
Extended Formulations for Combinatorial
Optimization

Samuel Fiorini

Université libre de Bruxelles (ULB, Brussels)

ISCO 2016 Summer School
Day 2 (afternoon)

Warm-up
Extended Formulation of the Stable Set Polytope of a Comparability Graph

P = (V,4) partially ordered set (poset)

G = G(P) comparability graph of P (always perfect)

{(yv− , yv+)}v∈V is consistent with P if

∀v ∈ V : (yv− , yv+) open interval ⊆ (0, 1)

v 4 w =⇒ yv+ 6 yw−

P 0 1 I

STAB(G(P)) =
{
x ∈ RV |∃{(yv− , yv+)}v∈V consistent with P

s.t. xv = yv+ − yv− ∀v ∈ V
}

Warm-up
Extended Formulation of the Stable Set Polytope of a Comparability Graph

P = (V,4) partially ordered set (poset)

G = G(P) comparability graph of P (always perfect)

{(yv− , yv+)}v∈V is consistent with P if

∀v ∈ V : (yv− , yv+) open interval ⊆ (0, 1)

v 4 w =⇒ yv+ 6 yw−

P 0 1 I

STAB(G(P)) =
{
x ∈ RV |∃{(yv− , yv+)}v∈V consistent with P

s.t. xv = yv+ − yv− ∀v ∈ V
}

Warm-up
Extended Formulation of the Stable Set Polytope of a Comparability Graph

P = (V,4) partially ordered set (poset)

G = G(P) comparability graph of P (always perfect)

{(yv− , yv+)}v∈V is consistent with P if

∀v ∈ V : (yv− , yv+) open interval ⊆ (0, 1)

v 4 w =⇒ yv+ 6 yw−

P 0 1 I

STAB(G(P)) =
{
x ∈ RV |∃{(yv− , yv+)}v∈V consistent with P

s.t. xv = yv+ − yv− ∀v ∈ V
}

Extended Formulations as Communication Protocols
Deterministic Protocols

f : A×B → {0, 1} Boolean function (≡ binary matrix)

Two players:

Alice knows a ∈ A
Bob knows b ∈ B

want to compute f(a, b) by exchanging bits

Goal: Minimize complexity := #bits exchanged

b1 b2 b3 b4
a1 0 0 0 1
a2 0 0 0 1
a3 0 0 0 0
a4 0 1 1 1

Alice

Alice

Bob Bob

0 1 0

1 0

a ∈ {a1, a2} a ∈ {a3, a4}

b ∈ {b1, b2, b3} b ∈ {b4} b ∈ {b2, b3, b4} b ∈ {b1}

a ∈ {a4} a ∈ {a3}

Observation

∃ complexity c protocol for computing f =⇒ rk+(f) 6 2c

b1 b2 b3 b4
a1 0 0 0 1
a2 0 0 0 1
a3 0 0 0 0
a4 0 1 1 1

Alice

Alice

Bob Bob

0 1 0

1 0

a ∈ {a1, a2} a ∈ {a3, a4}

b ∈ {b1, b2, b3} b ∈ {b4} b ∈ {b2, b3, b4} b ∈ {b1}

a ∈ {a4} a ∈ {a3}

Observation

∃ complexity c protocol for computing f =⇒ rk+(f) 6 2c

b1 b2 b3 b4
a1 0 0 0 1
a2 0 0 0 1
a3 0 0 0 0
a4 0 1 1 1

Alice

Alice

Bob Bob

0 1 0

1 0

a ∈ {a1, a2} a ∈ {a3, a4}

b ∈ {b1, b2, b3} b ∈ {b4} b ∈ {b2, b3, b4} b ∈ {b1}

a ∈ {a4} a ∈ {a3}

Observation

∃ complexity c protocol for computing f =⇒ rk+(f) 6 2c

G graph with n vertices

A = {a ∈ {0, 1}n | a encodes a clique in G}
B = {b ∈ {0, 1}n | b encodes a stable set in G}

f(a, b) =

{
1 if a, b are disjoint

0 if a, b intersect

Theorem (Yannakakis ’91)

∃ O(log2 n)-complexity protocol for f = f(G)

Corollary (Yannakakis ’91)

∀ perfect graphs G: xc(STAB(G)) = 2O(log2 n) = nO(logn)

G graph with n vertices

A = {a ∈ {0, 1}n | a encodes a clique in G}
B = {b ∈ {0, 1}n | b encodes a stable set in G}

f(a, b) =

{
1 if a, b are disjoint

0 if a, b intersect

Theorem (Yannakakis ’91)

∃ O(log2 n)-complexity protocol for f = f(G)

Corollary (Yannakakis ’91)

∀ perfect graphs G: xc(STAB(G)) = 2O(log2 n) = nO(logn)

G graph with n vertices

A = {a ∈ {0, 1}n | a encodes a clique in G}
B = {b ∈ {0, 1}n | b encodes a stable set in G}

f(a, b) =

{
1 if a, b are disjoint

0 if a, b intersect

Theorem (Yannakakis ’91)

∃ O(log2 n)-complexity protocol for f = f(G)

Corollary (Yannakakis ’91)

∀ perfect graphs G: xc(STAB(G)) = 2O(log2 n) = nO(logn)

Extended Formulations as Communication Protocols
Randomized Protocols Computing a Function in Expectation

The main differences:

Alice and Bob can use (private) random bits to make choices

1− pi(a)pi(a)

i

f : A×B → R+, Alice and Bob can output any value ∈ R+

Theorem (Faenza, F, Grappe & Tiwary ’11)

If c = c(f) is the minimum complexity of a randomized communication
protocol with nonnegative outputs computing f in expectation, then

rk+(f) = Θ(2c)

Extended Formulations as Communication Protocols
Randomized Protocols Computing a Function in Expectation

The main differences:

Alice and Bob can use (private) random bits to make choices

1− pi(a)pi(a)

i

f : A×B → R+, Alice and Bob can output any value ∈ R+

Theorem (Faenza, F, Grappe & Tiwary ’11)

If c = c(f) is the minimum complexity of a randomized communication
protocol with nonnegative outputs computing f in expectation, then

rk+(f) = Θ(2c)

Write M = TU , where
T ∈ Rm×r+ row-stochastic (w.l.o.g.)
U ∈ Rr×n+

r 6 rk+(M) + 1

Protocol:

Alice gets row index i, Bob gets column index j

Alice picks random column index k ∈ [r] w.p. Tik, sends it to Bob

Bob outputs value Ukj

Expected value on input (i, j):
r∑

k=1

TikUkj = Mij

Complexity: log rk+(M) +O(1)

Write M = TU , where
T ∈ Rm×r+ row-stochastic (w.l.o.g.)
U ∈ Rr×n+

r 6 rk+(M) + 1

Protocol:

Alice gets row index i, Bob gets column index j

Alice picks random column index k ∈ [r] w.p. Tik, sends it to Bob

Bob outputs value Ukj

Expected value on input (i, j):
r∑

k=1

TikUkj = Mij

Complexity: log rk+(M) +O(1)

Write M = TU , where
T ∈ Rm×r+ row-stochastic (w.l.o.g.)
U ∈ Rr×n+

r 6 rk+(M) + 1

Protocol:

Alice gets row index i, Bob gets column index j

Alice picks random column index k ∈ [r] w.p. Tik, sends it to Bob

Bob outputs value Ukj

Expected value on input (i, j):
r∑

k=1

TikUkj = Mij

Complexity: log rk+(M) +O(1)

Three equivalent ways to look at EFs:

1 A linear system Ex+ Fy = g, y > 0 with y ∈ Rr

2 A rank-r nonnegative factorization S = TU of slack matrix S

3 A log r-complexity randomized protocol computing S in expectation

Three equivalent ways to look at EFs:

1 A linear system Ex+ Fy = g, y > 0 with y ∈ Rr

2 A rank-r nonnegative factorization S = TU of slack matrix S

3 A log r-complexity randomized protocol computing S in expectation

Three equivalent ways to look at EFs:

1 A linear system Ex+ Fy = g, y > 0 with y ∈ Rr

2 A rank-r nonnegative factorization S = TU of slack matrix S

3 A log r-complexity randomized protocol computing S in expectation

Monotone Boolean Functions, Monotone Circuits

Definition (monotone Boolean function)

