Samuel Fiorini

Université libre de Bruxelles (ULB, Brussels)

ISCO 2016 Summer School
Day 1 (afternoon)



The PSD Cone

Definition (PSD matrix)
A k x k matrix A is positive semidefinite (or PSD) if
Ve e RF 1 2TAz >0
We consider only symmetric matrices (A4 is PSD <= A+ AT is PSD)

o SF := space of all k x k (real) symmetric matrices

@ Frobenius inner product: for A, B € S¥

(A,B):=>_ AyBi; = Tr(ABT) = Tr(AB)

,J

(A, zaT) = ZA,-jwiwj =T Az

i7j



Definition (PSD cone)
Sk :={A eSk| Ais PSD}
For A, B € S*, we write A = B whenever A — B € Sﬁ. So

A =0 simply means: “Ais PSD”

Theorem
The following are equivalent for A € SF:
(i) Aesk
(ii) all the eigenvalues of A are nonnegative
(iii) A= BBT for some B € RF*¢
(iv) A is a sum of matrices of the form zxT for x € RF
(v) (4,C) >0 forall C € Sk



Proof. (i) = (ii): Let v € R¥ < {0} be an eigenvector of A with
eigenvalue A. We have 0 < vTAv = vTAv = AvTw, so that A > 0.

(i) = (iii): We have A= M~'DM = MTDM where M is a
k x k orthogonal matrix and D = Diag(\1,...,Ax) is a diagonal
matrix with \; > 0 for all 7. Letting /D := Diag(v/A1, .., vVx),
we see that A = MTv/Dv/DM = (MT+/D)(MT\/D)T = BBT
where B := MTv/D.

(i) = (iv): For all 3,5 € [k] we have A;j = S'_, BitBjq.
Hence A = Zle Byt(Byt)T, where By, € R¥ denotes the tth
column of B. O

Prove (iv) = (v) and (v) = (i)



Proof (end). (iv) = (v). By hypothesis, there exists a finite
set X C R" such that A =3, _y zaT. Thus

—<Z$ZET,C>:Z (xxT,C) ZCL‘TC:E>O

rxeX reX rzeX >0

(v) = (i). In particular, we have (A, z2T) > 0 for all z € R*
because zxT € S for all z € R*. So we get 2T Az = (A, z2T) >0
for all z € R¥, that is, A € S. O



The PSD Cone

Semidefinite Programs and Their Duals

LetC,Al,...,AmESk,bl,...,meR
SDP: min (C,X)
s.t. <Ai,X>=bZ’ Vi
X =0

Dual-SDP: max ), by
st. C—=>,y4; =0

Check that weak duality holds.

Strong duality holds when one of the two programs has a strictly
feasible (positive definite) solution, but does not always hold.



Let G be a n-vertex graph. Often: V(G) = [n] :={1,...,n}.

@ A stable set of G is a set of mutually nonadjacent vertices.

@ A clique of G is a set of mutually adjacent vertices.



Definition (stable set polytope of G)
STAB(G) := conv{x® € {0,1}" | S stable set of G}

Basic valid inequalities for STAB(G):
@ nonnegativity inequality: z; > 0 for i € V(QG)
@ edge inequality: z; + x; < 1 for ij € E(G)
e clique inequality: x(K) < 1 for K clique of G
where 2(K) := ) . 75



Definition (clique relaxation)
QSTAB(G) := {z € R} | VK clique of G : z(K) < 1}
Since nonnegativity, clique inequalities are valid for STAB(G):
STAB(G) C QSTAB(G)

In general, STAB(G) € QSTAB(G). For instance take G = Cs.



