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The PSD Cone

Definition (PSD matrix)

A k × k matrix A is positive semidefinite (or PSD) if

∀x ∈ Rk : xᵀAx > 0

We consider only symmetric matrices (A is PSD ⇐⇒ A+Aᵀ is PSD)

Sk := space of all k × k (real) symmetric matrices

Frobenius inner product: for A,B ∈ Sk

〈A,B〉 :=
∑
i,j

AijBij = Tr(ABᵀ) = Tr(AB)

Remark

〈A, xxᵀ〉 =
∑
i,j

Aijxixj = xᵀAx



Definition (PSD cone)

Sk+ := {A ∈ Sk | A is PSD}

For A,B ∈ Sk, we write A < B whenever A−B ∈ Sk+. So

A < 0 simply means: “A is PSD”

Theorem

The following are equivalent for A ∈ Sk:

(i) A ∈ Sk+
(ii) all the eigenvalues of A are nonnegative

(iii) A = BBᵀ for some B ∈ Rk×`

(iv) A is a sum of matrices of the form xxᵀ for x ∈ Rk

(v) 〈A,C〉 > 0 for all C ∈ Sk+



Proof. (i) =⇒ (ii): Let v ∈ Rkr {0} be an eigenvector of A with
eigenvalue λ. We have 0 6 vᵀAv = vᵀλv = λvᵀv, so that λ > 0.

(ii) =⇒ (iii): We have A = M−1DM = MᵀDM where M is a
k × k orthogonal matrix and D = Diag(λ1, . . . , λk) is a diagonal
matrix with λi > 0 for all i. Letting

√
D := Diag(

√
λ1, . . . ,

√
λk),

we see that A = Mᵀ
√
D
√
DM = (Mᵀ

√
D)(Mᵀ

√
D)ᵀ = BBᵀ

where B := Mᵀ
√
D.

(iii) =⇒ (iv): For all i, j ∈ [k] we have Aij =
∑`

t=1BitBjt.

Hence A =
∑`

t=1B?t(B?t)
ᵀ, where B?t ∈ Rk denotes the tth

column of B.

Exercise

Prove (iv) =⇒ (v) and (v) =⇒ (i)



Proof (end). (iv) =⇒ (v). By hypothesis, there exists a finite
set X ⊆ Rk such that A =

∑
x∈X xx

ᵀ. Thus

〈A,C〉 = 〈
∑
x∈X

xxᵀ, C〉 =
∑
x∈X
〈xxᵀ, C〉 =

∑
x∈X

xᵀCx︸ ︷︷ ︸
>0

> 0

(v) =⇒ (i). In particular, we have 〈A, xxᵀ〉 > 0 for all x ∈ Rk
because xxᵀ ∈ Sk+ for all x ∈ Rk. So we get xᵀAx = 〈A, xxᵀ〉 > 0
for all x ∈ Rk, that is, A ∈ Sk+.



The PSD Cone
Semidefinite Programs and Their Duals

Let C,A1, . . . , Am ∈ Sk, b1, . . . , bm ∈ R

SDP: min 〈C,X〉
s.t. 〈Ai, X〉 = bi ∀i

X < 0

Dual-SDP: max
∑

i biyi
s.t. C −

∑
i yiAi < 0

Exercise

Check that weak duality holds.

Remark

Strong duality holds when one of the two programs has a strictly
feasible (positive definite) solution, but does not always hold.



Theta Bodies
Theta Bodies of Graphs

Let G be a n-vertex graph. Often: V (G) = [n] := {1, . . . , n}.

Definition (stable sets, cliques)

A stable set of G is a set of mutually nonadjacent vertices.

A clique of G is a set of mutually adjacent vertices.



Definition (stable set polytope of G)

STAB(G) := conv{χS ∈ {0, 1}n | S stable set of G}

Basic valid inequalities for STAB(G):

nonnegativity inequality: xi > 0 for i ∈ V (G)

edge inequality: xi + xj 6 1 for ij ∈ E(G)

clique inequality: x(K) 6 1 for K clique of G

where x(K) :=
∑

i∈K xi



Definition (clique relaxation)

QSTAB(G) := {x ∈ Rn+ | ∀K clique of G : x(K) 6 1}

Since nonnegativity, clique inequalities are valid for STAB(G):

STAB(G) ⊆ QSTAB(G)

In general, STAB(G) ( QSTAB(G). For instance take G = C5.