A Boolean function f : {0, 1}n → {0, 1} is said to be monotone if

∀x, y ∈ {0, 1}n : x 6 y =⇒ f(x) 6 f(y)

Examples:

Weighted threshold function. Given s1, . . . , sn, D ∈ R+:

f(x) = 1 ⇐⇒ ∑n
i=1 sixi > D

Any function f computed by a monotone circuit with n inputs

x1

x2

x3

Monotone Boolean Functions, Monotone Circuits

Definition (monotone Boolean function)

A Boolean function f : {0, 1}n → {0, 1} is said to be monotone if

∀x, y ∈ {0, 1}n : x 6 y =⇒ f(x) 6 f(y)

Examples:

Weighted threshold function. Given s1, . . . , sn, D ∈ R+:

f(x) = 1 ⇐⇒ ∑n
i=1 sixi > D

Any function f computed by a monotone circuit with n inputs

x1

x2

x3

Definition (monotone Karchmer-Wigderson game)

Alice is given a ∈ {0, 1}n such that f(a) = 0

Bob is given b ∈ {0, 1}n such that f(b) = 1

Goal: compute together an index i∗ such that ai∗ = 0 and bi∗ = 1

Theorem (Karchmer and Wigderson ’90)

min (# bits for solving the monotone KW game) = min (depth of a
monotone circuit computing f)

Proof. (6)

x1

x2

x3

Definition (monotone Karchmer-Wigderson game)

Alice is given a ∈ {0, 1}n such that f(a) = 0

Bob is given b ∈ {0, 1}n such that f(b) = 1

Goal: compute together an index i∗ such that ai∗ = 0 and bi∗ = 1

Theorem (Karchmer and Wigderson ’90)

min (# bits for solving the monotone KW game) = min (depth of a
monotone circuit computing f)

Proof. (6)

x1

x2

x3

Definition (monotone Karchmer-Wigderson game)

Alice is given a ∈ {0, 1}n such that f(a) = 0

Bob is given b ∈ {0, 1}n such that f(b) = 1

Goal: compute together an index i∗ such that ai∗ = 0 and bi∗ = 1

Theorem (Karchmer and Wigderson ’90)

min (# bits for solving the monotone KW game) = min (depth of a
monotone circuit computing f)

Proof. (6)

x1

x2

x3

P = P (f) := conv(f−1(1))

Q = Q(f) := {x | ∀a ∈ f−1(0) :
∑
i:ai=0 xi > 1}

Observation (Hrubeš, rediscovered by Göös ’16)

∃ depth-D monotone circuit computing f =⇒ ∃ complexity-D protocol
for the corresponding monotone KW game =⇒ ∃ size-n2D EF of the
pair (P,Q)

Proof.

Sab =

(∑
i:ai=0

bi

)
−1 =

∑
i:ai=0, i6=i∗

bi = (a1, . . . , ai∗−1, ai∗+1, . . . , an)·

b1
...

bi∗−1

bi∗+1

...
bn

P = P (f) := conv(f−1(1))

Q = Q(f) := {x | ∀a ∈ f−1(0) :
∑
i:ai=0 xi > 1}

Observation (Hrubeš, rediscovered by Göös ’16)

∃ depth-D monotone circuit computing f =⇒ ∃ complexity-D protocol
for the corresponding monotone KW game =⇒ ∃ size-n2D EF of the
pair (P,Q)

Proof.

Sab =

(∑
i:ai=0

bi

)
−1 =

∑
i:ai=0, i6=i∗

bi = (a1, . . . , ai∗−1, ai∗+1, . . . , an)·

b1
...

bi∗−1

bi∗+1

...
bn

P = P (f) := conv(f−1(1))

Q = Q(f) := {x | ∀a ∈ f−1(0) :
∑
i:ai=0 xi > 1}

Observation (Hrubeš, rediscovered by Göös ’16)

∃ depth-D monotone circuit computing f =⇒ ∃ complexity-D protocol
for the corresponding monotone KW game =⇒ ∃ size-n2D EF of the
pair (P,Q)

Proof.

Sab =

(∑
i:ai=0

bi

)
−1 =

∑
i:ai=0, i6=i∗

bi = (a1, . . . , ai∗−1, ai∗+1, . . . , an)·

b1
...

bi∗−1

bi∗+1

...
bn

Extended Formulations as Communication Protocols
Consequences of the KW/EF connection

Theorem (Raz-Wigderson ’90)

Every monotone circuit that decides if a given n-vertex graph has a
perfect matching, has depth Ω(n).

follows in a black-box way from

Theorem (Rothvoss’14)

The matching polytope Pmatch(Kn) has extension complexity 2Ω(n).

Theorem (matroids from the bases)

A collection B of subsets of a finite set E form the bases of a matroid if
and only if

1 B is nonempty

2 ∀A,B ∈ B and a ∈ ArB, ∃b ∈ B rA s.t. Ar {a} ∪ {b} ∈ B

Definition (sparse paving matroid)

Let N be a collection of subsets of E s.t.

1 all the sets in N have the same size r

2 no two sets in N have Hamming distance 6 2

Then B :=
(
E
r

)
\ N form the bases of a matroid, called a sparse paving

matroid.

Exercise

Prove that there are at least 22Ω(n)

sparse paving matroids.

Observation (Göös)

Facet-defining rank inequalities for sparse paving matroid of rank r are all
of the form ∑

e∈F
xe 6 r − 1 = |F | − 1 ⇐⇒

∑
e∈F

(1− xe) > 1

where F ∈ B or ∑
e∈E

xe 6 r

Get from this:

every depth-D monotone circuit for the function
f : {0, 1}E → {0, 1} such that f(x) = 1 iff x is independent implies
a size-O(n2D) extended formulation for the matroid polytope of a
sparse paving matroid.

f is a slice function, so the same applies to non-monotone circuits
=⇒ huge obstacle for lower bounds

Extended Formulations as Communication Protocols
Min-knapsack

Given sizes s1, . . . , sn ∈ R+, demand D ∈ R+:

Weighted threshold function: f(x) = 1 ⇐⇒ ∑n
i=1 sixi > D

Min-knapsack polytope: P := conv {x ∈ {0, 1}n |∑n
i=1 sixi > D}

Question

Is there a size-nO(1) O(1)-apx EF for min-knapsack?

Theorem (Bazzi, F, Huang, Svensson ’16)

∀ε > 0, ∃ size-(1/ε)O(1)nO(logn) (2 + ε)-apx EF for min-knapsack

Extended Formulations as Communication Protocols
Min-knapsack

Given sizes s1, . . . , sn ∈ R+, demand D ∈ R+:

Weighted threshold function: f(x) = 1 ⇐⇒ ∑n
i=1 sixi > D

Min-knapsack polytope: P := conv {x ∈ {0, 1}n |∑n
i=1 sixi > D}

Question

Is there a size-nO(1) O(1)-apx EF for min-knapsack?

Theorem (Bazzi, F, Huang, Svensson ’16)

∀ε > 0, ∃ size-(1/ε)O(1)nO(logn) (2 + ε)-apx EF for min-knapsack

Extended Formulations as Communication Protocols
Min-knapsack

Given sizes s1, . . . , sn ∈ R+, demand D ∈ R+:

Weighted threshold function: f(x) = 1 ⇐⇒ ∑n
i=1 sixi > D

Min-knapsack polytope: P := conv {x ∈ {0, 1}n |∑n
i=1 sixi > D}

Question

Is there a size-nO(1) O(1)-apx EF for min-knapsack?

