99.81%	
st_ph2	0.00%	99.98%	99.98%	
st_ph20	0.00%	99.98%	99.98%	
st_ph3	0.00%	99.98%	99.98%	
st_phex	0.00%	99.96%	99.96%	
st_qpc-m0	0.00%	99.96%	99.96%	
st_qpc-m1	0.00%	99.99%	99.98%	
st_qpc-m3a	0.00%	98.10%	99.16%	
st_qpc-m3b	0.00%	100.00%	100.00%	
st_qpk1	0.00%	99.98%	99.98%	
st_rv1	0.00%	96.19%	98.44%	
st_z	0.00%	99.96%	99.95%	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ● ○ ○ ○ ○

Version 2 vs. Version 3

	gap closed			
Instance	V1	V2	V3	
ex7_3_1	0.00%	0.00%	85.43%	
ex9_2_3	0.00%	0.00%	47.17%	
ex9_2_7	42.31%	51.47%	86.25%	
st_fp7b	0.00%	22.06%	55.51%	
st_rv3	0.00%	40.40%	72.68%	
ex9_2_1	54.54%	60.04%	92.02%	
st_pan2	0.00%	68.54%	99.91%	
ex2_1_1	0.00%	72.62%	99.92%	
st_fp1	0.00%	72.62%	99.92%	
ex5_2_4	0.00%	79.31%	99.92%	
ex8_1_7	77.43%	77.43%	95.79%	
st_rv7	0.00%	45.43%	62.28%	
st_qpk3	0.00%	33.53%	50.04%	
st_rv8	0.00%	29.90%	45.80%	
st_e20	0.00%	76.38%	90.88%	
ex8_1_8	0.00%	76.49%	90.88%	
ex5_3_2	0.00%	7.27%	21.00%	
ex3_1_4	0.00%	86.31%	99.57%	
st_fp7c	0.00%	44.26%	57.10%	
st_qpk2	0.00%	71.34%	83.33%	
st_rv9	0.00%	20.56%	31.64%	
house	0.00%	86.93%	97.92%	
ex7_3_2	0.00%	59.51%	70.26%	

 On 23 instances it closes at least 10 % more gap.

Linear Complementarity Constraints

 Some GlobalLib problems have linear complementarity constraints

$$x_i x_j = 0$$

 These constraints can be reformulated as disjunctions

$$(x_i=0) \vee (x_j=0)$$

which can be added to our medley of disjunctions for deriving cuts.

Linear Complementarity Constraints

	Without Using LCD		Using	; LCD
Instance	V2	V3	V2	V3
ex9_1_4	0.00%	1.55%	100.00%	99.97%
ex9_2_1	60.04%	92.02%	99.95%	99.95%
ex9_2_2	88.29%	98.06%	100.00%	100.00%
ex9_2_3	0.00%	47.17%	99.99%	99.99%
ex9_2_4	99.87%	99.89%	99.99%	100.00%
ex9_2_6	87.93%	62.00%	80.22%	92.09%
ex9_2_7	51.47%	86.25%	99.97%	99.95%

Linear complementarity constraints can be exploited effectively in a disjunctive framework.

Marginal value of Quadratic Cuts

Marginal value of Quadratic Cuts V2-Dsj

Marginal value of Quadratic Cuts

V3-Dsj

Marginal value of convex Quadratic constraints

	V1	V2	V3	V2-Dsj	V3-Dsj
>99.99 %	16	23	23	1	1
98-99.99 %	1	44	52	29	33
75-98 %	10	23	21	10	10
25-75 %	11	22	20	29	24
0-25 %	91	17	13	60	61
Average Gap Closed	24.80%	76.49%	80.86%	41.54 %	42.90%

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ▶ V2-Dsj closes 35% less gap than V2.
- ▶ V3-Dsj closes 38 % less gap than V3.

Marginal Value of Disjunctive Programming

Marginal Value of Disjunctive Programming

Marginal Value of Disjunctive Programming V2-SA

Marginal Value of Disjunctive Programming

Marginal value of Disjunctive Programming

	V1	V2	V3	V2-SA	V3-SA
>99.99 %	16	23	23	24	27
98-99.99 %	1	44	52	4	6
75-98 %	10	23	21	17	25
25-75 %	11	22	20	26	22
0-25 %	91	17	13	58	49
Average Gap Closed	24.80%	76.49%	80.86%	44.40%	52.56%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- ► V2-SA closes 32% less gap than V2.
- ▶ V3-SA closes 28 % less gap than V3.

Conclusion of experiments

- We are able to almost solve moderate size MIQCP to optimality by using only cutting planes.
- Both SDP constraints and Disjunctive Programming are necessary.
- The approach require lifting in a space of dimension $\mathcal{O}(n^2)$
- What about CPU times?

	V1	V2
Average Gap Closed	24.80%	76.49%
CPU Times (sec.)	198.043	978.140

Conclusion of experiments

- We are able to almost solve moderate size MIQCP to optimality by using only cutting planes.
- Both SDP constraints and Disjunctive Programming are necessary.
- The approach require lifting in a space of dimension $\mathcal{O}(n^2)$
- What about CPU times?

	V1	V2
Average Gap Closed	24.80%	76.49%
CPU Times (sec.)	198.043	978.140

Questions

Can we get similar cuts for more general MINLP? Can we try to obtain better CPU time?

Key problem: can we try to get a final formulation which can be solved in a reasonable computing time (and in a small space).

- ► Adding appropriate number of variables, decompose each separable function into atomic elements of the form: $x_{n+k} = \phi_i(x_{k'}) \text{ or } x_{n+k} = \phi_i(x_{k'}, x_{k''})$
- ► Using bounds on original variables, infer bounds on new variables: *l_i* ≤ *x*_{n+k} ≤ *u_i*.

For each x_{n+k} build an approximation of conv({x_{n+k} = ψ_i(x_{k'}), I_{k'} ≤ x_{k'} ≤ u_{k'}})

- ► Adding appropriate number of variables, decompose each separable function into atomic elements of the form: $x_{n+k} = \phi_i(x_{k'}) \text{ or } x_{n+k} = \phi_i(x_{k'}, x_{k''})$
- ► Using bounds on original variables, infer bounds on new variables: *l_i* ≤ *x*_{n+k} ≤ *u_i*.