If x := χS where S is a stable set, then the matrix

X :=

(
1
x

)(
1
x

)ᵀ

has the following properties:

X ∈ Sn+1
+

X00 = 1

Xii = X0i = xi for i ∈ [n]

Xij = 0 for ij ∈ E(G)



Definition (theta body of G, Grötschel-Lovász-Schrijver)

TH(G) := {x ∈ Rn | ∃X ∈ Sn+1
+ :

X00 = 1
∀i ∈ V (G) : Xii = X0i = xi
∀ij ∈ E(G) : Xij = 0}

TH(G) is a closed convex set (a projected spectrahedron)

TH(G) given via a semidefinite ext. formulation of size n+ 1



Let:

x ∈ TH(G)

X ∈ Sn+1 be any PSD matrix witnessing that x ∈ TH(G)

K clique and y := χK

Since X is PSD, we have(
−1
y

)ᵀ

X

(
−1
y

)
> 0 ⇐⇒ 1− 2

∑
i∈K

xi +
∑
i∈K

xi > 0

⇐⇒
∑
i∈K

xi 6 1

⇐⇒ x(K) 6 1

Theorem (Grötschel-Lovász-Schrijver)

STAB(G) ⊆ TH(G) ⊆ QSTAB(G)



Definition (perfect graph)

A graph G is said to be perfect if χ(H) = ω(H) for every induced
subgraph H of G, where χ(H) denotes the chromatic number of
H, and ω(H) the clique number of H.

Theorem (Grötschel-Lovász-Schrijver, Chvátal)

The following are equivalent for a graph G:

(i) G is perfect

(ii) STAB(G) = QSTAB(G)

(iii) TH(G) is a polytope

(iv) the complement G of G is perfect

If G is perfect then α(G) = max{
∑

i∈V (G) xi | x ∈ TH(G)}.

Yields the only polytime algorithm we know for computing α on
perfect graphs!



Theta Bodies
Theta Bodies of Finite Point Sets

For x vertex of STAB(G), and K clique of G:(
1−

∑
i∈K

xi

)2

> 0

Using x2
i = xi for i ∈ V (G) and xixj = 0 for ij ∈ E(G):

0 6 1− 2
∑
i∈K

xi +

(∑
i∈K

xi

)2

= 1− 2
∑
i∈K

xi +
∑
i,j∈K

xixj︸︷︷︸
=0 if i 6=j

= 1− 2
∑
i∈K

xi +
∑
i∈K

x2
i︸︷︷︸

=xi

= 1−
∑
i∈K

xi



Let IG denote the ideal of R[x1, . . . , xn] generated by the
polynomials x2

i − xi for i ∈ V (G) and xixj for ij ∈ E(G).

We have just shown(
1−

∑
i∈K

xi

)
≡

(
1−

∑
i∈K

xi

)2

(mod IG)

More generally, suppose that f(x) is an affine function (degree 6 1

polynomial) such that

f(x) ≡
r∑
t=1

(gt(x))2 (mod IG)

where gt(x) ∈ R[x1, . . . , xn]. Then f(x) > 0 is valid for STAB(G)!

If deg(gt(x)) 6 k we say that f(x) is SOS(1, k) modulo IG



Theorem (Lovász-Schrijver)

For every affine function, f(x) > 0 is valid for TH(G) if and only if
f(x) is SOS(1, 1) modulo IG.

Proof.( =⇒ ) Suppose c0 +

n∑
i=1

cixi > 0 is valid for TH(G)

For C := Diag(c0, c1, . . . , cn), have that 〈C,X〉 > 0 is valid for

{X ∈ Sn+ | ∀i ∈ V (G) : Xii = X0i, ∀ij ∈ E(G) : Xij = 0}

Write this spectrahedron as

{X ∈ Sn+ | ∀i ∈ V (G) : 〈Ai, X〉 = 0, ∀ij ∈ E(G) : 〈Bij , X〉 = 0}

where Ai := Ei0 + E0i − 2Eii for i ∈ V (G) and Bij := Eij + Eji
for ij ∈ E(G).