Theorem (Bazzi, F, Huang, Svensson ’16)

∀ε > 0, ∃ size-(1/ε)O(1)nO(logn) (2 + ε)-apx EF for min-knapsack

Starting point:

Hrubeš-Göös connection

O(log2(n))-depth monotone circuits for weighted threshold
functions (Beimel and Weinreb ’06)

Knapsack cover inequalities (Carr, Fleischer, Leung and Phillips ’06)

For a ∈ f−1(0), if let D(a) := D −∑n
i=1 siai > 0 then∑

i:ai=0

min({si, D(a)}) · xi > D(a)

is a valid inequality, called the (capacitated) knapsack-cover inequality

Theorem (Carr et al. ’06)

The (exponentially many) knapsack-cover inequalities provide a 2-apx of
min-knapsack

Starting point:

Hrubeš-Göös connection

O(log2(n))-depth monotone circuits for weighted threshold
functions (Beimel and Weinreb ’06)

Knapsack cover inequalities (Carr, Fleischer, Leung and Phillips ’06)

For a ∈ f−1(0), if let D(a) := D −∑n
i=1 siai > 0 then∑

i:ai=0

min({si, D(a)}) · xi > D(a)

is a valid inequality, called the (capacitated) knapsack-cover inequality

Theorem (Carr et al. ’06)

The (exponentially many) knapsack-cover inequalities provide a 2-apx of
min-knapsack

Starting point:

Hrubeš-Göös connection

O(log2(n))-depth monotone circuits for weighted threshold
functions (Beimel and Weinreb ’06)

Knapsack cover inequalities (Carr, Fleischer, Leung and Phillips ’06)

For a ∈ f−1(0), if let D(a) := D −∑n
i=1 siai > 0 then∑

i:ai=0

min({si, D(a)}) · xi > D(a)

is a valid inequality, called the (capacitated) knapsack-cover inequality

Theorem (Carr et al. ’06)

The (exponentially many) knapsack-cover inequalities provide a 2-apx of
min-knapsack

Our approach:

relax right-hand side to αD(a) where α = 2/(2 + ε) ≈ 1

coarse + fine approximation

try to find a “big” item i∗ such that ai∗ = 0, bi∗ = 1

use several threshold functions

make things constructive (given an objective function!)

Extended Formulations as Communication Protocols
Making things constructive

Consider for p, q large:

p inequalities: Aix > bi (i ∈ [p])

q solutions: sj (j ∈ [q]) of this system

Data defines slack matrix M ∈ Rp×q+ by Mij := Aisj − bi

Assume: M = FV , where F ∈ Rp×r+ and V ∈ Rr×q+

This gives extended formulation

Ax− b = Fy, y > 0

This has p equations, only 6 n+ r are non-redundant!

Question

How can we pick the equations? How can we use the extended
formulation in an algorithm?

Extended Formulations as Communication Protocols
Making things constructive

Consider for p, q large:

p inequalities: Aix > bi (i ∈ [p])

q solutions: sj (j ∈ [q]) of this system

Data defines slack matrix M ∈ Rp×q+ by Mij := Aisj − bi
Assume: M = FV , where F ∈ Rp×r+ and V ∈ Rr×q+

This gives extended formulation

Ax− b = Fy, y > 0

This has p equations, only 6 n+ r are non-redundant!

Question

How can we pick the equations? How can we use the extended
formulation in an algorithm?

Extended Formulations as Communication Protocols
Making things constructive

Consider for p, q large:

p inequalities: Aix > bi (i ∈ [p])

q solutions: sj (j ∈ [q]) of this system

Data defines slack matrix M ∈ Rp×q+ by Mij := Aisj − bi
Assume: M = FV , where F ∈ Rp×r+ and V ∈ Rr×q+

This gives extended formulation

Ax− b = Fy, y > 0

This has p equations, only 6 n+ r are non-redundant!

Question

How can we pick the equations? How can we use the extended
formulation in an algorithm?

Extended Formulations as Communication Protocols
Making things constructive

Consider for p, q large:

p inequalities: Aix > bi (i ∈ [p])

q solutions: sj (j ∈ [q]) of this system

Data defines slack matrix M ∈ Rp×q+ by Mij := Aisj − bi
Assume: M = FV , where F ∈ Rp×r+ and V ∈ Rr×q+

This gives extended formulation

Ax− b = Fy, y > 0

This has p equations, only 6 n+ r are non-redundant!

Question

How can we pick the equations? How can we use the extended
formulation in an algorithm?

Extended Formulations as Communication Protocols
Making things constructive

Consider for p, q large:

p inequalities: Aix > bi (i ∈ [p])

q solutions: sj (j ∈ [q]) of this system

Data defines slack matrix M ∈ Rp×q+ by Mij := Aisj − bi
Assume: M = FV , where F ∈ Rp×r+ and V ∈ Rr×q+

This gives extended formulation

Ax− b = Fy, y > 0

This has p equations, only 6 n+ r are non-redundant!

Question

How can we pick the equations? How can we use the extended
formulation in an algorithm?

In case the non-negative factorization comes from a communication
protocol, can write:

Aix− bi =
∑
` leaf

qi(`) · y` ∀i ∈ [p]

y` > 0 ∀` leaf

where qi(u) := probability of reaching node u of the protocol tree on any
input pair of the form (i, ∗)

Lemma

Let ∆ := max{− log(qi(`)) | i ∈ [p], ` leaf , qi(`) > 0} and let h denote
the height of the protocol tree. For any fixed i ∈ [p], one can write down
the corresponding equation in O(2h∆ log ∆ log log ∆) time and O(2h∆)
space.

In case the non-negative factorization comes from a communication
protocol, can write:

Aix− bi =
∑
` leaf

qi(`) · y` ∀i ∈ [p]

y` > 0 ∀` leaf

where qi(u) := probability of reaching node u of the protocol tree on any
input pair of the form (i, ∗)

Lemma

Let ∆ := max{− log(qi(`)) | i ∈ [p], ` leaf , qi(`) > 0} and let h denote
the height of the protocol tree. For any fixed i ∈ [p], one can write down
the corresponding equation in O(2h∆ log ∆ log log ∆) time and O(2h∆)
space.

This leads to a cutting plane algorithm. Given costs c ∈ Rn

1 Initialize I ⊆ [p]

2 Solve
min cᵀx

s.t. Aix− bi =
∑
` leaf pi(`) · y` ∀i ∈ I

y` > 0 ∀` leaf

3 Get optimum solution x∗

4 Check if x∗ violates any constraint Aix > bi (i ∈ [p])

5 If yes, add i to I and repeat. If no, STOP.

Observation

At most n+ r elements are added to I

Assuming that the separation can be done in time T (n), can solve the LP
in time

O
(

(n+ r)(T (n) + r∆ log ∆ log log ∆ + nO(1)(n+ r)∆)
)

This leads to a cutting plane algorithm. Given costs c ∈ Rn

1 Initialize I ⊆ [p]

2 Solve
min cᵀx

s.t. Aix− bi =
∑
` leaf pi(`) · y` ∀i ∈ I

y` > 0 ∀` leaf

3 Get optimum solution x∗

4 Check if x∗ violates any constraint Aix > bi (i ∈ [p])

5 If yes, add i to I and repeat. If no, STOP.

Observation

At most n+ r elements are added to I

Assuming that the separation can be done in time T (n), can solve the LP
in time

O
(

(n+ r)(T (n) + r∆ log ∆ log log ∆ + nO(1)(n+ r)∆)
)

This leads to a cutting plane algorithm. Given costs c ∈ Rn

1 Initialize I ⊆ [p]

2 Solve
min cᵀx

s.t. Aix− bi =
∑
` leaf pi(`) · y` ∀i ∈ I

y` > 0 ∀` leaf

3 Get optimum solution x∗

4 Check if x∗ violates any constraint Aix > bi (i ∈ [p])

5 If yes, add i to I and repeat. If no, STOP.

Observation

At most n+ r elements are added to I

Assuming that the separation can be done in time T (n), can solve the LP
in time

O
(

(n+ r)(T (n) + r∆ log ∆ log log ∆ + nO(1)(n+ r)∆)
)

Announcement

It is time for a break!

More Lower-Bounding techniques
Overview

Techniques to prove lower bounds on non-negative rank:

1 rectangle covering lower bound

2 hyperplane separation lower bound (Rothvoss, F.)

3 common information (Braun-Pokutta)

4 for CSPs: reduction to SA (Chan-Lee-Raghavendra-Steurer)

5 reductions between problems

6 counting (Rothvoss)

More Lower-Bounding techniques
Overview

Techniques to prove lower bounds on non-negative rank:

1 rectangle covering lower bound

2 hyperplane separation lower bound (Rothvoss, F.)