For each x_{n+k} build an approximation of conv({x_{n+k} = ψ_i(x_{k'}), I_{k'} ≤ x_{k'} ≤ u_{k'}})

- ► Adding appropriate number of variables, decompose each separable function into atomic elements of the form: $x_{n+k} = \phi_i(x_{k'}) \text{ or } x_{n+k} = \phi_i(x_{k'}, x_{k''})$
- ► Using bounds on original variables, infer bounds on new variables: *l_i* ≤ *x*_{n+k} ≤ *u_i*.
- For each x_{n+k} build an approximation of conv({x_{n+k} = ψ_i(x_{k'}), I_{k'} ≤ x_{k'} ≤ u_{k'}})

- ► Adding appropriate number of variables, decompose each separable function into atomic elements of the form: $x_{n+k} = \phi_i(x_{k'}) \text{ or } x_{n+k} = \phi_i(x_{k'}, x_{k''})$
- ► Using bounds on original variables, infer bounds on new variables: *l_i* ≤ *x*_{n+k} ≤ *u_i*.
- For each x_{n+k} build an approximation of conv({x_{n+k} = ψ_i(x_{k'}), I_{k'} ≤ x_{k'} ≤ u_{k'}})

- Apply disjunction $x_k \leq \hat{x}'_k \lor x_k \geq \hat{x}'_k.$
- Strengthen the convexification: get disjunction

 $\begin{pmatrix} x_k \leq \hat{x}_k \\ A^1 x \leq b^1 \end{pmatrix} \bigvee \begin{pmatrix} x_k \geq \hat{x}_k \\ A^2 x < b^2 \end{pmatrix}$

Procedure for applying disjuncive cuts [Belotti 2009]

- Apply a spatial disjunction x_k ≤ x̂'_k ∨ x_k ≥ x̂'_k ⇒ build sub-problems LP[≤] and LP[≥].
- Apply bound strengthening techniques to LP^{\leq} and LP^{\geq} .

Construct a CGLP and get a cut.

Implemented in Couenne.

Back to our RLT relaxation

$$\begin{array}{l} \min \ a_0^T x \\ s.t. \\ \langle A_k, Y \rangle + a_k^T x + b_k \leq 0 \quad k = 1 \dots m \\ l \leq x \leq u \\ \max \left\{ \begin{array}{l} l_j x_i + l_i x_j - l_j l_i \\ u_j x_i + u_i x_j - u_j u_i \end{array} \right\} \leq y_{ij} \leq \min \left\{ \begin{array}{l} l_i x_j + u_j x_i - l_i u_j \\ l_j x_i + u_i x_j - l_j u_i \end{array} \right\} \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Can we build a relaxation in the x-space which is:

as strong as the RLT-relaxation ?

Back to our RLT relaxation

$$\min a_0^T x$$
s.t.
$$\langle A_k, Y \rangle + a_k^T x + b_k \leq 0 \quad k = 1 \dots m$$

$$I \leq x \leq u$$

$$\max \begin{cases} I_{jx_i} + I_i x_j - I_j I_i \\ u_j x_i + u_i x_j - u_j u_i \\ Y - x x^T \succeq 0 \end{cases} \leq y_{ij} \leq \min \begin{cases} I_i x_j + u_j x_i - I_i u_j \\ I_j x_i + u_i x_j - I_j u_i \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Can we build a relaxation in the x-space which is:

- as strong as the RLT-relaxation ?
- as strong as SDP+RLT relaxation (V1)?

Back to our RLT relaxation

$$\min a_0^T x$$
s.t.
$$\langle A_k, Y \rangle + a_k^T x + b_k \leq 0 \quad k = 1 \dots m$$

$$I \leq x \leq u$$

$$\max \begin{cases} l_j x_i + l_i x_j - l_j l_i \\ u_j x_i + u_i x_j - u_j u_i \\ Y - x x^T \succeq 0 \end{cases} \leq y_{ij} \leq \min \begin{cases} l_i x_j + u_j x_i - l_i u_j \\ l_j x_i + u_i x_j - l_j u_i \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Can we build a relaxation in the x-space which is:

- as strong as the RLT-relaxation ?
- as strong as SDP+RLT relaxation (V1)?
- as strong as V2, V3?

Projection theorem for RLT

Theorem Suppose that $\hat{x} \in \mathbb{R}^N$ satisfies $l_j \leq \hat{x}_j \leq u_j \ \forall j$. \hat{x} feasible for RLT if and only if the following is non-positive.

$$\begin{array}{l} \min \ \eta \\ s.t. \\ -\langle A_k, Y \rangle + \eta \geq a_k^T \hat{x} + b_k \ , \quad \forall k \in M \ ; \\ y_{ij}^-(\hat{x}) \leq Y_{ij} \leq y_{ij}^+(\hat{x}) \ , \quad \forall i, j \in N \ . \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

where

$$y_{ij}^{-}(x) = \max \{u_i x_j + u_j x_i - u_i u_j, l_i x_j + l_j x_i - l_i l_j\} \quad \forall i, j$$

$$y_{ij}^{+}(x) = \min \{l_i x_j + u_j x_i - l_i u_j, u_i x_j + l_j x_i - u_i l_j\} \quad \forall i, j.$$

Projection theorem for RLT

Theorem Suppose that $\hat{x} \in \mathbb{R}^N$ satisfies $l_j \leq \hat{x}_j \leq u_j \ \forall j$. \hat{x} feasible for RLT if and only if the following is non-positive.

$$\begin{array}{l} \min \ \eta \\ s.t. \\ -\langle A_k, Y \rangle + \eta \geq a_k^T \hat{x} + b_k \ , \quad \forall k \in M \ ; \\ y_{ij}^-(\hat{x}) \leq Y_{ij} \leq y_{ij}^+(\hat{x}) \ , \quad \forall i, j \in N \ . \end{array}$$

If **DProjLP** has positive objective value and (μ, B, C) are optimal dual multipliers then

$$\sum_{i,j} \left(B_{ij} y_{ij}^{-}(x) - C_{ij} y_{ij}^{+}(x) \right) + \sum_{k \in \mathcal{M}} \mu_k \left(a_k^T x + b_k \right) \le 0$$
 (2)

is a valid inequality that cuts off \hat{x} .