By SDP duality, there exist yi ∈ R for i ∈ V (G) and zij ∈ R for
ij ∈ E(G) such that

C −
∑

i∈V (G)

yiAi −
∑

ij∈E(G)

zijBij < 0

So we can write

C −
∑

i∈V (G)

yiAi −
∑

ij∈E(G)

zijBij =

r∑
t=1


ct,0
ct,1

...
ct,n



ct,0
ct,1

...
ct,n


ᵀ

for some vectors c1, . . . , cr ∈ Rn+1. Each of these vectors yields a
polynomial gt(x) :=

∑n
i=0 ct,ixi.



Now let’s compute
∑r

t=1(gt(x))2 modulo IG. We have

(gt(x))2 =
∑
i,j

ct,ict,jxixj =

〈
ct,0
ct,1

...
ct,n



ct,0
ct,1

...
ct,n


ᵀ

,


1
x1
...
xn




1
x1
...
xn


ᵀ〉

so that,

r∑
t=1

(gt(x))2 =

〈
C −

∑
i∈V (G)

yiAi −
∑

ij∈E(G)

zijBij ,


1
x1
...
xn




1
x1
...
xn


ᵀ〉

≡

〈
C,


1
x1
...
xn




1
x1
...
xn


ᵀ〉

(mod IG)



V ⊆ Rn any finite set

I := I(V ) set of polynomials vanishing on V (vanishing ideal
of V ): I := {g ∈ R[x1, . . . , xn] | ∀x ∈ V : g(x) = 0}

Definition (SOS(1, k) modulo I)

An affine function f(x) is SOS(1, k) modulo I if there are
polynomials gt(x) (t = 1, . . . , r) of degree 6 k such that:

f(x) ≡
r∑
t=1

(gt(x))2 (mod I) .

This is equivalent to asking that for evaluations of f ,

∀x ∈ V : f(x) =

r∑
t=1

(gt(x))2 .



Definition (Theta Body)

The k-th theta body THk(I) of V is the convex set defined by the
inequalities f(x) > 0 where f is SOS(1, k) modulo I.

Theorem (Gouveia-Parrilo-Thomas)

For V ⊆ {0, 1}n,

conv(V ) = THn(I) ⊆ · · · ⊆ TH2(I) ⊆ TH1(I) .

Proof. It is clear that THr+1(I) ⊆ THr(I).

Every function f(x) that is nonnegative over V ⊆ {0, 1}n can be
expressed as sum of squares of degree 6 n monomials of the form√
f(a)

∏
i:ai=1 xi

∏
i:ai=1(1− xi) for a ∈ V .



Exercise

Prove that if G is a graph with stability number α(G) (that is, the
maximum size of a stable set is α(G)), then already
THα(G) = STAB(G). In other words, the set of characteristic
vectors of stable sets of G has theta rank at most α(G).

Theorem (Gouveia-Parrilo-Thomas)

The k-th theta body of V ⊆ {0, 1}n has a size-nO(k) semidefinite
extended formulation. When V ⊆ {0, 1}n is down-monotone, the
k-th theta body can be described as:

THk(I) = {x ∈ Rn | ∃M ∈ SVk×Vk
+ s.t.

M∅∅ = 1
∀i ∈ [n] :M∅{i} =M{i}∅ =M{i}{i} = xi
∀a, a′ ∈ Vk s.t. a ∪ a′ /∈ Vk :Maa′ = 0
∀a, b, a′, b′ ∈ Vk s.t. a ∪ a′ = b ∪ b′ :Maa′ =Mbb′}

where Vk denotes the set of feasible solutions supported on at
most k elements.



Definition (theta rank)

theta-rank of V is min k such that conv(V ) = THk(I).

Theorem (Gouveia-Parrilo-Thomas)

Let V ⊆ Rn be a finite set. Suppose that conv(V ) can be defined
by linear inequalities of the form f(x) > 0, where f(x) takes at
most k + 1 different values on V . Then the theta-rank of V is at
most k.