3 common information (Braun-Pokutta)

4 for CSPs: reduction to SA (Chan-Lee-Raghavendra-Steurer)

5 reductions between problems

6 counting (Rothvoss)

More Lower-Bounding techniques
Overview

Techniques to prove lower bounds on non-negative rank:

1 rectangle covering lower bound

2 hyperplane separation lower bound (Rothvoss, F.)

3 common information (Braun-Pokutta)

4 for CSPs: reduction to SA (Chan-Lee-Raghavendra-Steurer)

5 reductions between problems

6 counting (Rothvoss)

More Lower-Bounding techniques
Overview

Techniques to prove lower bounds on non-negative rank:

1 rectangle covering lower bound

2 hyperplane separation lower bound (Rothvoss, F.)

3 common information (Braun-Pokutta)

4 for CSPs: reduction to SA (Chan-Lee-Raghavendra-Steurer)

5 reductions between problems

6 counting (Rothvoss)

More Lower-Bounding techniques
Overview

Techniques to prove lower bounds on non-negative rank:

1 rectangle covering lower bound

2 hyperplane separation lower bound (Rothvoss, F.)

3 common information (Braun-Pokutta)

4 for CSPs: reduction to SA (Chan-Lee-Raghavendra-Steurer)

5 reductions between problems

6 counting (Rothvoss)

More Lower-Bounding techniques
Overview

Techniques to prove lower bounds on non-negative rank:

1 rectangle covering lower bound

2 hyperplane separation lower bound (Rothvoss, F.)

3 common information (Braun-Pokutta)

4 for CSPs: reduction to SA (Chan-Lee-Raghavendra-Steurer)

5 reductions between problems

6 counting (Rothvoss)

More Lower-Bounding techniques
Overview

Techniques to prove lower bounds on non-negative rank:

1 rectangle covering lower bound

2 hyperplane separation lower bound (Rothvoss, F.)

3 common information (Braun-Pokutta)

4 for CSPs: reduction to SA (Chan-Lee-Raghavendra-Steurer)

5 reductions between problems

6 counting (Rothvoss)

More Lower-Bounding techniques
Hyperplane separation lower bound

Consider any matrix S ∈ Rk×`+

Assume that weights W ∈ Rk×` (−’s allowed) satisfy:

〈W,X〉 6 δ · ||X||∞ ∀X ∈ Rk×`+ that is rank-1

Then if S =
∑r
i=1Xi where Xi ∈ Rk×`+ are rank-1:

〈W,S〉 = 〈W,
r∑
i=1

Xi〉

=

r∑
i=1

〈W,Xi〉

6
r∑
i=1

δ · ||Xi||∞

6 r · δ · ||S||∞

=⇒ r >
〈W,S〉
δ · ||S||∞

More Lower-Bounding techniques
Hyperplane separation lower bound

Consider any matrix S ∈ Rk×`+

Assume that weights W ∈ Rk×` (−’s allowed) satisfy:

〈W,X〉 6 δ · ||X||∞ ∀X ∈ Rk×`+ that is rank-1

Then if S =
∑r
i=1Xi where Xi ∈ Rk×`+ are rank-1:

〈W,S〉 = 〈W,
r∑
i=1

Xi〉

=

r∑
i=1

〈W,Xi〉

6
r∑
i=1

δ · ||Xi||∞

6 r · δ · ||S||∞

=⇒ r >
〈W,S〉
δ · ||S||∞

More Lower-Bounding techniques
Hyperplane separation lower bound

Consider any matrix S ∈ Rk×`+

Assume that weights W ∈ Rk×` (−’s allowed) satisfy:

〈W,X〉 6 δ · ||X||∞ ∀X ∈ Rk×`+ that is rank-1

Then if S =
∑r
i=1Xi where Xi ∈ Rk×`+ are rank-1:

〈W,S〉 = 〈W,
r∑
i=1

Xi〉

=

r∑
i=1

〈W,Xi〉

6
r∑
i=1

δ · ||Xi||∞

6 r · δ · ||S||∞

=⇒ r >
〈W,S〉
δ · ||S||∞

Observation

Choose optimum δ:

δ := max{〈W,X〉 | X rank-1, X ∈ [0, 1]k×`

= max{
∑
i,j

Wijxiyj | x ∈ [0, 1]k, y ∈ [0, 1]`}

= max{
∑
i,j

Wijxiyj | x ∈ {0, 1}k, y ∈ {0, 1}`}

= max{〈W,R〉 | R rectangle}

The hyperplane separation bound was used to prove:

UDISJ(n) still has super-polynomial non-negative rank even if add
same number ρ everywhere, as long as ρ 6 n1/2−ε (Braun, F,
Pokutta & Steurer)

xc(Pmatch(Kn)) = 2Θ(n) (Rothvoss’14)

Observation

Choose optimum δ:

δ := max{〈W,X〉 | X rank-1, X ∈ [0, 1]k×`

= max{
∑
i,j

Wijxiyj | x ∈ [0, 1]k, y ∈ [0, 1]`}

= max{
∑
i,j

Wijxiyj | x ∈ {0, 1}k, y ∈ {0, 1}`}

= max{〈W,R〉 | R rectangle}

The hyperplane separation bound was used to prove:

UDISJ(n) still has super-polynomial non-negative rank even if add
same number ρ everywhere, as long as ρ 6 n1/2−ε (Braun, F,
Pokutta & Steurer)

xc(Pmatch(Kn)) = 2Θ(n) (Rothvoss’14)

More Lower Bounding Techniques
A Sample Result

G = (V,E) n-vertex graph

Definition

U ⊆ V is a vertex cover if every edge has at least one endpoint in U

Basic IP for VC:

min
∑
i∈V

cixi

s.t. xi + xj > 1 ∀ij ∈ E
xi ∈ {0, 1} ∀i ∈ V

0 6 xi 6 1

More Lower Bounding Techniques
A Sample Result

G = (V,E) n-vertex graph

Definition

U ⊆ V is a vertex cover if every edge has at least one endpoint in U

Basic IP LP for VC:

min
∑
i∈V

cixi

s.t. xi + xj > 1 ∀ij ∈ E
xi ∈ {0, 1} ∀i ∈ V
0 6 xi 6 1

Good/Bad news

The basic LP has integrality gap := supG,c
OPT
LP = 2

How can we improve on this?

1 Explicit constraints: e.g., if G contains odd cycle C then∑
i∈V (C)

xi >
|C|+ 1

2

is a valid inequality =⇒ can add it to the LP (∃ many more!)

2 Implicit constraints (lift-and-project): e.g., Sherali-Adams
hierarchy strengthens current relaxation Ax > b by

Multiplying each inequality of Ax > b by
∏
i∈I xi

∏
i∈J(1− xi) for

each pair (I, J) of disjoint subsets of [n] with |I|+ |J | = r

Expand using x2i = xi

Replace each monomial
∏
i∈S xi by a variable yS where S ⊆ [n],

|S| 6 r + 1

Add the constraint y∅ = 1

Project by letting xi := y{i}

Good/Bad news

The basic LP has integrality gap := supG,c
OPT
LP = 2

How can we improve on this?

1 Explicit constraints: e.g., if G contains odd cycle C then∑
i∈V (C)

xi >
|C|+ 1

2

is a valid inequality =⇒ can add it to the LP (∃ many more!)

2 Implicit constraints (lift-and-project): e.g., Sherali-Adams
hierarchy strengthens current relaxation Ax > b by

Multiplying each inequality of Ax > b by
∏
i∈I xi

∏
i∈J(1− xi) for

each pair (I, J) of disjoint subsets of [n] with |I|+ |J | = r

Expand using x2i = xi

Replace each monomial
∏
i∈S xi by a variable yS where S ⊆ [n],

|S| 6 r + 1

Add the constraint y∅ = 1

Project by letting xi := y{i}

Good/Bad news

The basic LP has integrality gap := supG,c
OPT
LP = 2

How can we improve on this?

1 Explicit constraints: e.g., if G contains odd cycle C then∑
i∈V (C)

xi >
|C|+ 1

2

is a valid inequality =⇒ can add it to the LP (∃ many more!)