Projecting SDP+RLT relaxation

Theorem Suppose that $\hat{x} \in \mathbb{R}^N$ satisfies $l_j \leq \hat{x}_j \leq u_j \ \forall j$. \hat{x} feasible for RLT if and only if the following is non-positive.

$$\begin{array}{l} \min \ \eta \\ s.t. \\ -\langle A_k, Y \rangle + \eta \geq a_k^T \hat{x} + b_k, \quad \forall k \in M ; \\ Y + \eta I - \hat{x} \hat{x}^T \succcurlyeq 0 ; \\ y_{ij}^-(\hat{x}) \leq Y_{ij} \leq y_{ij}^+(\hat{x}), \quad \forall i, j \in N . \end{array}$$

If **DProjSDP** has positive objective value and (μ, B, C, D) are optimal dual multipliers then

$$x^{T}Bx + \sum_{i,j} \left(C_{ij}y_{ij}^{-}(x) - D_{ij}y_{ij}^{+}(x) \right) + \sum_{k \in M} u_{k} \left(a_{k}^{T}x + b_{k} \right) \leq 0$$
(3)

is a valid inequality that cuts off \hat{x} .

Projecting SDP+RLT relaxation

Theorem Suppose that $\hat{x} \in \mathbb{R}^N$ satisfies $l_j \leq \hat{x}_j \leq u_j \ \forall j$. \hat{x} feasible for RLT if and only if the following is non-positive.

$$\begin{array}{l} \min \ \eta \\ s.t. \\ -\langle A_k, Y \rangle + \eta \geq a_k^T \hat{x} + b_k, \quad \forall k \in M ; \\ Y + \eta I - \hat{x} \hat{x}^T \succcurlyeq 0 ; \\ y_{ij}^-(\hat{x}) \leq Y_{ij} \leq y_{ij}^+(\hat{x}), \quad \forall i, j \in N . \end{array}$$

If **DProjSDP** has positive objective value and (μ, B, C, D) are optimal dual multipliers then

$$x^{T}Bx + \sum_{i,j} \left(C_{ij}y_{ij}^{-}(x) - D_{ij}y_{ij}^{+}(x) \right) + \sum_{k \in M} u_{k} \left(a_{k}^{T}x + b_{k} \right) \leq 0$$
(3)

is a valid inequality that cuts off \hat{x} .

Low dimensional projections: Eigen Reformulation

Reformulate $x^T A x + a^T x + b \le 0$ using spectral decomposition of $A = \sum_k \lambda_k c_k c_k^T$:

$$\sum_{\substack{\lambda_k > 0}} \lambda_k \left(c_k^T x \right)^2 + a^T x + b + \sum_{\substack{\lambda_k < 0}} \lambda_k s_k \le 0,$$

$$y_k = c_k^T x , \quad \forall \ k : \ \lambda_k < 0,$$

$$s_k = y_k^2 , \quad \forall \ k : \ \lambda_k < 0,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Identifies directions of convexity.

Low dimensional projections: Eigen Reformulation

Reformulate $x^T A x + a^T x + b \le 0$ using spectral decomposition of $A = \sum_k \lambda_k c_k c_k^T$:

$$\sum_{\lambda_k > 0} \lambda_k \left(c_k^T x \right)^2 + a^T x + b + \sum_{\lambda_k < 0} \lambda_k s_k \le 0,$$

$$y_k = c_k^T x , \quad \forall \ k : \ \lambda_k < 0,$$

$$s_k = y_k^2 , \quad \forall \ k : \ \lambda_k < 0,$$

- Identifies directions of convexity.
- Identifies directions of maximal non-convexities.
Low dimensional projections: Eigen Reformulation

Reformulate $x^T A x + a^T x + b \le 0$ using spectral decomposition of $A = \sum_k \lambda_k c_k c_k^T$:

$$\sum_{\lambda_{k}>0} \lambda_{k} \left(c_{k}^{T} x\right)^{2} + a^{T} x + b + \sum_{\lambda_{k}<0} \lambda_{k} s_{k} \leq y_{k} = c_{k}^{T} x, \quad \forall \ k : \ \lambda_{k} < 0,$$
$$s_{k} \geq y_{k}^{2}, \quad \forall \ k : \ \lambda_{k} < 0,$$
$$L_{k} \leq y_{k} \leq U_{k}$$
$$s_{k} - (L_{k} + U_{k}) y_{k} + L_{k} U_{k} \geq 0.$$

0.

- Identifies directions of convexity.
- Identifies directions of maximal non-convexities.
- Build convex envelopes in these direction.

Low dimensional projections: Eigen Reformulation

Reformulate $x^T A x + a^T x + b \le 0$ using spectral decomposition of $A = \sum_k \lambda_k c_k c_k^T$:

$$\sum_{\lambda_k>0} \lambda_k \left(c_k^T x\right)^2 + a^T x + b + \sum_{\lambda_k<0} \lambda_k s_k \le 0,$$

$$y_k = c_k^T x , \quad \forall \ k : \ \lambda_k < 0,$$

$$s_k \ge y_k^2 , \quad \forall \ k : \ \lambda_k < 0,$$

$$L_k \le y_k \le U_k$$

$$s_k - (L_k + U_k) y_k + L_k U_k \ge 0.$$

- Identifies directions of convexity.
- Identifies directions of maximal non-convexities.
- Build convex envelopes in these direction.
- Do that for all constraints and add to formulation: eigen reformulation.

Low dimensional projections: Polars.

Eigen-reformulation uses projections in d-1 for building convex envelopes.

Polarity Cuts

Do a 2-d projection and use polarity to generate cuts

- Compute extreme points in 2D space spanned by 2 ev
- Lift points to non-linear space.
- Compute cuts using polarity.