If ©:= XS where S is a stable set, then the matrix

=00

has the following properties:
1
o X eSF
[ Xo() =1
0 X;i =Xy =ux;forie [n]
e X;; =0 forij e E(G)



Definition (theta body of (G, Grétschel-Lovész-Schrijver)

TH(G) == {z e R*| 3X e STH!:
X =1
Vij € E(G) : Xij = 0}

@ TH(G) is a closed convex set (a projected spectrahedron)

e TH(G) given via a semidefinite ext. formulation of size n + 1



Let:
e z € TH(G)
@ X € S be any PSD matrix witnessing that = € TH(G)
e K clique and y := X

Since X is PSD, we have

-1\ -1
(y) X(y>>0 — 1—22xi+2xi20

i€K ieK
— sz <1

€K
— z(K)<1

Theorem (Grétschel-Lovasz-Schrijver)
STAB(G) C TH(G) C QSTAB(G)



Definition (perfect graph)

A graph G is said to be perfect if x(H) = w(H) for every induced
subgraph H of G, where x(H) denotes the chromatic number of
H, and w(H) the clique number of H.

Theorem (Grétschel-Lovasz-Schrijver, Chvatal)

The following are equivalent for a graph G:
(i) G is perfect

(i) STAB(G) = QSTAB(G)

(iii) TH(G) is a polytope

(iv) the complement G of G is perfect

If G is perfect then a(G) = max{}_;cy/(q) =i | z € TH(G)}.

Yields the only polytime algorithm we know for computing a on
perfect graphs!



For x vertex of STAB(G), and K clique of G:

(R

Using 2?7 = x; for i € V(G) and z;2; = 0 for ij € E(G):

<1-2> ai+ (sz>

€K i€eK
= 1—223%-1— Z TiT;
ek WIEK _oif 145
=1-2 Z x; + Z w
ieK zeK



Let I denote the ideal of R[z1,...,x,] generated by the
polynomials z7 — x; for i € V(G) and x;x; for ij € E(G).

We have just shown

<1 — Zx) = (1 — in>2 (mod I)

icK ieK
More generally, suppose that f(z) is an affine function (degree < 1
polynomial) such that

r

f(x) =) (9:(2))*  (mod Ig)

t=1
where gi(x) € R[x1,...,zy]. Then f(z) > 0 is valid for STAB(G)!
If deg(g:(x)) < k we say that f(z) is SOS(1, k) modulo I¢;



Theorem (Lovész-Schrijver)

For every affine function, f(x) > 0 is valid for TH(G) if and only if
f(z) is SOS(1,1) modulo Ig.

n
Proof.( = ) Suppose ¢y + Z(%SU@' > 0 is valid for TH(G)
i=1

For C := Diag(cg, c1, ..., ¢y), have that (C, X) > 0 is valid for
{X €S} |Vie V(G) : Xy = Xoi, Vij € E(G) : X;; =0}

Write this spectrahedron as

{X eSS} |VieV(G): (4, X) =0, Vij € E(G) : (Byj, X) = 0}

where A; := Ejo + Eo; — 2E;; for i € V(G) and By := E;; + Ej;
for ij € B(G).



By SDP duality, there exist y; € R for i € V(G) and z;; € R for
ij € E(G) such that

C - Z yiAi — Z 2i;Bij = 0

1eV(G) ijEE(G)
So we can write
T
Ct,0 Ct,0
-
Ct1 Ct,1
P IRTED MR o
1€V(G) ijEE(G) t=1 :
Ct,n Ct,n
for some vectors c1,...,c, € R"!. Each of these vectors yields a

polynomial g (x) := > 7" ¢ri.