2 Implicit constraints (lift-and-project): e.g., Sherali-Adams
hierarchy strengthens current relaxation Ax > b by

Multiplying each inequality of Ax > b by
∏
i∈I xi

∏
i∈J(1− xi) for

each pair (I, J) of disjoint subsets of [n] with |I|+ |J | = r

Expand using x2i = xi

Replace each monomial
∏
i∈S xi by a variable yS where S ⊆ [n],

|S| 6 r + 1

Add the constraint y∅ = 1

Project by letting xi := y{i}

Good/Bad news

The basic LP has integrality gap := supG,c
OPT
LP = 2

How can we improve on this?

1 Explicit constraints: e.g., if G contains odd cycle C then∑
i∈V (C)

xi >
|C|+ 1

2

is a valid inequality =⇒ can add it to the LP (∃ many more!)

2 Implicit constraints (lift-and-project): e.g., Sherali-Adams
hierarchy strengthens current relaxation Ax > b by

Multiplying each inequality of Ax > b by
∏
i∈I xi

∏
i∈J(1− xi) for

each pair (I, J) of disjoint subsets of [n] with |I|+ |J | = r

Expand using x2i = xi

Replace each monomial
∏
i∈S xi by a variable yS where S ⊆ [n],

|S| 6 r + 1

Add the constraint y∅ = 1

Project by letting xi := y{i}

Does this help?

“NO”

Theorem (ABLT’06)

1 Adding all inequalities with support at most εn leaves a gap > 2− ε
2 Performing O(log n) rounds of lift-and-project (LS) leaves a gap of 2

=⇒ No obvious way to improve the integrality gap!

Many follow-up works on lift-and-project hierarchies:

STT’07: o(n) rounds of LS do not help

GMPT’07: O(
√

log n/ log logn) rounds of LS+ do not help

CMM’09: nδ rounds of SA do not help (for small δ > 0)

Does this help? “NO”

Theorem (ABLT’06)

1 Adding all inequalities with support at most εn leaves a gap > 2− ε
2 Performing O(log n) rounds of lift-and-project (LS) leaves a gap of 2

=⇒ No obvious way to improve the integrality gap!

Many follow-up works on lift-and-project hierarchies:

STT’07: o(n) rounds of LS do not help

GMPT’07: O(
√

log n/ log logn) rounds of LS+ do not help

CMM’09: nδ rounds of SA do not help (for small δ > 0)

Does this help? “NO”

Theorem (ABLT’06)

1 Adding all inequalities with support at most εn leaves a gap > 2− ε
2 Performing O(log n) rounds of lift-and-project (LS) leaves a gap of 2

=⇒ No obvious way to improve the integrality gap!

Many follow-up works on lift-and-project hierarchies:

STT’07: o(n) rounds of LS do not help

GMPT’07: O(
√

log n/ log logn) rounds of LS+ do not help

CMM’09: nδ rounds of SA do not help (for small δ > 0)

Does this help? “NO”

Theorem (ABLT’06)

1 Adding all inequalities with support at most εn leaves a gap > 2− ε
2 Performing O(log n) rounds of lift-and-project (LS) leaves a gap of 2

=⇒ No obvious way to improve the integrality gap!

Many follow-up works on lift-and-project hierarchies:

STT’07: o(n) rounds of LS do not help

GMPT’07: O(
√

log n/ log logn) rounds of LS+ do not help

CMM’09: nδ rounds of SA do not help (for small δ > 0)

Does this help? “NO”

Theorem (ABLT’06)

1 Adding all inequalities with support at most εn leaves a gap > 2− ε
2 Performing O(log n) rounds of lift-and-project (LS) leaves a gap of 2

=⇒ No obvious way to improve the integrality gap!

Many follow-up works on lift-and-project hierarchies:

STT’07: o(n) rounds of LS do not help

GMPT’07: O(
√

log n/ log logn) rounds of LS+ do not help

CMM’09: nδ rounds of SA do not help (for small δ > 0)

We generalize the results on hierarchies and prove that

every polynomial size LP for VC has integrality gap 2

Π = (S, I) (min) problem

VC(G) for fixed G

S set of solutions U ⊆ V vertex cover

I set of instances I = I(c) with c ∈ RV+ cost vector

∀I ∈ I have CostI : S → R+ obj fn CostI(U) :=
∑
i∈U ci = c(U)

S solutions I instances

S I

R+
0

CostI

Π = (S, I) (min) problem VC(G) for fixed G

S set of solutions U ⊆ V vertex cover

I set of instances I = I(c) with c ∈ RV+ cost vector

∀I ∈ I have CostI : S → R+ obj fn CostI(U) :=
∑
i∈U ci = c(U)

S solutions I instances

S I

R+
0

CostI

Π = (S, I) (min) problem VC(G) for fixed G

S set of solutions

U ⊆ V vertex cover

I set of instances I = I(c) with c ∈ RV+ cost vector

∀I ∈ I have CostI : S → R+ obj fn CostI(U) :=
∑
i∈U ci = c(U)

S solutions I instances

S I

R+
0

CostI

Π = (S, I) (min) problem VC(G) for fixed G

S set of solutions U ⊆ V vertex cover

I set of instances I = I(c) with c ∈ RV+ cost vector

∀I ∈ I have CostI : S → R+ obj fn CostI(U) :=
∑
i∈U ci = c(U)

S solutions I instances

S I

R+
0

CostI

Π = (S, I) (min) problem VC(G) for fixed G

S set of solutions U ⊆ V vertex cover

I set of instances

I = I(c) with c ∈ RV+ cost vector

∀I ∈ I have CostI : S → R+ obj fn CostI(U) :=
∑
i∈U ci = c(U)

S solutions I instances

S I

R+
0

CostI

Π = (S, I) (min) problem VC(G) for fixed G

S set of solutions U ⊆ V vertex cover

I set of instances I = I(c) with c ∈ RV+ cost vector

∀I ∈ I have CostI : S → R+ obj fn CostI(U) :=
∑
i∈U ci = c(U)

S solutions I instances

S I

R+
0

CostI

Π = (S, I) (min) problem VC(G) for fixed G

S set of solutions U ⊆ V vertex cover

I set of instances I = I(c) with c ∈ RV+ cost vector

∀I ∈ I have CostI : S → R+ obj fn

CostI(U) :=
∑
i∈U ci = c(U)

S solutions I instances

S I

R+
0

CostI

Π = (S, I) (min) problem VC(G) for fixed G

S set of solutions U ⊆ V vertex cover

I set of instances I = I(c) with c ∈ RV+ cost vector

∀I ∈ I have CostI : S → R+ obj fn CostI(U) :=
∑
i∈U ci = c(U)

S solutions I instances

S I

R+
0

CostI

Π = (S, I) (min) problem VC(G) for fixed G

S set of solutions U ⊆ V vertex cover

I set of instances I = I(c) with c ∈ RV+ cost vector

∀I ∈ I have CostI : S → R+ obj fn CostI(U) :=
∑
i∈U ci = c(U)

S solutions I instances

S I

R+
0

CostI

Setting up an LP relaxation:

1 pick d, system Ax > b in Rd

2 realize each S ∈ S as point xS in Rd s.t. AxS > b

3 realize each I ∈ I as affine fn fI(x) on Rd s.t. fI(xS) = CostI(S)

•
• • •

•

Instance I fI(x)−→ Ax > b
LB−→ LP(I) := min{fI(x) | Ax > b}

Always: LP(I) 6 OPT(I) ρ-apx LP if: OPT(I) 6 ρLP(I)

Similar for max problems, e.g., IS(G) = max independent set problem on G

Setting up an LP relaxation:

1 pick d, system Ax > b in Rd

2 realize each S ∈ S as point xS in Rd s.t. AxS > b

3 realize each I ∈ I as affine fn fI(x) on Rd s.t. fI(xS) = CostI(S)

•
• • •

•

Instance I fI(x)−→ Ax > b
LB−→ LP(I) := min{fI(x) | Ax > b}

Always: LP(I) 6 OPT(I) ρ-apx LP if: OPT(I) 6 ρLP(I)

Similar for max problems, e.g., IS(G) = max independent set problem on G

Setting up an LP relaxation:

1 pick d, system Ax > b in Rd

2 realize each S ∈ S as point xS in Rd s.t. AxS > b

3 realize each I ∈ I as affine fn fI(x) on Rd s.t. fI(xS) = CostI(S)