Computational results: projected formulations

ProjLP Eigen-value reformulation + Projected RLT.

ProjLP+ adds 2-dim polar cuts

For both we can separate additional disjunctive cuts by using spatial disjunctions:

$$\left(x_k \leq \frac{l_k + u_k}{2}\right) \bigvee \left(x_k \geq \frac{l_k + u_k}{2}\right)$$

Comparisons to gap closed by RLT relaxation.

			disjund	tive cuts		
	ProjLP	ProjLP+	ProjLP	ProjLP+	V1	V2
>99.99	19	23	19	23	16	23
98-99.99	5	21	22	31	1	44
75-98	17	18	35	33	10	23
25-75	26	32	34	23	11	22
0-25	57	30	14	14	87	13
0	4	4	4	4	0	0
Average Gap Closed	40.92%	60.48 %	70.65%	76.06%	25.59%	79.34%
Average Time taken (sec)	0.893	0.814	4.616	19.462	198.043	978.140

			disjund	ctive cuts		
	ProjLP	ProjLP+	ProjLP	ProjLP+	V1	V2
>99.99	19	23	19	23	16	23
98-99.99	5	21	22	31	1	44
75-98	17	18	35	33	10	23
25-75	26	32	34	23	11	22
0-25	57	30	14	14	87	13
0	4	4	4	4	0	0
Average Gap Closed	40.92%	60.48 %	70.65%	76.06%	25.59%	79.34%
Average Time taken (sec)	0.893	0.814	4.616	19.462	198.043	978.140

			disjund	tive cuts		
	ProjLP	ProjLP+	ProjLP	ProjLP+	V1	V2
>99.99	19	23	19	23	16	23
98-99.99	5	21	22	31	1	44
75-98	17	18	35	33	10	23
25-75	26	32	34	23	11	22
0-25	57	30	14	14	87	13
0	4	4	4	4	0	0
Average Gap Closed	40.92%	60.48 %	70.65%	76.06%	25.59%	79.34%
Average Time taken (sec)	0.893	0.814	4.616	19.462	198.043	978.140

Projecting SDP+RLT relaxation: box-QPs

Theorem

Suppose that $\hat{x} \in \mathbb{R}^N$ satisfies $l_j \leq \hat{x}_j \leq u_j \ \forall j$. \hat{x} feasible for RLT if and only if the following is non-positive.

$$\begin{array}{l} \min \ \eta \\ s.t. \\ -\langle A, Y \rangle + \eta \geq a^T \hat{x} + b; \\ Y + \eta I - \hat{x} \hat{x}^T \succcurlyeq 0; \\ y_{ij}^-(\hat{x}) \leq Y_{ij} \leq y_{ij}^+(\hat{x}), \quad \forall i, j \in N . \end{array}$$

If **DProjSDP** has positive objective value and (μ, B, C, D) are optimal dual multipliers then

$$x^{T}Bx + \sum_{i,j} \left(C_{ij}y_{ij}^{-}(x) - D_{ij}y_{ij}^{+}(x) \right) + \sum_{k \in M} u_{k} \left(a_{k}^{T}x + b_{k} \right) \leq 0$$
(4)

is a valid inequality that cuts off \hat{x} .

Projected Sub-gradient heuristic

Theorem

DProjSDP is equivalent to $\max\{F(B) : B \succeq 0\}$, where

$$F(B) = \sum_{i,j} (A_{ij} - B_{ij})^{+} \left(y_{ij}^{-}(\hat{x}) - \hat{x}_{i} \hat{x}_{j} \right) \\ + \sum_{i,j} (A_{ij} - B_{ij})^{-} \left(y_{ij}^{+}(\hat{x}) - \hat{x}_{i} \hat{x}_{j} \right) \\ + (\hat{x}^{T} A \hat{x}) + \left(a^{T} \hat{x} + b \right) .$$

- 1. initialize \hat{B} as the projection of A onto the SDP cone.
- 2. Compute a sub-gradient of F(B) at \hat{B} .
- 3. Perform line search along sub-gradient direction.
- 4. Update \hat{B} and go to 2.

	% Gap	Closed	Time Taken (sec)		
Instance	ProjLP-SDP	ProjLP	ProjLP-SDP	ProjLP	
spar20*	94.60 - 99.97	91.54 - 99.91	2.49 - 408.36	0.84 - 2.46	
spar30*	89.87 - 99.99	51.41 - 98.79	12.33 - 565.88	1.74 - 14.38	
spar40*	87.85 - 99.60	21.78 - 89.63	35.77 - 134.8	4.16 - 65.28	
spar50*	87.88 - 97.53	11.38 - 50.15	50.22 - 180.96	8.76 - 99.13	
spar60*	85.78 - 90.99	0.00 - 0.00	121.83 - 226.11	111.07 - 127.47	
spar70*	89.78 - 99.36	0.00 - 53.67	191.12 - 693.28	22.02 - 202.98	
spar80*	88.13 - 97.49	2.94 - 56.23	257.62 - 892.96	34.77 - 67.66	
spar90*	89.44 - 96.60	5.73 - 50.13	408.73 - 991.04	46.98 - 95.66	
spar100*	92.15 - 96.46	8.17 - 51.79	538.03 - 1509.96	75.49 - 112.69	
Average	95.19%	50.01%	280.50	37.89	