Now let's compute >} (g+(z))? modulo I. We have

Ct.0 Ct,0 T 1 1\ "
Ct,1 Ct,1 X1 T
(gt(ﬂf))z:ZCt,wum%:< : o RN : >
Ctn Ctn T, In
so that,
1 1\’
IS
X1 I
Z(gt<x>>2=<c— D wdi— 3 wBa | | >
t=1 iEV(G) ijeE(G) ' '
T, Tn
1 1\"
I X1
=(C,| . . (mod Ig)

Tn Tn



e V C R" any finite set

e [ :=1Z(V) set of polynomials vanishing on V' (vanishing ideal
of V)i I :={g € Rlxy1,...,zp] |Vz €V :g(x) =0}

Definition (SOS(1, k) modulo 1)
An affine function f(x) is SOS(1, k) modulo I if there are
polynomials g;(z) (t =1,...,r) of degree < k such that:

T

f@) = > (gu(@))?  (mod ).

t=1
This is equivalent to asking that for evaluations of f,

T

Ve e Vi f(z) =) (9u(2))*.

t=1



Definition (Theta Body)

The k-th theta body THy(I) of V is the convex set defined by the
inequalities f(z) > 0 where f is SOS(1, k) modulo I.

Theorem (Gouveia-ParriIo-Thomas)
For V C {0,1}",

conv(V) = TH,(I) C--- C THy(I) C THi(I).
Proof. It is clear that TH,+1() C TH,(I).

Every function f(z) that is nonnegative over V' C {0,1}" can be
expressed as sum of squares of degree < n monomials of the form

V(@) [Lig,=1 i [Li.,=1(1 —23) fora e V. O



Prove that if G is a graph with stability number o(G) (that is, the
maximum size of a stable set is a(G)), then already

THu (@) = STAB(G). In other words, the set of characteristic
vectors of stable sets of G has theta rank at most a(G).

Theorem (Gouveia-Parrilo—Thomas)

The k-th theta body of V' C {0,1}" has a size-n®*) semidefinite
extended formulation. When V' C {0,1}" is down-monotone, the
k-th theta body can be described as:

THy(I) = {z €R™ | 3IM € SP*"* s.t.
Moo =1
Vi € [n] : Mgy = Misyo = My = i
Va,a' € Vi, s.t. aUa’ & Vi, : Myy =0
Va,b,a’,b' € Vi, s.t. aUa =bUb : Myu = My }

where V. denotes the set of feasible solutions supported on at
most k elements.



Definition (theta rank)
theta-rank of V' is min k such that conv(V') = THy(I).

Theorem (Gouveia-Parrilo-Thomas)

Let V. C R™ be a finite set. Suppose that conv(V') can be defined
by linear inequalities of the form f(x) > 0, where f(x) takes at
most k + 1 different values on V. Then the theta-rank of V is at
most k.

Proof. Consider any affine function f(x) that takes at most k + 1
different values on V', say 0 = yo,91,...,yx € R4. Let g(2) € R[]
be any (univariate) degree < k polynomial such that g(y;) = /¥
for all . Then we have

each g(f(x)) being a degree < k polynomial. O



Theorem (Gouveia-Parrilo-Thomas)

A finite set V. C R™ has theta rank 1 if and only if conv(V') can be
expressed by linear inequalities of the form f(x) > 0, where f(z)
takes at most 2 different values on V.

Definition
A polytope P is said to be 2-/evel if each of its facet-defining

hyperplanes H has a parallel hyperplane H' such that every vertex
of P is either on H or on H'.

A polytope P is 2-level iff its vertex set V := vert(P) has
theta-rank 1.

STAB(G) is 2-level iff G is perfect. Find another family of

examples of 2-level polytopes. Find all of them in dimension 3
(there are 5).



We know many examples of 2-level polytopes, some properties but
do not know (research questions!):
@ what these polytopes are exactly

@ how many there are in dimension n (up to isomorphism,
asymptotically)

@ what is their linear extension complexity

Some data:
n|3 4 5 6 7

#(n-dim 2L-polytopes) | 5 19 106 1150 27291

As a comparison (both counts up to isomorphism):

n|3 4 5 6 7
#(n—vertexgraphs)‘4 11 34 156 1044




The Goemans-Williamson Relaxation of Max-Cut

Definition (Max-Cut)

Given a graph G and a nonnegative weight w;; for each edge

ij € E(G), find a partition of V(G) = V4 U V_ into two disjoint
sets such that the total weight >,y ;o\, wi; across the
corresponding cut is maximized.