Proof. Consider any affine function f(x) that takes at most k + 1
different values on V , say 0 = y0, y1, . . . , yk ∈ R+. Let g(z) ∈ R[z]
be any (univariate) degree 6 k polynomial such that g(yi) =

√
yi

for all i. Then we have

f(x) =

k∑
i=0

(g(f(x)))2

each g(f(x)) being a degree 6 k polynomial.



Theorem (Gouveia-Parrilo-Thomas)

A finite set V ⊆ Rn has theta rank 1 if and only if conv(V ) can be
expressed by linear inequalities of the form f(x) > 0, where f(x)
takes at most 2 different values on V .

Definition

A polytope P is said to be 2-level if each of its facet-defining
hyperplanes H has a parallel hyperplane H ′ such that every vertex
of P is either on H or on H ′.

Remark

A polytope P is 2-level iff its vertex set V := vert(P ) has
theta-rank 1.

Exercise

STAB(G) is 2-level iff G is perfect. Find another family of
examples of 2-level polytopes. Find all of them in dimension 3
(there are 5).



We know many examples of 2-level polytopes, some properties but
do not know (research questions!):

what these polytopes are exactly

how many there are in dimension n (up to isomorphism,
asymptotically)

what is their linear extension complexity

Some data:
n 3 4 5 6 7

#(n-dim 2L-polytopes) 5 19 106 1150 27291

As a comparison (both counts up to isomorphism):

n 3 4 5 6 7

#(n-vertex graphs) 4 11 34 156 1044



The Goemans-Williamson Relaxation of Max-Cut

Definition (Max-Cut)

Given a graph G and a nonnegative weight wij for each edge
ij ∈ E(G), find a partition of V (G) = V+ ∪ V− into two disjoint
sets such that the total weight

∑
i∈V+,j∈V− wij across the

corresponding cut is maximized.

Max-Cut can be formulated as a quadratic binary program:

max
1

2

∑
ij∈E(G)

wij(1− xixj)

s.t. xi ∈ {−1,+1} ∀i ∈ V (G)



By considering the rank-1 matrix X := xxᵀ, we are led to the
following relaxation of Max-Cut, defined by a size-n semidefinite
extended formulation:

max
1

2

∑
ij∈E(G)

wij(1−Xij)

s.t. Xii = 1 ∀i ∈ V (G)
X ∈ Sn+

Theorem (Goemans-Williamson)

The above relaxation gives a 0.878-approximation of Max-Cut in
the sense that

OPT > 0.878 · SDP



Proof. Let X denote an optimal solution of the relaxation. Since
X < 0, we can find a vector ui for each i ∈ V (G) in some Rd such
that uᵀi uj = Xij for each i, j ∈ V (G). Because Xii = 1, the ui’s
are unit vectors.

Take a random vector r uniformly on the unit sphere in Rd, and let

xi := sign(rᵀui) ∈ {−1, 1}

This is called hyperplane rounding.

If denote by W the random variable giving the value of the random
cut produced, can decompose:

W =
∑

ij∈E(G)

wijI[edge ij is cut]



Finally get:

E[W ] =
∑

ij∈E(G)

wijP [edge ij is cut]

=
∑

ij∈E(G)

wij
1

π
arccos(Xij)

> 0.878 ·
∑

ij∈E(G)

wij
1

2
(1−Xij)

> 0.878 · SDP

for the first inequality we use:

∀t ∈ [−1, 1] :
1

π
arccos(t) > 0.878 · 1

2
(1− t)



The Sherali-Adams Hierarchy
Definition

P := {x ∈ Rn | Ax− b > 0} ⊆ [0, 1]n

Definition (Sherali-Adams)

Let 0 6 r 6 n. The round-r Sherali-Adams relaxation SAr(P ) is obtained by:

(i) multiplying each inequality of Ax− b > 0 by the monomial∏
i∈I0(1− xi)

∏
i∈I1 xi for each pair I0, I1 of disjoint subsets of [n] with

|I0|+ |I1| = r;

(ii) expanding using x2i = xi;

(iii) replacing each monomial
∏

i∈S xi by a variable yS where S ⊆ [n],
|S| 6 r + 1;

(iv) adding the constraint y∅ = 1;

(v) projecting back to the x-variables by letting xi := y{i}.