Comparison with black-box SDP solvers

			Time to solve				
	% Di	uality Gap (Closed	Т	last relaxation (sec)		
Instance	SDPLR	SDPA	W3	SDPLR	SDPA	W3	W3
spar20*	99 - 100	99 - 100	94 - 100	0.97 - 56	2 - 3.39	2 - 408	0.05 - 0.32
spar30*	98 - 100	98 - 100	90 - 100	3.57 - 243	16 - 29	12 - 565	0.06 - 0.89
spar40*	97 - 100	97 - 100	88 - 99.6	10 - 515	105 - 157.83	35 - 134	0.16 - 1.18
spar50*	96 - 100	96 - 100	88 - 98	41 - 926	438 - 589	50 - 180	0.13 - 0.86
spar60*	99 - 100	99 - 100	85 - 90	88 - 532	1150 - 1408	121 - 226	0.53 - 1.55
spar70*	98 - 100	98 - 100	90 - 99	133 - 3600	2769 - 3721	191 - 693	0.48 - 1.1
spar80*	98 - 100	98 - 100	88 - 98	965 - 5413	6618 - 8285	257 - 892	0.56 - 2.02
spar90*	98 - 100	98 - 100	89 - 97	2403 - 7049	12838 - 17048	408 - 991	0.77 - 1.51
spar100*	98 - 99	98 - 99	92 - 97	5355 - 10295	23509 - 28604.	538 - 1509	0.82 - 2
Average	99.40%	99.40%	95.19%	1741.20	5247.04	280.50	0.67

Table: Summary Results: Comparison with SDP Solvers

			No. Constraints			1				
	No. Variables		Line	ear	Conve	x (Non-Linear)	Computing	g Time (sec)	% Duali	ty Gap Closed
Instances	SDP	Proj	SDP	Proj	SDP	Proj	SDP	Proj	SDP	Proj
						(Quad)				
spar100-025-1	5151	203	20201	156	1	119	5719.42	1.14	98.93%	92.36%
spar100-025-2	5151	201	20201	151	1	95	10185.65	1.52	99.09%	92.16%
spar100-025-3	5151	201	20201	150	1	114	5407.09	1.24	99.33%	93.26%
spar100-050-1	5151	201	20201	150	1	98	10139.57	1.07	98.17%	93.62%
spar100-050-2	5151	201	20201	150	1	113	5355.20	1.26	98.57%	94.13%
spar100-050-3	5151	201	20201	150	1	97	7281.26	0.82	99.39%	95.81%
spar100-075-1	5151	201	20201	150	1	131	9660.79	2.00	99.19%	95.84%
spar100-075-2	5151	201	20201	150	1	109	6576.10	1.23	99.18%	96.47%
spar100-075-3	5151	199	20201	147	1	90	10295.88	0.87	99.19%	_ 96.06%

Part III

Algotithms for Convex MINLPs

Convex MINLP

We now consider:

$$\begin{array}{ll} \min & f(x) \\ s.t. & g_j(x) \leq 0 \quad \forall j \in J, \\ & x \in X, \quad x_I \in \mathbb{Z}^{|I|}, \end{array} \tag{MINLP}$$

in the case when f and g are convex. Given bounds $(I_I, u_I) = \{(\ell_i, u_i) \mid \forall i \in I\}$, the *NLP relaxation* of (MINLP) is

$$\begin{array}{ll} \min & f(x) \\ s.t. & g_j(x) \leq 0 \quad \forall j \in J, \\ & x \in X; \quad I_l \leq x_l \leq u_l. \end{array}$$

and can be solved to optimality by a standard NLP solver.

NLP Branch-and-Bound

0. Initialize:

 $\mathcal{L} \leftarrow \{(L_I, U_I)\}$. $z_U = \infty$. $x^* \leftarrow \mathsf{NONE}$.

1. Terminate?

Is $\mathcal{L} = \emptyset$? If so, the solution x^* is optimal.

2. Select.

Choose and delete a problem $N^i = (I_I^i, u_I^i)$ from \mathcal{L} .

3. Evaluate.

Solve NLPR(I_I^i , u_I^i). If it is infeasible, go to step 1, else let \hat{x}^i be its solution.

4. Prune.

If $f(\hat{x}^i) \ge z_U$, go to step 1. If \hat{x}^i is fractional, go to step 5, else let $z_U \leftarrow f(\hat{x}^i)$, $x^* \leftarrow \hat{x}^i$, and delete from \mathcal{L} all problems with $z_L^j \ge z_U$. Go to step 1.

5. Divide.

Divide the feasible region of N^i into a number of smaller feasible subregions, creating nodes $N^{i1}, N^{i2}, \ldots, N^{ik}$. For each $j = 1, 2, \ldots, k$, let $z_L^{ij} \leftarrow f(\hat{x}^i)$ and add the problem N^{ij} to \mathcal{L} . Go to 1.

Outer Approximation [Duran, Grossmann 1986]

 $\min f(x)$

s.t.

 $g(x) \leq 0$,

 $x \in X, x_i \in \mathbb{Z} \ \forall i \in \mathcal{I}.$

Idea: linearize constraints at different points and build an equivalent MILP.

$$\begin{array}{ll} \min & \eta \\ \text{s.t.} & \eta \geq f(\overline{x}) + \nabla f(\overline{x})^T (x - \overline{x}) \\ & g_j(\overline{x}) + \nabla g_j(\overline{x})^T (x - \overline{x}) \leq 0 \quad j \in J, \\ & x \in X, \quad x_i \in \mathbb{Z}, \, \forall i \in \mathcal{I}. \end{array}$$

Let $F := \{x : x \in X : g_i(x) \le 0\}$ $(g_i : \mathbb{R}^n \to \mathbb{R} \text{ convex. })$ Outer approximation constraint in \bar{x} :

$$abla g_j(ar{x})^T (x - ar{x}) + g_j(ar{x}) \leq g_j(x) \leq 0.$$

(valid for F by convexity of g_j and definition of F.)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Let $F := \{x : x \in X : g_i(x) \le 0\}$ $(g_i : \mathbb{R}^n \to \mathbb{R} \text{ convex. })$ Outer approximation constraint in \bar{x} :

$$\nabla g_j(\bar{x})^T (x - \bar{x}) + g_j(\bar{x}) \leq g_j(x) \leq 0.$$

(valid for F by convexity of g_j and definition of F.)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Let $F := \{x : x \in X : g_i(x) \le 0\}$ $(g_i : \mathbb{R}^n \to \mathbb{R} \text{ convex. })$ Outer approximation constraint in \bar{x} :

$$\nabla g_j(\bar{x})^T (x - \bar{x}) + g_j(\bar{x}) \leq g_j(x) \leq 0.$$

(valid for F by convexity of g_j and definition of F.)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Let $F := \{x : x \in X : g_i(x) \le 0\}$ $(g_i : \mathbb{R}^n \to \mathbb{R} \text{ convex. })$ Outer approximation constraint in \bar{x} :

$$abla g_j(ar{x})^T (x - ar{x}) + g_j(ar{x}) \leq g_j(x) \leq 0.$$

(valid for F by convexity of g_j and definition of F.)