•
• • •

•

Instance I fI(x)−→ Ax > b
LB−→ LP(I) := min{fI(x) | Ax > b}

Always: LP(I) 6 OPT(I) ρ-apx LP if: OPT(I) 6 ρLP(I)

Similar for max problems, e.g., IS(G) = max independent set problem on G

Setting up an LP relaxation:

1 pick d, system Ax > b in Rd

2 realize each S ∈ S as point xS in Rd s.t. AxS > b

3 realize each I ∈ I as affine fn fI(x) on Rd s.t. fI(xS) = CostI(S)

•
• • •

•

Instance I fI(x)−→ Ax > b
LB−→ LP(I) := min{fI(x) | Ax > b}

Always: LP(I) 6 OPT(I)

ρ-apx LP if: OPT(I) 6 ρLP(I)

Similar for max problems, e.g., IS(G) = max independent set problem on G

Setting up an LP relaxation:

1 pick d, system Ax > b in Rd

2 realize each S ∈ S as point xS in Rd s.t. AxS > b

3 realize each I ∈ I as affine fn fI(x) on Rd s.t. fI(xS) = CostI(S)

•
• • •

•

Instance I fI(x)−→ Ax > b
LB−→ LP(I) := min{fI(x) | Ax > b}

Always: LP(I) 6 OPT(I) ρ-apx LP if: OPT(I) 6 ρLP(I)

Similar for max problems, e.g., IS(G) = max independent set problem on G

Setting up an LP relaxation:

1 pick d, system Ax > b in Rd

2 realize each S ∈ S as point xS in Rd s.t. AxS > b

3 realize each I ∈ I as affine fn fI(x) on Rd s.t. fI(xS) = CostI(S)

•
• • •

•

Instance I fI(x)−→ Ax > b
LB−→ LP(I) := min{fI(x) | Ax > b}

Always: LP(I) 6 OPT(I) ρ-apx LP if: OPT(I) 6 ρLP(I)

Similar for max problems, e.g., IS(G) = max independent set problem on G

Definition

Size of LP relaxation Ax > b := # inequalities of Ax > b

Main question

Tradeoff between quality ρ and size for LPs of a given problem?

Theorem (BFPS’15)

∀ε > 0, ∀n0, ∃ graph G with n > n0 vertices such that

every (2− ε)-apx LP relaxation for VC(G) has size nΩ(log n
log log n)

every (1/ε)-apx LP relaxation for IS(G) has size nΩ(log n
log log n)

Answers questions by Singh’10, CLRS’13

“Geometric” limitations to what small LPs can express

Strong consequence of NP 6⊆ P/poly that can be proved without
assuming NP 6⊆ P/poly

Definition

Size of LP relaxation Ax > b := # inequalities of Ax > b

Main question

Tradeoff between quality ρ and size for LPs of a given problem?

Theorem (BFPS’15)

∀ε > 0, ∀n0, ∃ graph G with n > n0 vertices such that

every (2− ε)-apx LP relaxation for VC(G) has size nΩ(log n
log log n)

every (1/ε)-apx LP relaxation for IS(G) has size nΩ(log n
log log n)

Answers questions by Singh’10, CLRS’13

“Geometric” limitations to what small LPs can express

Strong consequence of NP 6⊆ P/poly that can be proved without
assuming NP 6⊆ P/poly

Definition

Size of LP relaxation Ax > b := # inequalities of Ax > b

Main question

Tradeoff between quality ρ and size for LPs of a given problem?

Theorem (BFPS’15)

∀ε > 0, ∀n0, ∃ graph G with n > n0 vertices such that

every (2− ε)-apx LP relaxation for VC(G) has size nΩ(log n
log log n)

every (1/ε)-apx LP relaxation for IS(G) has size nΩ(log n
log log n)

Answers questions by Singh’10, CLRS’13

“Geometric” limitations to what small LPs can express

Strong consequence of NP 6⊆ P/poly that can be proved without
assuming NP 6⊆ P/poly

Definition

Size of LP relaxation Ax > b := # inequalities of Ax > b

Main question

Tradeoff between quality ρ and size for LPs of a given problem?

Theorem (BFPS’15)

∀ε > 0, ∀n0, ∃ graph G with n > n0 vertices such that

every (2− ε)-apx LP relaxation for VC(G) has size nΩ(log n
log log n)

every (1/ε)-apx LP relaxation for IS(G) has size nΩ(log n
log log n)

Answers questions by Singh’10, CLRS’13

“Geometric” limitations to what small LPs can express

Strong consequence of NP 6⊆ P/poly that can be proved without
assuming NP 6⊆ P/poly

Definition

Size of LP relaxation Ax > b := # inequalities of Ax > b

Main question

Tradeoff between quality ρ and size for LPs of a given problem?

Theorem (BFPS’15)

∀ε > 0, ∀n0, ∃ graph G with n > n0 vertices such that

every (2− ε)-apx LP relaxation for VC(G) has size nΩ(log n
log log n)

every (1/ε)-apx LP relaxation for IS(G) has size nΩ(log n
log log n)

Answers questions by Singh’10, CLRS’13

“Geometric” limitations to what small LPs can express

Strong consequence of NP 6⊆ P/poly that can be proved without
assuming NP 6⊆ P/poly

Definition

Size of LP relaxation Ax > b := # inequalities of Ax > b

Main question

Tradeoff between quality ρ and size for LPs of a given problem?

Theorem (BFPS’15)

∀ε > 0, ∀n0, ∃ graph G with n > n0 vertices such that

every (2− ε)-apx LP relaxation for VC(G) has size nΩ(log n
log log n)

every (1/ε)-apx LP relaxation for IS(G) has size nΩ(log n
log log n)

Answers questions by Singh’10, CLRS’13

“Geometric” limitations to what small LPs can express

Strong consequence of NP 6⊆ P/poly that can be proved without
assuming NP 6⊆ P/poly

Remark

We just care about the existence or non-existence of LP relaxations:

do not bound the time it takes to write down the LP (important)

do not bound the coefficients! (not so important)

From FJ’14:

∃ O(n)-size O(
√
n)-apx LP relaxation for IS(G) for any graph G

max
∑
i∈V

wixi

s.t. 0 6 xi 6 yj 6 1 ∀i ∈ Sj∑
j yj 6 b

√
2nc

G

S1 S2 S3 S4 S5

Remark

We just care about the existence or non-existence of LP relaxations:

do not bound the time it takes to write down the LP (important)

do not bound the coefficients! (not so important)

From FJ’14:

∃ O(n)-size O(
√
n)-apx LP relaxation for IS(G) for any graph G

max
∑
i∈V

wixi

s.t. 0 6 xi 6 yj 6 1 ∀i ∈ Sj∑
j yj 6 b

√
2nc

G

S1 S2 S3 S4 S5

Remark

We just care about the existence or non-existence of LP relaxations:

do not bound the time it takes to write down the LP (important)

do not bound the coefficients! (not so important)

From FJ’14:

∃ O(n)-size O(
√
n)-apx LP relaxation for IS(G) for any graph G

max
∑
i∈V

wixi

s.t. 0 6 xi 6 yj 6 1 ∀i ∈ Sj∑
j yj 6 b

√
2nc

G

S1 S2 S3 S4 S5

Remark

We just care about the existence or non-existence of LP relaxations:

do not bound the time it takes to write down the LP (important)

do not bound the coefficients! (not so important)

From FJ’14:

∃ O(n)-size O(
√
n)-apx LP relaxation for IS(G) for any graph G

max
∑
i∈V

wixi

s.t. 0 6 xi 6 yj 6 1 ∀i ∈ Sj∑
j yj 6 b

√
2nc

G

S1

S2 S3 S4 S5

Remark

We just care about the existence or non-existence of LP relaxations:

do not bound the time it takes to write down the LP (important)

do not bound the coefficients! (not so important)

From FJ’14:

∃ O(n)-size O(
√
n)-apx LP relaxation for IS(G) for any graph G

max
∑
i∈V

wixi

s.t. 0 6 xi 6 yj 6 1 ∀i ∈ Sj∑
j yj 6 b

√
2nc

G

S1 S2

S3 S4 S5

Remark

We just care about the existence or non-existence of LP relaxations:

do not bound the time it takes to write down the LP (important)

do not bound the coefficients! (not so important)