Exercise

Find SA1(P ) for P := {x ∈ R2 | x1 > 0, x2 > 0, −2x1 − 2x2 + 1 > 0}.



Notice that PI = {(0, 0)}. After step (i), we obtain:

x1x1 > 0
x1(1− x1) > 0
x1x2 > 0
x1(1− x2) > 0
x2x1 > 0
x2(1− x1) > 0
x2x2 > 0
x2(1− x2) > 0
(−2x1 − 2x2 + 1)x1 > 0
(−2x1 − 2x2 + 1)(1− x1) > 0
(−2x1 − 2x2 + 1)x2 > 0
(−2x1 − 2x2 + 1)(1− x2) > 0

.



After steps (ii)–(iv), we obtain:

y∅ = 1
y{1} > 0

0 > 0
y{1,2} > 0

y{1} − y{1,2} > 0

y{1,2} > 0

y{2} − y{1,2} > 0

y{2} > 0

0 > 0
−y{1} − 2y{1,2} > 0

y∅ − y{1} − 2y{2} + 2y{1,2} > 0

−y{2} − 2y{1,2} > 0

y∅ − 2y{1} − y{2} + 2y{1,2} > 0

.

From these constraints, we derive y{1} > y{1,2} > 0 and at the
same time y{1} 6 −2y{1,2}, which implies that y{1} = y{1,2} = 0.
Similarly, we obtain y{2} = 0. Thus the round-1 Sherali-Adams
relaxation is exact.



Sherali-Adams is a hierarchy of increasingly stronger relaxations of
the integer hull PI := conv(P ∩ Zn), obtained from the constraints
defining P .

Theorem

PI ⊆ SAn(P ) ⊆ · · · ⊆ SA1(P ) ⊆ SA0(P ) = P

Definition (linearization map)

L : R[x1, . . . , xn]→ R61[yS : S ⊆ [n]] linear map such that
L(xa11 x

a2
2 · · ·xann ) := y{i|ai 6=0} for a ∈ Zn+

Remark

Every inequality defining the round-r Sherali-Adams relaxation if of the form

L

(
(Aix− bi)

∏
i∈I0

(1− xi)
∏
i∈I1

xi

)
> 0

for some i ∈ [m] and some disjoint I0, I1 ⊆ [n] such that |I0|+ |I1| = r.



Proof. Let k ∈ [n] r (I0 ∪ I1). Notice that

(Aix− bi)
∏

j∈I0∪{k}

(1− xj)
∏
j∈I1

xj + (Aix− bi)
∏
j∈I0

(1− xj)
∏

j∈I1∪{k}

xj

= (Aix− bi)
∏
j∈I0

(1− xj)
∏
j∈I1

xj .

Together with linearity of the linearization map, this implies that
SAr+1(P ) ⊆ SAr(P ) since the constraints defining SAr+1(P )
(before projection) imply those defining SAr(P ) (before
projection).



Lemma

Let uᵀ(Ax− b) > 0 where u ∈ Rm+ be any inequality that can be
derived by taking some nonnegative combination of the inequalities
of Ax− b > 0, and let I0 and I1 be two disjoint subsets of [n] such
that |I0|+ |I1| = r. Then the linearization of

uᵀ(Ax− b)
∏
j∈I0

(1− xj)
∏
j∈I1

xj > 0

is a nonnegative combination of the linearizations of

(Aix− bi)
∏
j∈I0

(1− xj)
∏
j∈I1

xj > 0

for i ∈ [m].