- ► If g(x̄) = 0 tangent to feasible region.
- ► If g(x̄) < 0 non-tight constraint.</p>
- ► If g(x̄) > 0 non-tight constraint cutting off x̄.

Let $F := \{x : x \in X : g_i(x) \le 0\}$ $(g_i : \mathbb{R}^n \to \mathbb{R} \text{ convex. })$ Outer approximation constraint in \bar{x} :

$$abla g_j(ar{x})^T (x - ar{x}) + g_j(ar{x}) \leq g_j(x) \leq 0.$$

(valid for F by convexity of g_j and definition of F.)

- ► If g(x̄) = 0 tangent to feasible region.
- ► If g(x̄) < 0 non-tight constraint.</p>
- ► If g(x̄) > 0 non-tight constraint cutting off x̄.

Let $F := \{x : x \in X : g_i(x) \le 0\}$ $(g_i : \mathbb{R}^n \to \mathbb{R} \text{ convex. })$ Outer approximation constraint in \bar{x} :

$$abla g_j(\bar{x})^T (x-\bar{x}) + g_j(\bar{x}) \leq g_j(x) \leq 0.$$

(valid for F by convexity of g_j and definition of F.)

- ► If g(x̄) = 0 tangent to feasible region.
- ► If g(x̄) < 0 non-tight constraint.</p>
- ► If g(x̄) > 0 non-tight constraint cutting off x̄.

Subproblems

Given \hat{x}_I fixed NLP subproblem is:

$$\begin{array}{ll} \min f(x) \\ s.t. \quad g_j(x) \leq 0, \ \forall j \in J \\ x \in X; \quad x_i = \hat{x}_i, \ \forall i \in I. \end{array} \tag{NLP}(\hat{x}_I))$$

If $\hat{x}_i \in \mathbb{Z}$ for all $i \in I$, and feasible: gives an upper bound. *fixed NLP feasibility subproblem* is:

$$\min \sum_{j=1}^{m} w_j g_j(x)^+$$
s.t. $x \in X, \quad x_I = \hat{x}_I,$ (NLPF(\hat{x}_I))

where $g_j(x)^+ = \max\{0, g_j(x)\}$ If NLP(\hat{x}_l) is infeasible, NLP software will typically solve NLPF(\hat{x}_l).

Equivalent MILP formulation of convex MINLP

For each integer assignment $\hat{x}_I \in K = \operatorname{Proj}_{x_I}(X) \cap \mathbb{Z}^{|I|}$, let \overline{k} be:

- An optimal solution to $NLP(\hat{x}_I)$ if it is feasible.
- An optimal solution to $NLPF(\hat{x}_I)$ otherwise.

Theorem (Duran Grossmann 86)

If $X \neq \emptyset$, f and g are convex, continuously differentiable, and a constraint qualification holds for each $\overline{x} \in K$ then

$$\begin{array}{ll} \min & \eta \\ \text{s.t.} & \eta \geq f(\overline{x}) + \nabla f(\overline{x})^T (x - \overline{x}) & \hat{x}_I \in \mathcal{K}, \\ & g_j(\overline{x}) + \nabla g_j(\overline{x})^T (x - \overline{x}) \leq 0 \quad j \in J, \hat{x}_I \in \mathcal{K}, \\ & x \in X, \quad x_I \in \mathbb{Z}^I. \end{array}$$

has the same optimal value as MINLP.

OA-based reduced master problem Let $\mathcal{K} \subseteq \mathcal{K}$

$$\begin{array}{ll} \min & \eta \\ \text{s.t.} & \eta \geq f(\bar{x}) + \nabla f(\bar{x})^T (x - \bar{x}) & \hat{x} \in \mathcal{K}, \\ & g_j(\bar{x}) + \nabla g_j(\bar{x})^T (x - \bar{x}) \leq 0 \quad j \in J, \hat{x} \in \mathcal{K}, \\ & x \in X, \quad x_i \in \mathbb{Z}, \, \forall i \in \mathcal{I}. \end{array}$$

Reminder

Where for $\hat{x} \in \mathcal{K}$, \overline{x} is the solution to NLP (\hat{x}_I) NLPF (\hat{x}_I) :

$$\begin{array}{ll} \min f(x) & \\ s.t. \quad g_j(x) \leq 0, \ \forall j \in J \\ & x \in X; \quad x_j = \hat{x}_j, \ \forall i \in I. \end{array} & \\ \begin{array}{ll} \min & \sum_{j=1}^m w_j g_j(x)^+ \\ & \text{s.t. } x \in X, \quad x_I = \hat{x}_I, \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Outer-Approximation Decomposition Algorithm

0. Initialize.

 $z_U \leftarrow +\infty$. $z_L \leftarrow -\infty$. Let \overline{x}^0 be the optimal solution of continuous relaxation.

 $\mathcal{K} \leftarrow \{\overline{x}^0\}$. Choose a convergence tolerance ϵ .

1. Terminate?

Is $z_U - z_L < \epsilon$ or (MP(\mathcal{K})) infeasible? If so z_U is ϵ -optimal.

2. Lower Bound

Let $z_{MP(\mathcal{K})}$ be the optimal value of MP(\mathcal{K}) and $(\hat{\eta}, \hat{x})$ its optimal solution.

 $z_L \leftarrow z_{MP(\mathcal{K})}$

3. NLP Solve

Solve $(NLP(\hat{x}_I))$.

Let \overline{x}^i be the optimal (or minimally infeasible) solution.

4. Upper Bound?

Is \overline{x}^i feasible for (MINLP)? If so, $z_U \leftarrow \min(z_U, f(\overline{x}^i))$.

5. Refine

 $\mathcal{K} \leftarrow \mathcal{K} \cup \{\overline{x}^i\} \text{ and } i \leftarrow i+1.$ Go to 1.