Max-Cut can be formulated as a quadratic binary program:

1
max 5 Z wij(l — xixj)
ijEB(Q)
st. xe{-1,+1} VieV(G)



By considering the rank-1 matrix X := zaT, we are led to the
following relaxation of Max-Cut, defined by a size-n semidefinite

extended formulation:
1
max 5 Z wij(l — Xz>
ijEE(G)
X eSSt

Theorem (Goemans-Williamson)
The above relaxation gives a 0.878-approximation of Max-Cut in

the sense that
OPT > 0.878 - SDP



Proof. Let X denote an optimal solution of the relaxation. Since
X =0, we can find a vector u; for each i € V(G) in some R? such
that w]u; = X;; for each 4,5 € V(G). Because Xj; = 1, the u;'s
are unit vectors.

Take a random vector 7 uniformly on the unit sphere in R%, and let
x; = sign(rTu;) € {—1,1}

This is called hyperplane rounding.

If denote by W the random variable giving the value of the random
cut produced, can decompose:

W = Z wijI[edge ij is cut]
ijeE(Q)



Finally get:
E[W] = Z w;j Pledge ij is cut]
ijEE(G)

1
= Z wij;arccos(Xij)
ijEE(G)

1

> 0.878 - Z wij5 (1= Xij)
ijEE(G)

> 0.878 - SDP

for the first inequality we use:

1 1
vVt e [-1,1]: - arccos(t) > 0.878 - 5(1 —t)



The Sherali-Adams Hierarchy

Definition
P:={zeR"|Az—b>0}C[0,1]"

Definition (Sherali-Adams)
Let 0 < r < n. The round-r Sherali-Adams relaxation SA,.(P) is obtained by:
(i) multiplying each inequality of Az — b > 0 by the monomial

[Lics,(1 = 2i) [Lies, @i for each pair Io, I1 of disjoint subsets of [n] with
[ 1] =

(ii) expanding using z? = x;;

(iii) replacing each monomial [],_¢ =i by a variable ys where S C [n],
S| <r+1;

(iv) adding the constraint yo = 1;
(v) projecting back to the z-variables by letting x; := y;}.

Find SA1(P) for P :={z € R? |z1 20, 2 >0, —221 — 222 + 1 > 0}.



Notice that Pr = {(0,0)}. After step (i), we obtain:

x121 20

z1(l—2x1)20

12 2 0

a:l(l - 1:2) Z 0

o1 2 0

1'2(1 — xl) Z 0

ToI9 2 0

:L'Q(l — xg) 2 0

(—2%1 — 2%2 + 1)561
(—2x1 —2m9 + 1)(1 — xl) 0
(—2x1 — 2x9 + 1)29 >
(—2z1 — 222+ 1)(1 — xg)




After steps (ii)—(iv), we obtain:

Yz =1

Yy =0

0=>0

Y2y =0

Yy —Ypey =0

Y2y =0

Yoy — Y12y = 0

Yy = 0

0=0

=Yy — 2yq1,2y 2 0

Yo — Y1y — 292y +2yp12y = 0
—Yg2y — 2yq1,2y = 0

Yo — 2yg1y — Yq2y +2y12y 2 0

From these constraints, we derive y(1) = y(1 2y = 0 and at the
same time Y{1y < —2y{172}, which implies that Yy = Y{12y = 0.
Similarly, we obtain y9y = 0. Thus the round-1 Sherali-Adams
relaxation is exact.



Sherali-Adams is a hierarchy of increasingly stronger relaxations of
the integer hull P; := conv(P NZ"), obtained from the constraints
defining P.