The Sherali-Adams Hierarchy
Consistent Local Distributions

Now, suppose P = {x ∈ Rn | ∀i ∈ [n] : 0 6 xi 6 1}. Then
SAr(P ) is defined by the following extended formulation:

y∅ = 1∑
I1⊆S⊆I0∪I1

(−1)|S∩I0|yS > 0 ∀disjoint I0, I1 ⊆ [n] s.t. |I0 ∪ I1| = r + 1

Goal: interpret yS variables as probabilities defining “consistent
local distributions”

Definition

A family of local distributions (D(I))I⊆[n]:|I|6r+1 where each D(I)

provides a distribution on x ∈ {0, 1}I is said to be consistent if for
each I ′ ⊆ I, the marginal distribution induced by D(I) on {0, 1}I′

coincides with the distribution D(I ′).



Lemma

A vector (yS)S⊆[n]:|S|6r+1 is feasible for SAr(P ) where P = [0, 1]n

iff there exist consistent local distributions (D(I))I⊆[n]:|I|6r+1 s.t.

Px∼D(I)

[∧
i∈S

xi = 1

]
= yS

for each S ⊆ I ⊆ [n] with |I| 6 r + 1.

Proof. “Only if” part. Suppose that (yS) is feasible for the r-round SA and
define distribution D(I) by letting

Px∼D(I) [x = a] = Px∼D(I)

[∧
i∈I

xi = ai

]

= Px∼D(I)

[{∧
i∈I0

xi = 0

}
∧

{∧
i∈I1

xi = 1

}]
:=

∑
I1⊆S⊆I0∪I1

(−1)|S∩I0|yS > 0

for each I ⊆ [n] with |I| 6 r + 1, and each a ∈ {0, 1}I , where

I0 := {i ∈ I | ai = 0} and I1 := {i ∈ I | ai = 1}.



Why do the probabilities sum up to 1? Consider two sets I ′ ⊆ I ⊆ [n] with

|I| 6 r + 1 such that I = I ′ ∪ {j} for some j ∈ [n]. Then, for a′ ∈ {0, 1}I
′
,

Px∼D(I′)

[∧
i∈I′

xi = a′i

]
=

∑
I′1⊆S⊆I′

(−1)|S∩I
′
0|yS

=
∑

I′1⊆S⊆I

(−1)|S∩(I
′
0∪{j})|yS +

∑
I′1∪{j}⊆S⊆I

(−1)|S∩I
′
0|yS

since the terms yS with j ∈ S cancel out in the sum the last expression. So:

Px∼D(I′)

[∧
i∈I′

xi = a′i

]
= Px∼D(I)

[{∧
i∈I′

xi = a′i

}
∧ xj = 0

]

+ Px∼D(I)

[{∧
i∈I′

xi = a′i

}
∧ xj = 1

]

We get that∑
a∈{0,1}I

Px∼D(I)[x = a] =
∑

a′∈{0,1}I′
Px∼D(I′)[x = a′] = · · ·

= (y∅ − y{k}) + y{k} = y∅ = 1



Finally, check consistency. It suffices to consider two sets I ′ ⊆ I ⊆ [n] with

|I| 6 r + 1 such that I = I ′ ∪ {j} for some j ∈ [n]. Then, for a′ ∈ {0, 1}I
′
,

Px∼D(I)

[∧
i∈I′

xi = a′i

]
= Px∼D(I)

[{∧
i∈I′

xi = a′i

}
∧ xj = 0

]

+ Px∼D(I)

[{∧
i∈I′

xi = a′i

}
∧ xj = 1

]

= Px∼D(I′)

[∧
i∈I′

xi = a′i

]
.

Notice that, by consistency,

Px∼D(I)

[∧
i∈S

xi = 1

]
= Px∼D(S)

[∧
i∈S

xi = 1

]
=

∑
S⊆T⊆S

(−1)|S∩∅|yS = yS

whenever S ⊆ [n] and |S| 6 r + 1.



“If” part.