Remarks on OA deconposition

- Solving many MIPs can be a high cost.
- One does not need to solve MP(K) to optimiality, a solution e better than current incumbent is enough.
- It is possible to design a similar algorithm without solving NLPs.

Define a slightly different master problem:

$$\begin{array}{ll} \min & \eta \\ \text{s.t.} & \eta \geq f(\bar{x}) + \nabla f(\bar{x})^T (x - \bar{x}) & \bar{x} \in \mathcal{K} \\ & g_j(\bar{x}) + \nabla g_j(\bar{x})^T (x - \bar{x}) \leq 0 \quad j \in J(\mathcal{K}) & \bar{x} \in \mathcal{K} \\ & x \in X, \quad x_I \in \mathbb{Z}^I \end{array}$$

where $J(\mathcal{K}) \stackrel{\text{def}}{=} \{j \in \arg \max_{j \in J} g_j(\bar{x})\}$

ECP Algorithm [Westerlund and Lunqvist 98]

0. Initialize.

 $z_U \leftarrow +\infty$. $z_L \leftarrow -\infty$. Choose convergence tolerances ϵ , κ . $\mathcal{K} \leftarrow \emptyset$.

1. Terminate?

Is $z_U - z_L < \epsilon$ or is (RM-ECP(\mathcal{K})) infeasible? If so z_U is ϵ -optimal, with an associated solution that is κ -feasible.

2. Lower Bound

Let $z_{\mathsf{RM-ECP}(\mathcal{K})}$ be the optimal value of $(\mathsf{RM-ECP}(\mathcal{K}))$ and $(\overline{\eta}^i, \overline{x}^i)$ be its optimal solution.

 $z_L \leftarrow z_{\text{RM-ECP}(\mathcal{K})}$

- 3. Upper bound and refine Is $g_j(\bar{x}^i) < \kappa \ \forall j \in J$? If so, $z_U \leftarrow \min(z_U, f(\bar{x}^i))$. If not, $\mathcal{K} \leftarrow \mathcal{K} \cup \{\bar{x}^i\}, t \in \arg\max_j g_j(\bar{x}^i)$, and $J(\mathcal{K}) \leftarrow J(\mathcal{K}) \cup \{t\}$
 - $i \leftarrow i + 1$. Go to 1.

LP/NLP Based BB [Quesada, Grossmann 1993]

0. Initialize.

 $\mathcal{L} \leftarrow \{(L_I, U_I)\}. \ z_U \leftarrow +\infty. \ x^* \leftarrow \mathsf{NONE}.$ Let \overline{x} be the optimal solution of continuous relaxation. $\mathcal{K} \leftarrow \{\overline{x}\}.$

- 1. **Terminate?** Is $\mathcal{L} = \emptyset$? If so, the solution x^* is optimal.
- 2. **Select.** Choose and delete a problem $N^i = (l_I^i, u_I^i)$ from \mathcal{L} .
- 3. **Evaluate.** Solve LP(\mathcal{K} , l_I^i , u_I^i). If infeasible, go to 1, else let $(\hat{\eta}^i, \hat{x}^i)$ be its solution.
- 4. **Prune.** If $\hat{\eta}^i \ge z_U$, go to 1.
- 5. **NLP Solve?** Is \hat{x}_{l}^{i} integer? If so, solve (NLP(\hat{x}_{l}^{i})), otherwise go to 8. Let \overline{x}^{i} be the optimal (or minimally infeasible) solution.
- 6. **Upper bound?** Is \overline{x}^i feasible for (MINLP) and $f(\overline{x}^i) < z_U$? If so, $x^* \leftarrow \overline{x}^i$, $z_U \leftarrow f(\overline{x}^i)$.
- 7. **Refine.** Let $\mathcal{K} \leftarrow \mathcal{K} \cup (\overline{x})$. Go to 3.
- 8. **Divide.** Divide the feasible region of N^i into a number of smaller feasible subregions, creating nodes $N^{i1}, N^{i2}, \ldots, N^{ik}$. For each $j = 1, 2, \ldots, k$, let $z_L^{ij} \leftarrow z_{\text{MPR}(\mathcal{K}, l'_i, u'_i)}$ and add the problem N^{ij} to \mathcal{L} . Go to step 1.

Improvements to cut generation in LP/NLP based BB

- Add more cuts with three rules of thumb [Linderoth]
 - 1. Generate cuts early in the procedure.
 - 2. Measure effect in term of bound improvement.
 - 3. Stop when bound stalls.
- Three type of cuts proposed [Abishek et. al. 2010]:
 - 1. ECP: generate cuts at current fractional LP optimum \hat{x}_{l} .
 - 2. *FixFRAC*: Solve NLP(\hat{x}_I).
 - 3. NLP: Solve NLPR (I_I^i, u_I^i) [also B. et. al. 2008].
- Also since relaxation is linear can use all cuts from MILP.
- ▶ Be careful not to overwhelm LP solver with too many cuts.

Comparison of state of the art solvers

Formulation of hulls of unions of convex sets

Let $C = \{g_j(x) \le 0 \forall j = 1, ..., m, 0 \le x_i \le 1 \forall i \in I\}$ be a bounded convex set with g_j , j = 1, ..., m convex functions bounded in C. For $i \in I$ and k = 0, 1 define $C_i k = \{x \in C : x_i = k\}$

Proposition ([Stubbs, Merhotra 1999])

$$conv\left(C_{0}^{i}\cup C_{1}^{i}
ight)=proj_{x}\left(\mathcal{M}_{i}\left(C
ight)
ight)$$

with

$$\mathcal{M}_{i}\left(\mathcal{C}
ight)=\left\{egin{array}{l} x=\lambda_{0}y+\lambda_{1}z\ 1=\lambda_{0}+\lambda_{1}\ y\in C_{0}^{i},z\in C_{1}^{i}\ \lambda_{0},\,\lambda_{1}\geq 0 \end{array}
ight\}$$

(By definition of convex hull)