Theorem
Pr CSA,(P)C---CSAI(P) CSA(P)=P

Definition (linearization map)

L:Rlxy,...,z,) = Rcifys : S C [n]] linear map such that
L(z7'x5% - - 2g™) := Yyija, 0} for a € Z7

Every inequality defining the round-r Sherali-Adams relaxation if of the form
i€1lp €1y

for some ¢ € [m] and some disjoint Iy, I C [n] such that |Io| + |I1| = .



Proof. Let k € [n] \ (Ip U I7). Notice that

(AZCC—b-L) H (l—l‘j) H T; +(A1$—bz) H(l—xj) H T,

jeIlgu{k} Jjely j€lg jel u{k}
= (Azx—ln) H(l—xj) H Ty .
j€lo jenh

Together with linearity of the linearization map, this implies that
SA,+1(P) C SA,(P) since the constraints defining SA,1(P)
(before projection) imply those defining SA,(P) (before
projection). O



Lemma

Let uT(Ax — b) > 0 where u € R be any inequality that can be
derived by taking some nonnegative combination of the inequalities
of Az —b > 0, and let Iy and I; be two disjoint subsets of [n| such
that |Iy| + |I1| = r. Then the linearization of

uT(Ax—b)H(l—:ch) Hacj>0

j€lo Jj€h

is a nonnegative combination of the linearizations of

(Ai.%‘—bi) H(l—l'j) H.’L‘j)()

j€lo Jj€l

for i € [m].



The Sherali-Adams Hierarchy

Consistent Local Distributions

Now, suppose P = {z € R" | Vi € [n] : 0 < z; < 1}. Then
SA,(P) is defined by the following extended formulation:
Yo =1

S (=pIEMlys >0 wdisjoint Io, 1 C [n] s.t. [hULi|=7+1
I CSCIouly

Goal: interpret yg variables as probabilities defining “consistent
local distributions”

Definition

A family of local distributions (D(I))rcn):|1j<r+1 Where each D(I)
provides a distribution on 2 € {0, 1}/ is said to be consistent if for
each I’ C I, the marginal distribution induced by D(I) on {0,1}"
coincides with the distribution D(I").



Lemma
A vector (ys)scn):|s|<r+1 is feasible for SA,(P) where P = [0, 1]"
iff there exist consistent local distributions (D(I))1cn):|1|<r+1 S-t-

zer [/\$1—1] =Ys
1€S
for each S C I C [n] with |I| < r+ 1.

Proof. “Only if" part. Suppose that (ys) is feasible for the r-round SA and
define distribution D(I) by letting

Propuy [z =a] = Peup(n {/\ X = ai

i€l

e l{ g g

= > (-nPFlyg >0

1,CSCIoun
for each I C [n] with |I| < r+ 1, and each a € {0,1}, where
Iy:={i€l|a;=0}and I, :=={i €I]|a; =1}.



Why do the probabilities sum up to 1? Consider two sets I’ C I C [n] with
II| <7+ 1 such that I = I’ U {j} for some j € [n]. Then, for a’ € {0,1}",

z~’D(I’ |:/\ T, = al:| — Z (_1)|Sﬁf(l)‘ys

iel’ 1,cscr
= 3 (—BESED L ST (S0l
rjcscr rju{j}cscr

since the terms ys with j € S cancel out in the sum the last expression. So:
P, pu [/\ zi = a;| = Poup(n) {{ /\ T = a;} Nzxj = 0}
i€’ iel’
+Pz~D(I) |:{ /\ T, = a;} /\a:j = 1:|

iel’

We get that
Y. Peple=da= ) Pepale=d]=
ac{0,1}1 a’e{O,l}I/

= (Yo —Yy) T Y@y =Yz =1



Finally, check consistency. It suffices to consider two sets I’ C I C [n] with
[I| < r+ 1 such that I = I' U {j} for some j € [n]. Then, for a’ € {0,1}",

Pyp(n) |:/\ zi = a;| = Poup(r) |:{/\ T = a; }/\xj—o]
iel’ iel’
+ Poop(r) [{ /\ T = a;} ANxj = 1]
el

— a~D(I") |:/\ xz—az:| .

iel’

Notice that, by consistency,

Prp(n) {/\ zi =1

i€S

Pin(s) {/\ z; = 1} > (=1)FPlys = ys

i€S SCTCS

whenever S C [n] and |S| <7+ 1.