Start from a consistent family (D(A))A⊆[n]:|A|6r+1 of local distributions

define yS := Px∼D(I)

[∧
i∈S xi = 1

]
for each S ⊆ [n], where I is arbitrary

with S ⊆ I ⊆ [n] and |I| 6 r + 1

Then (yS) is feasible for the r-round Sherali-Adams formulation:

have y∅ = 1

for I0, I1 ⊆ [n] disjoint such that |I0|+ |I1| = r + 1,∑
I1⊆S⊆I0∪I1

(−1)|S∩I0|yS > 0

since, by inclusion-exclusion, the left-hand side is the probability of the

event
{∧

i∈I0 xi = 0
}
∧
{∧

i∈I1 xi = 1
}

in D(I0 ∪ I1)



Definition (local infeasibility)

Consider I ⊆ [n] and a ∈ {0, 1}I . Say that partial solution
a ∈ {0, 1}I is locally infeasible if there exists some i such that
Aix− bi > 0 has support contained in I and is violated by every
point x ∈ Rn such that xi = ai for i ∈ I

Lemma

If a vector (yS)S⊆[n]:|S|6r+1 is feasible for SAr(P ) where
P = {x ∈ Rn | Ax > b}, then there exist consistent local
distributions (D(I))I⊆[n]:|I|6r+1 such that

Px∼D(I)

[∧
i∈S

xi = 1

]
= yS

for each S ⊆ I ⊆ [n] with |I| 6 r + 1. Moreover, if I ⊆ [n] and
|I| 6 r and a ∈ {0, 1}I is locally infeasible, then
Px∼D(I)[x = a] = 0.



Proof. First part : OK

Second part. Suppose that
∑

i∈I0 ci(1− xi) +
∑

i∈I1 cixi − δ > 0 locally cuts

a ∈ {0, 1}I . Then from the round-r Sherali-Adams relaxation we can infer the
inequality

0 6 L

((∑
i∈I0

ci(1− xi) +
∑
i∈I1

cixi − δ

) ∏
i∈I0

(1− xi)
∏
i∈I1

xi

)

= L

((∑
i∈I

ci − δ

) ∏
i∈I0

(1− xi)
∏
i∈I1

xi

)

=

(∑
i∈I

ci − δ

)
︸ ︷︷ ︸

<0

·L

(∏
i∈I0

(1− xi)
∏
i∈I1

xi

)
︸ ︷︷ ︸

>0

which implies

L

(∏
i∈I0

(1− xi)
∏
i∈I1

xi

)
= 0 ⇐⇒

∑
I1⊆S⊆I0∪I1

(−1)|S∩I0|yS = 0 .



A nice corollary:

Theorem

For every polytope P ⊆ [0, 1]n we have SAn(P ) = PI .

Partial converse to previous lemma:

Lemma

Suppose that each inequality in Ax > b is supported on at most s
coordinates. Then every consistent collection of local distributions
(D(I))I⊆[n]:|I|6r+s+1 such that the probability of sampling locally
infeasible partial solutions is 0 yields a feasible solution
(yS)S⊆[n]:|S|6r+1 of the round-r Sherali-Adams relaxation of
P = {x ∈ Rn | Ax > b}.



The Sherali-Adams Hierarchy
Sherali-Adams for Stable Sets in Bounded Tree-width Graphs

Definition (Tree-decompositions, tree-width)

Let G be a graph, T a tree, and let B = (Bt)t∈T be a family of
vertex sets Bt ⊆ V (G) indexed by the vertices t of T , called the
bags. The pair (T,B) is called a tree-decomposition of G if:

(i) V (G) =
⋃
t∈T Bt;

(ii) for every edge e ∈ E(G) there exists a t ∈ T such that both
ends of e lie in Bt;

(iii) Bt1 ∩Bt3 ⊆ Bt2 whenever t1, t2, t3 ∈ V (T ) are such that t2
lies on the unique t1–t3 path in T .

The width of a tree-decomposition (T,B) is defined as
maxt∈V (T ) |Bt| − 1. The tree-width of G is the minimum width of
a tree-decomposition of G. It is denoted by tw(G).



Wlog, work only with nice tree-decompositions:

Definition (Nice tree-decompositions)

A rooted tree decomposition (T,B, r) of G is nice if for every
u ∈ V (T ):

|Bu| = 1 (leaf), or

u has one child v with Bu ⊆ Bv and |Bu| = |Bv| − 1 (forget),
or

u has one child v with Bv ⊆ Bu and |Bu| = |Bv|+ 1
(introduce), or

u has two children v and w with Bu = Bv = Bw (join).