Perspective function

For a given function $g_i(x) : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$, let

$$ilde{g}_i(x,z) \equiv egin{cases} zg_i(x/z) & ext{if } z > 0, \ \lim_{\lambda \to 0+} \lambda g(ilde{x} - x + x/\lambda) & ext{if } z = 0 \end{cases}$$

- If g_i is a convex function g̃_i is also convex.
- \tilde{g}_i is positively homogeneous: $\lambda \tilde{g}_i(x) = \tilde{g}_i(\lambda x) \ \forall \lambda 0.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Perspective of x^2

Convex formulation of the convex-hull

Let
$$\tilde{\mathcal{C}} = \{ \tilde{g}_j(x,\lambda) \leq 0, \, \forall j = 1, \dots, m, \, 0 \leq x_i \leq \lambda \, \, \forall i \in I \}.$$

Theorem ([Stubbs, Merhotra 1999, Ceria Soares 1999^{1})

$$conv\left(C_{0}^{i}\cup C_{1}^{i}
ight)=proj_{x}\left(ilde{\mathcal{M}}_{i}\left(extsf{C}
ight)
ight)$$

with

$$ilde{\mathcal{M}}_i\left(\mathcal{C}
ight) = \left\{egin{array}{c} x = ilde{y} + ilde{z} \ 1 = \lambda_0 + \lambda_1 \ (y,\lambda_0) \in ilde{\mathcal{C}}, (z,\lambda_1) \in ilde{\mathcal{C}} \ y_i = 0, \, z_i = \lambda_1 \ \lambda_0, \, \lambda_1 \geq 0 \end{array}
ight\}$$

¹More general statement for unbounded set $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Separation problem in non-linear case

Let $\hat{x} \in \mathbb{R}^n$ be a point to cut define the problem:

$$\min ||x - \hat{x}||$$

$$x = \tilde{y} + \tilde{z}$$

$$1 = \lambda_0 + \lambda_1$$

$$(y, \lambda_0) \in \tilde{C}, (z, \lambda_1) \in \tilde{C}$$

$$y_i = 0, z_i = \lambda_1$$

$$\lambda_0, \lambda_1 \ge 0$$
(5)

Theorem

Let $\hat{x} \notin conv(C_0^i \cup C_1^i)$ and \overline{x} be an optimal solution to 5. For any subgradient ξ of $||x - \hat{x}||$ at \overline{x} , $\xi^T(x - \overline{x}) \ge 0$ is a valid linear inequality that cuts off \hat{x} .

(If dual Lagrange multipliers ξ can be easily deduced from them).

Application to problems with indicator variables

We consider the simple mixed integer nonlinear set:

 $C = \{(x, z) \in \mathbb{R} \times \{0, 1\} : x = 0, \text{ if } z = 0, g(x) \le 0, l \le x \le u \text{ if } z = 1\}$

By direct application of disjunctive programming:

$$\operatorname{conv}(C) = \{(x, z) \in \mathbb{R} \times [0, 1] : zl \le x \le zu, \tilde{g}(x, z) \le 0\}$$

This reformulation of C is called perspective reformulation and has been shown to be very effective [Frangioni, Gentile 2006 2007 2010, Günluk Linderoth 2008 2009]

m	n	# Sol.	CPU	# Sol.	CPU
20	100	7	12263	10	3.8
20	200	0	-	10	9.6

Table: Running times on Uncapacitated Quadratic Facility Location

Application to problems with indicator variables

We consider the simple mixed integer nonlinear set:

 $C = \{(x, z) \in \mathbb{R} \times \{0, 1\} : x = 0, \text{ if } z = 0, g(x) \le 0, l \le x \le u \text{ if } z = 1\}$

By direct application of disjunctive programming:

$$\operatorname{conv}(C) = \{(x, z) \in \mathbb{R} \times [0, 1] : zl \le x \le zu, \tilde{g}(x, z) \le 0\}$$

This reformulation of *C* is called perspective reformulation and has been shown to be very effective [Frangioni, Gentile 2006 2007 2010, Günluk Linderoth 2008 2009]

m	n	# Sol.	CPU	# Sol.	CPU
20	100	7	12263	10	3.8
20	200	0	-	10	9.6

Table: Running times on Uncapacitated Quadratic Facility Location

Commercial : Hassan Hijazi talk on Wednesday, as a soc
Second Order cone

Reminder

A cone \mathcal{K} is a subset of \mathbb{R}^m such that $x \in \mathcal{K}$ implies $\lambda x \in \mathcal{K}$ for all $\lambda \geq 0$.

Definition

The Lorentz cone is $Q^{m+1} = \{(t, t_0) \in R^m \times R : ||t|| \le t_0\}.$ We define the partial order:

$$x \preceq y \Leftrightarrow y - x \in \mathcal{Q}^{m+1}$$

Second Order Cone Constraint

$$(Ax - b, u) \leq 0$$

which is equivalent to

$$||Ax - b|| \le u$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Mixed Integer Second Order Cone Programming

$$\begin{aligned} \min c^T x + h^T y \\ ||A_i x + G_i y - b_i|| &\leq (u_i^T x + v_i^T y - w_i) \quad i = 1, \dots, k \\ x \in \mathbb{Z}^n, y \in \mathbb{R}^p \end{aligned}$$

Families of cuts for MISOCP

- Generalization of Chvátal-Gomory [Cezik and Yiengar 2005].
- Generalization of MIR cuts [Atamtürk and Narayan 2010].

Lift-and-project cuts [Drewes 2009].

Mixed Integer Second Order Cone Programming

$$\begin{aligned} \min c^T x + h^T y \\ ||A_i x + G_i y - b_i|| &\leq (u_i^T x + v_i^T y - w_i) \quad i = 1, \dots, k \\ x \in \mathbb{Z}^n, y \in \mathbb{R}^p \end{aligned}$$

Families of cuts for MISOCP

- Generalization of Chvátal-Gomory [Cezik and Yiengar 2005].
- Generalization of MIR cuts [Atamtürk and Narayan 2010].

Lift-and-project cuts [Drewes 2009].

Commercial: Sarah Drewes talk.