From FJ’14:

∃ O(n)-size O(
√
n)-apx LP relaxation for IS(G) for any graph G

max
∑
i∈V

wixi

s.t. 0 6 xi 6 yj 6 1 ∀i ∈ Sj∑
j yj 6 b

√
2nc

G

S1 S2 S3

S4 S5

Remark

We just care about the existence or non-existence of LP relaxations:

do not bound the time it takes to write down the LP (important)

do not bound the coefficients! (not so important)

From FJ’14:

∃ O(n)-size O(
√
n)-apx LP relaxation for IS(G) for any graph G

max
∑
i∈V

wixi

s.t. 0 6 xi 6 yj 6 1 ∀i ∈ Sj∑
j yj 6 b

√
2nc

G

S1 S2 S3 S4

S5

Remark

We just care about the existence or non-existence of LP relaxations:

do not bound the time it takes to write down the LP (important)

do not bound the coefficients! (not so important)

From FJ’14:

∃ O(n)-size O(
√
n)-apx LP relaxation for IS(G) for any graph G

max
∑
i∈V

wixi

s.t. 0 6 xi 6 yj 6 1 ∀i ∈ Sj∑
j yj 6 b

√
2nc

G

S1 S2 S3 S4 S5

Constraint satisfaction problems

Parameters of the problem:

number of variables n

domain size R

arity k

Definition (Max-CSP(n,R, k))

Solutions: assignments x ∈ [R]n of values to the vars x1, . . . , xn

Instances: sets I := {P1, . . . , Pm} of Boolean predicates
Pi : [R]n → {0, 1} : x 7→ Pi(x), each depending on k variables

Objective function: ValI(x) := 1
m

∑m
i=1 Pi(x)

Example (Max-Cut(n))

arity k = 2

domain size R = 2 and domain {0, 1}
predicates of the form P (x) = xi ⊕ xj

Constraint satisfaction problems

Parameters of the problem:

number of variables n

domain size R

arity k

Definition (Max-CSP(n,R, k))

Solutions: assignments x ∈ [R]n of values to the vars x1, . . . , xn

Instances: sets I := {P1, . . . , Pm} of Boolean predicates
Pi : [R]n → {0, 1} : x 7→ Pi(x), each depending on k variables

Objective function: ValI(x) := 1
m

∑m
i=1 Pi(x)

Example (Max-Cut(n))

arity k = 2

domain size R = 2 and domain {0, 1}
predicates of the form P (x) = xi ⊕ xj

Constraint satisfaction problems

Parameters of the problem:

number of variables n

domain size R

arity k

Definition (Max-CSP(n,R, k))

Solutions: assignments x ∈ [R]n of values to the vars x1, . . . , xn

Instances: sets I := {P1, . . . , Pm} of Boolean predicates
Pi : [R]n → {0, 1} : x 7→ Pi(x), each depending on k variables

Objective function: ValI(x) := 1
m

∑m
i=1 Pi(x)

Example (Max-Cut(n))

arity k = 2

domain size R = 2 and domain {0, 1}
predicates of the form P (x) = xi ⊕ xj

Recent results

BPZ’14 prove super-polynomial lower bounds for

(1.5− ε)-apx LP relaxations of VC(G)

(2− ε)-apx LP relaxations of IS(G)

by combining

lower bound of CLRS’13 for (2− ε)-apx LP relaxations of Max-Cut

reductions from Max-Cut(n) to VC(G) and IS(G)

Max-Cut

VC

IS

Recent results

BPZ’14 prove super-polynomial lower bounds for

(1.5− ε)-apx LP relaxations of VC(G)

(2− ε)-apx LP relaxations of IS(G)

by combining

lower bound of CLRS’13 for (2− ε)-apx LP relaxations of Max-Cut

reductions from Max-Cut(n) to VC(G) and IS(G)

Max-Cut

VC

IS

Recent results

BPZ’14 prove super-polynomial lower bounds for

(1.5− ε)-apx LP relaxations of VC(G)

(2− ε)-apx LP relaxations of IS(G)

by combining

lower bound of CLRS’13 for (2− ε)-apx LP relaxations of Max-Cut

reductions from Max-Cut(n) to VC(G) and IS(G)

Max-Cut

VC

IS

Our proof

1F-CSP
UG

VC

IS

We use:

a different starting point: UG (unique games)

CMM’09: UG fools O(nδ) rounds of Sherali-Adams

a different leaving point: 1F-CSP (one free bit CSPs)

CLRS’13: Sherali-Adams is “optimal” among all LPs for CSPs

Our proof

1F-CSP
UG

VC

IS

We use:

a different starting point: UG (unique games)

CMM’09: UG fools O(nδ) rounds of Sherali-Adams

a different leaving point: 1F-CSP (one free bit CSPs)

CLRS’13: Sherali-Adams is “optimal” among all LPs for CSPs

One free bit CSPs

Definition (1F-CSP(n, k))

Solutions: assignments x ∈ {0, 1}n
Instances: sets I := {P1, . . . , Pm} of Boolean predicates
Pi : {0, 1}n → {0, 1} : x 7→ Pi(x), each depending on k of the n
variables, and each having exactly two satisfying assignment on
these k bits

Objective function: ValI(x) := 1
m

∑m
i=1 Pi(x)

Rem:

Max-Cut(n) is a special case for k = 2

FGLSS graphs
after Feige, Goldwasser, Lovász, Safra and Szegedy ’96

G∗(n, k) is the graph with:

two vertices per one free bit predicate P : {0, 1}S → {0, 1} where
S ⊆ [n], |S| = k

one vertex for each partial assignment α ∈ {0, 1}S satisfying P

edges between conflicting partial assignments

01∗

00∗

10∗

00∗

11∗

00∗
· · ·

∗11

∗10

Unique games

u1

u

v1

v2

v3

v
πu,v

U V

∆

Given:

G = (U, V,E) bipartite graph, ∆-regular

domain [R]

permutation πu,v : [R]→ [R] for each edge uv ∈ E

UG (unique games) is the Max-CSP with

arity k = 2

one predicate per edge uv ∈ E that is true iff πu,v(xu) = xv

Unique games

u1

u

v1

v2

v3

v
πu,v

U V

∆

Given:

G = (U, V,E) bipartite graph, ∆-regular

domain [R]

permutation πu,v : [R]→ [R] for each edge uv ∈ E
UG (unique games) is the Max-CSP with

arity k = 2

one predicate per edge uv ∈ E that is true iff πu,v(xu) = xv

Unique games conjecture

Conjecture (Khot’02)

For every ε, δ > 0, there exists a sufficiently large domain size R = R(ε, δ)
such that the following promise problem is NP-hard. Given a UG
instance (G, [R], (πuv)uv∈E), distinguish between the following two cases:

1 ∃ assignment satisfying at least a (1− ε)-fraction of the edges;

2 @ assignment satisfying more than a δ-fraction of the edges.

The Bansal-Khot PCP and 1F-CSP’s

For every bipartite, ∆-regular UG instance (G, [R], (πuv)uv∈E) we
obtain a 1F-CSP instance by reinterpreting the PCP due to BK’09

u

v1

v2

v3

Reductions

Consider:

Π1 = (S1, I1) max problem

Π2 = (S2, I2) min problem

A reduction from Π1 to Π2 is defined by two maps

1 I1 → I2 : I1 7→ I2

2 S1 → S2 : S1 7→ S2

subject to:

ValI1
(S1) = µ(I1)︸ ︷︷ ︸

affine shift

−α(I1)︸ ︷︷ ︸
>0

·CostI2
(S2) ∀I1 ∈ I1, S1 ∈ S1

The reduction is exact if additionally

OPT(I1) = µ(I1)− α(I1) · OPT(I2) ∀I1 ∈ I1

Reductions

Consider:

Π1 = (S1, I1) max problem

Π2 = (S2, I2) min problem

A reduction from Π1 to Π2 is defined by two maps

1 I1 → I2 : I1 7→ I2

2 S1 → S2 : S1 7→ S2

subject to:

ValI1
(S1) = µ(I1)︸ ︷︷ ︸

affine shift

−α(I1)︸ ︷︷ ︸
>0

·CostI2
(S2) ∀I1 ∈ I1, S1 ∈ S1

The reduction is exact if additionally

OPT(I1) = µ(I1)− α(I1) · OPT(I2) ∀I1 ∈ I1

Reductions

Consider:

Π1 = (S1, I1) max problem

Π2 = (S2, I2) min problem

A reduction from Π1 to Π2 is defined by two maps

1 I1 → I2 : I1 7→ I2

2 S1 → S2 : S1 7→ S2

subject to:

ValI1
(S1) = µ(I1)︸ ︷︷ ︸

affine shift

−α(I1)︸ ︷︷ ︸
>0

·CostI2
(S2) ∀I1 ∈ I1, S1 ∈ S1

The reduction is exact if additionally

OPT(I1) = µ(I1)− α(I1) · OPT(I2) ∀I1 ∈ I1

Definition

For c > s > 0, an LP relaxation is a (c, s)-apx for a max problem
Π = (S, I) if

∀I ∈ I : OPT(I) 6 s =⇒ LP(I) 6 c

Intuitively:

“Whenever the optimum is small, the LP knows that the
optimum is somewhat small.”