Start with the edge relaxation

ESTAB(G) := {x ∈ RV (G)
+ | ∀ij ∈ E(G) : xi + xj 6 1}

of STAB(G).

Notice that the ESTAB(G)I = STAB(G).

Theorem (Bienstock-Ozbay)

Let G be a graph and let H be a subgraph of G with tw(H) = k.
Then every inequality

∑
i∈V (H)wixi 6 α(H,w) that is valid for

STAB(H) is valid for SAk+1(ESTAB(G)).



Proof. Wlog, assume that H = G.

Want to prove: SAk+1(ESTAB(G)) = STAB(G).

Start with a fractional point x∗ ∈ SAk+1(ESTAB(G)) and consistent local
distributions, try to define a single distribution over the stable sets of G that
has the right marginals x∗i for i ∈ V (G).

Take nice rooted tree-decomposition (T,B, r) of G with all the bags of size at
most k. For u ∈ V (T ), Gu denote the subgraph of G induced on the union of
the bags of the descendants of u, so that Gr = G. Define a distribution
D(V (Gu)) on {0, 1}V (Gu) for each node u of T , starting with the leaves.

Key equation: for node u ∈ V (T ): Define Px∼D(Gu)[x = a] as

Px∼D(Bu)[∀i ∈ Bu : xi = ai]

·
∏

v child of u

Px∼D(Gv)[∀i ∈ V (Gv)rBu : xi = ai | ∀i ∈ V (Gv) ∩Bu : xi = ai]

Then check that the marginals are correct.



The Sherali-Adams Hierarchy
Sherali-Adams for Max-Cut

Definition (metric polytope)

Let P ⊆ R(n2) be defined by

xij + xjk − xik > 0 ∀i, j, k distinct

2− xij − xjk − xik > 0 ∀i, j, k distinct

1− xij > 0 ∀i, j distinct

xij > 0 ∀i, j distinct

Remark

PI is the cut-polytope (of Kn)

Know: consistent local distributions of cuts on sets of size
6 2r + 3 define feasible solutions to SAr(P ).



Theorem (Charikar, Makarychev, Makarychev)

For “small” r, can find graph G with m edges with

OPT(G) 6

(
1

2
+ ε

)
m

but at the same time

max

 ∑
ij∈E(G)

xij | x ∈ SAr(P )

 > (1− ε)m.

Can even take r ≈ nδ for some δ = δ(ε) > 0



Proof idea. Take G to be a random ∆-regular graph, where
∆ = ∆(ε) is large enough.

We need to show:

1 OPT(G) 6
(

1
2 + ε

)
m

2 SAr(P ) “thinks” that most of the edges of G can be cut

For (1), use fact that almost surely, the eigenvalues of G
∆ = λ1 > λ2 > · · · > λn of G(n,∆) satisfy

max{|λ2|, |λn|} 6 2
√

2∆− 1 + o(1)

And the GW relaxation.

Exercise

Use this to check that OPT(G) 6
(

1
2 + ε

)
m for G = G(n,∆).



Notice that the GW relaxation can be written

max

{
1

4
〈LG, X〉 | X < 0, ∀i : Xii = 1

}
where LG := ∆I −AG is the Laplacian

Then pick µ carefully so that

µI − 1

4
LG < 0

By weak duality, get

0 6 〈µI − 1

4
LG, X〉 = µn− 1

4
〈LG, X〉

so that

OPT(G) >
1

4
〈LG, X〉 > µn

Here can take: µ = ∆+2
√

2∆−1
4



For (2), use fact that G “locally looks like a forest”, so that most
edge can be cut in every induced subgraph on at most k := 2r + 3
vertices.

Difficulty. Define local distributions of cuts that are consistent.

Idea.

define metric ν on the whole graph, based on vertex distances

show that can embed ν restricted to every set of size at most
k isometrically into the unit sphere of some Rd, in such a way
that ν(i, j) > 2− ε′ for adjacent vertices i, j

use embedding to define local distributions by hyperplane
rounding, with

xij =
1

π
arccos

(
1− ν2(i, j)

2

)
so that xij > 1− ε for ij ∈ E(G).

consistency is automatic
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