“If" part.

@ Start from a consistent family (D(A)) ac(n):|aj<r+1 ©of local distributions

@ define ys := Pyup(r) [A;es @i = 1] for each S C [n], where [ is arbitrary
with SCICn]and [I|<r+1

Then (ys) is feasible for the r-round Sherali-Adams formulation:
@ have yp =1

@ for Iy, I1 C [n] disjoint such that |Io| + |[1| =r+1,

Z (_1)‘Sﬂ10‘ys >0

I, CSCIgUly

since, by inclusion-exclusion, the left-hand side is the probability of the
event {/\Z.EI0 T = 0} A {/\iel1 X = 1} in D(Io U I1)



Definition (local infeasibility)

Consider I C [n] and a € {0,1}!. Say that partial solution

a € {0, 1} is locally infeasible if there exists some i such that
A;x — b; > 0 has support contained in I and is violated by every
point z € R" such that x; = a; for¢ €

Lemma

If a vector (ys)scin]:|s|<r+1 IS feasible for SA.(P) where
P = {z € R" | Az > b}, then there exist consistent local
distributions (D(I))c[n):|1j<r+1 Such that

Pyp(s [/\551 = 1] = ys

1€S

for each S C I C [n] with |I| < r+ 1. Moreover, if I C [n] and
|I| <r and a € {0,1}! is locally infeasible, then
PxND(I) [33 = (1] =0.



Proof. First part : OK

Second part. Suppose that »_, ; ci(1 — i) + >2,c;, ciwi — 6 > 0 locally cuts
a € {0,1}*. Then from the round-r Sherali-Adams relaxation we can infer the
inequality

O<L<(201(1—$¢)+Zci$i—5> H(l—l‘i) Hl‘l>

i€l i€l i€l i€l
:L((ZQ‘—(S) H(l—CCZ)Hxl)
i€l i€lp i€l
i€l i€1lp i€l
<0 >0

which implies

L(H(l—xl)be> =0 < Z (—1)\Sﬁlo\yS:0.

i€l = I, CSCIoUl



A nice corollary:

Theorem
For every polytope P C [0,1]" we have SA,(P) = P.

Partial converse to previous lemma:

Lemma

Suppose that each inequality in Ax > b is supported on at most s
coordinates. Then every consistent collection of local distributions
(D(I)) 1cn):|1|<r+s+1 Such that the probability of sampling locally
infeasible partial solutions is O yields a feasible solution

(ys) SC[n]:|S|<r+1 ©Of the round-r Sherali-Adams relaxation of
P={zeR"| Az > b}.



The Sherali-Adams Hierarchy

Sherali-Adams for Stable Sets in Bounded Tree-width Graphs

Definition (Tree-decompositions, tree-width)
Let G be a graph, T a tree, and let B = (B;)er be a family of

vertex sets B; C V(G) indexed by the vertices ¢t of T', called the
bags. The pair (T, B) is called a tree-decomposition of G if:

(i) V(G) = UteT Bt;
(ii) for every edge e € E(G) there exists a t € T such that both
ends of e lie in By;
(iii) By, N By, C By, whenever ty,t9,t3 € V(T) are such that ty
lies on the unique t1—t3 path in 7.

The width of a tree-decomposition (7, B) is defined as
max,cy (7 |Bt| — 1. The tree-width of G is the minimum width of
a tree-decomposition of G. It is denoted by tw(G).