Rem:

c is the completeness

s is the soundness

Definition

For c > s > 0, an LP relaxation is a (c, s)-apx for a max problem
Π = (S, I) if

∀I ∈ I : OPT(I) 6 s =⇒ LP(I) 6 c

Intuitively:

“Whenever the optimum is small, the LP knows that the
optimum is somewhat small.”

Rem:

c is the completeness

s is the soundness

Definition

For c > s > 0, an LP relaxation is a (c, s)-apx for a max problem
Π = (S, I) if

∀I ∈ I : OPT(I) 6 s =⇒ LP(I) 6 c

Intuitively:

“Whenever the optimum is small, the LP knows that the
optimum is somewhat small.”

Rem:

c is the completeness

s is the soundness

Theorem (BPZ’14)

Let Π1 be a max problem and let Π2 be a min problem. Suppose ∃ an
exact reduction from Π1 to Π2 with constant affine shift µ(I1) = µ.
Then, every ρ2-apx LP relaxation for Π2 gives a (c1, s1)-apx LP
relaxation for Π1, of the same size, where

ρ2 =
µ− s1

µ− c1

Proof. Consider ρ2-apx LP relaxation Ax ≥ b for Π2 with realizations

xS2 for S2 ∈ S2

fI2
: Rd → R for I2 ∈ I2

Use same LP Ax ≥ b for Π1 with realizations

xS1 := xS2 with S1 7→ S2

fI1(x) := µ− α(I1)fI2(x) with I1 7→ I2

We claim this is a (c1, s1)-apx for Π1

Theorem (BPZ’14)

Let Π1 be a max problem and let Π2 be a min problem. Suppose ∃ an
exact reduction from Π1 to Π2 with constant affine shift µ(I1) = µ.
Then, every ρ2-apx LP relaxation for Π2 gives a (c1, s1)-apx LP
relaxation for Π1, of the same size, where

ρ2 =
µ− s1

µ− c1

Proof. Consider ρ2-apx LP relaxation Ax ≥ b for Π2 with realizations

xS2 for S2 ∈ S2

fI2
: Rd → R for I2 ∈ I2

Use same LP Ax ≥ b for Π1 with realizations

xS1 := xS2 with S1 7→ S2

fI1(x) := µ− α(I1)fI2(x) with I1 7→ I2

We claim this is a (c1, s1)-apx for Π1

Proof (continued). Using:

OPT(I2) 6 ρ2 LP(I2) and OPT(I1) = µ− α(I1) OPT(I2)

we have:

LP(I1)

= max{µ− α(I1)fI2
(x) | Ax > b}

= µ− α(I1) min{fI2
(x) | Ax > b}

= µ− α(I1) LP(I2)

6 µ− 1

ρ2
· α(I1) · OPT(I2)

= µ+
µ− c1
µ− s1

· (OPT(I1)︸ ︷︷ ︸
6s1

−µ)

6 µ+
µ− c1
µ− s1

· (s1 − µ)

= c1

Proof (continued). Using:

OPT(I2) 6 ρ2 LP(I2) and OPT(I1) = µ− α(I1) OPT(I2)

we have:

LP(I1) = max{µ− α(I1)fI2
(x) | Ax > b}

= µ− α(I1) min{fI2
(x) | Ax > b}

= µ− α(I1) LP(I2)

6 µ− 1

ρ2
· α(I1) · OPT(I2)

= µ+
µ− c1
µ− s1

· (OPT(I1)︸ ︷︷ ︸
6s1

−µ)

6 µ+
µ− c1
µ− s1

· (s1 − µ)

= c1

Proof (continued). Using:

OPT(I2) 6 ρ2 LP(I2) and OPT(I1) = µ− α(I1) OPT(I2)

we have:

LP(I1) = max{µ− α(I1)fI2
(x) | Ax > b}

= µ− α(I1) min{fI2
(x) | Ax > b}

= µ− α(I1) LP(I2)

6 µ− 1

ρ2
· α(I1) · OPT(I2)

= µ+
µ− c1
µ− s1

· (OPT(I1)︸ ︷︷ ︸
6s1

−µ)

6 µ+
µ− c1
µ− s1

· (s1 − µ)

= c1

Proof (continued). Using:

OPT(I2) 6 ρ2 LP(I2) and OPT(I1) = µ− α(I1) OPT(I2)

we have:

LP(I1) = max{µ− α(I1)fI2
(x) | Ax > b}

= µ− α(I1) min{fI2
(x) | Ax > b}

= µ− α(I1) LP(I2)

6 µ− 1

ρ2
· α(I1) · OPT(I2)

= µ+
µ− c1
µ− s1

· (OPT(I1)︸ ︷︷ ︸
6s1

−µ)

6 µ+
µ− c1
µ− s1

· (s1 − µ)

= c1

Proof (continued). Using:

OPT(I2) 6 ρ2 LP(I2) and OPT(I1) = µ− α(I1) OPT(I2)

we have:

LP(I1) = max{µ− α(I1)fI2
(x) | Ax > b}

= µ− α(I1) min{fI2
(x) | Ax > b}

= µ− α(I1) LP(I2)

6 µ− 1

ρ2
· α(I1) · OPT(I2)

= µ+
µ− c1
µ− s1

· (OPT(I1)︸ ︷︷ ︸
6s1

−µ)

6 µ+
µ− c1
µ− s1

· (s1 − µ)

= c1

Proof (continued). Using:

OPT(I2) 6 ρ2 LP(I2) and OPT(I1) = µ− α(I1) OPT(I2)

we have:

LP(I1) = max{µ− α(I1)fI2
(x) | Ax > b}

= µ− α(I1) min{fI2
(x) | Ax > b}

= µ− α(I1) LP(I2)

6 µ− 1

ρ2
· α(I1) · OPT(I2)

= µ+
µ− c1
µ− s1

· (OPT(I1)︸ ︷︷ ︸
6s1

−µ)

6 µ+
µ− c1
µ− s1

· (s1 − µ)

= c1

Proof (continued). Using:

OPT(I2) 6 ρ2 LP(I2) and OPT(I1) = µ− α(I1) OPT(I2)

we have:

LP(I1) = max{µ− α(I1)fI2
(x) | Ax > b}

= µ− α(I1) min{fI2
(x) | Ax > b}

= µ− α(I1) LP(I2)

6 µ− 1

ρ2
· α(I1) · OPT(I2)

= µ+
µ− c1
µ− s1

· (OPT(I1)︸ ︷︷ ︸
6s1

−µ)

6 µ+
µ− c1
µ− s1

· (s1 − µ)

= c1

Proof (continued). Using:

OPT(I2) 6 ρ2 LP(I2) and OPT(I1) = µ− α(I1) OPT(I2)

we have:

LP(I1) = max{µ− α(I1)fI2
(x) | Ax > b}

= µ− α(I1) min{fI2
(x) | Ax > b}

= µ− α(I1) LP(I2)

6 µ− 1

ρ2
· α(I1) · OPT(I2)

= µ+
µ− c1
µ− s1

· (OPT(I1)︸ ︷︷ ︸
6s1

−µ)

6 µ+
µ− c1
µ− s1

· (s1 − µ)

= c1