Wlog, work only with nice tree-decompositions:

Definition (Nice tree-decompositions)
A rooted tree decomposition (7', 3,r) of G is nice if for every
ue V(T):
e |B,| =1 (leaf), or
@ u has one child v with B, C B, and |B,| = |B,| — 1 (forget),
or
@ u has one child v with B, C B, and |B,| = |B,| + 1
(introduce), or

@ u has two children v and w with B,, = B,, = By, (join).



Start with the edge relaxation
ESTAB(G) := {z e RYY | Vij € BE(G) : w; +2; < 1}
of STAB(G).

Notice that the ESTAB(G); = STAB(G).

Theorem (Bienstock-Ozbay)

Let G be a graph and let H be a subgraph of G with tw(H) = k.
Then every inequality 3 ;cy gy wizs < a(H, w) that is valid for
STAB(H) is valid for SA;+1(ESTAB(G)).



Proof. Wlog, assume that H = G.
Want to prove: SA;;1(ESTAB(G)) = STAB(G).

Start with a fractional point * € SA,41(ESTAB(G)) and consistent local
distributions, try to define a single distribution over the stable sets of G that
has the right marginals z; for i € V(G).

Take nice rooted tree-decomposition (7', B,r) of G with all the bags of size at
most k. For u € V(T), G, denote the subgraph of G induced on the union of
the bags of the descendants of u, so that G, = GG. Define a distribution
D(V(G.)) on {0,1}V(E) for each node u of T, starting with the leaves.

Key equation: for node u € V(T'): Define P,.p(c,)[r = a] as
P;cwD(Bu)[Vi € By:xzi = ai]

[ Peenn)lVi € V(Gu) N Buimi =a: | Vi€ V(Gy) N By : i = ai]
v child of u

Then check that the marginals are correct. O



The Sherali-Adams Hierarchy

Sherali-Adams for Max-Cut

Definition (metric polytope)

Let P C R(3) be defined by

Tij +xj — 2 = 0 Vi, j, k distinct

2 — @i — wyp — wi, =0 Vi, g, k distinct
1—x;; >0 Vi,j distinct
xy; >0 Vi, j distinct

Py is the cut-polytope (of K3,)

Know: consistent local distributions of cuts on sets of size
< 2r + 3 define feasible solutions to SA,(P).



Theorem (Charikar, Makarychev, Makarychev)
For “small” r, can find graph G with m edges with

OPT(G) < @ + 5> -

but at the same time

max Z zij | x € SA(P) p =2 (1—¢)m.
ijEE(G)

Can even take r ~ n’ for some § = 6(g) > 0



Proof idea. Take GG to be a random A-regular graph, where
A = A(e) is large enough.

We need to show:

Q OPT(G) < (5+¢)m
@ SA,(P) "thinks” that most of the edges of G can be cut

For (1), use fact that almost surely, the eigenvalues of G
A=X =X > =)\, of G(n,A) satisfy

max{| Az, [Anl} < 2v2A — 1 + o(1)

And the GW relaxation.

Use this to check that OPT(G) < (3 +¢) m for G = G(n, A).



Notice that the GW relaxation can be written
1
max{4<Lg, X)X =0, Vi: u—l}

where Lo := Al — Aq is the Laplacian
Then pick p carefully so that

1
I—-Lg=0
H 1 G
By weak duality, get
1 1
so that )
OPT(G) > (La, X) > pn

Here can take: p = 8+2V/2A=1 V42A*



For (2), use fact that G “locally looks like a forest”, so that most
edge can be cut in every induced subgraph on at most k := 2r + 3
vertices.

Difficulty. Define local distributions of cuts that are consistent.

Idea.

define metric v on the whole graph, based on vertex distances

show that can embed v restricted to every set of size at most
k isometrically into the unit sphere of some R?, in such a way
that v(i,j) > 2 — & for adjacent vertices i, j

use embedding to define local distributions by hyperplane
rounding, with

Tjj = — arccos <1 Y (;’])>
™

so that z;; > 1 — ¢ for ij € E(G).

consistency is automatic
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