Extended Formulations for Combinatorial Optimization

Samuel Fiorini

Université libre de Bruxelles (ULB, Brussels)

ISCO 2016 Summer School Day 2 (afternoon)

Warm-up

Extended Formulation of the Stable Set Polytope of a Comparability Graph

 $P = (V, \preccurlyeq)$ partially ordered set (poset) G = G(P) comparability graph of P (always perfect)

Warm-up

Extended Formulation of the Stable Set Polytope of a Comparability Graph

$$P = (V, \preccurlyeq) \text{ partially ordered set (poset)}$$

$$G = G(P) \text{ comparability graph of } P \text{ (always perfect)}$$

$$\{(y_{v^-}, y_{v^+})\}_{v \in V} \text{ is } consistent \text{ with } P \text{ if}$$

$$\bullet \forall v \in V: (y_{v^-}, y_{v^+}) \text{ open interval} \subseteq (0, 1)$$

•
$$v \preccurlyeq w \Longrightarrow y_{v^+} \leqslant y_{w^-}$$

Warm-up

Extended Formulation of the Stable Set Polytope of a Comparability Graph

$$P = (V, \preccurlyeq)$$
 partially ordered set (poset)
 $G = G(P)$ comparability graph of P (always perfect)
 $\{(y_{v^-}, y_{v^+})\}_{v \in V}$ is consistent with P if

•
$$\forall v \in V$$
: (y_{v^-}, y_{v^+}) open interval $\subseteq (0, 1)$

•
$$v \preccurlyeq w \Longrightarrow y_{v^+} \leqslant y_{w^-}$$

$$\begin{split} \mathsf{STAB}(G(P)) &= \Big\{ x \in \mathbb{R}^V \mid \exists \{(y_{v^-}, y_{v^+})\}_{v \in V} \text{ consistent with } P \\ \text{ s.t. } x_v &= y_{v^+} - y_{v^-} \quad \forall v \in V \Big\} \end{split}$$

Deterministic Protocols

 $f:A\times B\rightarrow \{0,1\}$ Boolean function (\equiv binary matrix)

Two players:

- $\bullet \ {\sf Alice \ knows} \ a \in A$
- $\bullet \ {\sf Bob} \ {\sf knows} \ b \in B$

want to compute $f(\boldsymbol{a},\boldsymbol{b})$ by exchanging bits

Goal: Minimize complexity := #bits exchanged

	b_1	b_2	b_3	b_4
a_1	0	0	0	1
a_2	0	0	0	1
a_3	0	0	0	0
a_4	0	1	1	1

	b_1	b_2	b_3	b_4
a_1	0	0	0	1
a_2	0	0	0	1
a_3	0	0	0	0
a_4	0	1	1	1

Observation

 $\exists \text{ complexity } c \text{ protocol for computing } f \implies \mathsf{rk}_+(f) \leqslant 2^c$

G graph with n vertices

 $A = \{a \in \{0,1\}^n \mid a \text{ encodes a clique in } G\}$ $B = \{b \in \{0,1\}^n \mid b \text{ encodes a stable set in } G\}$

$$f(a,b) = \begin{cases} 1 & \text{if } a, b \text{ are disjoint} \\ 0 & \text{if } a, b \text{ intersect} \end{cases}$$

${\boldsymbol{G}}$ graph with ${\boldsymbol{n}}$ vertices

$$A = \{a \in \{0,1\}^n \mid a \text{ encodes a clique in } G\}$$

 $B = \{b \in \{0,1\}^n \mid b \text{ encodes a stable set in } G\}$

$$f(a,b) = \begin{cases} 1 & \text{if } a,b \text{ are disjoint} \\ 0 & \text{if } a,b \text{ intersect} \end{cases}$$

Theorem (Yannakakis '91)

 $\exists O(\log^2 n)$ -complexity protocol for f = f(G)

G graph with n vertices

$$A = \{a \in \{0,1\}^n \mid a \text{ encodes a clique in } G\}$$

 $B = \{b \in \{0,1\}^n \mid b \text{ encodes a stable set in } G\}$

$$f(a,b) = \begin{cases} 1 & \text{if } a,b \text{ are disjoint} \\ 0 & \text{if } a,b \text{ intersect} \end{cases}$$

Theorem (Yannakakis '91)

$$\exists O(\log^2 n)$$
-complexity protocol for $f = f(G)$

Corollary (Yannakakis '91)

$$\forall$$
 perfect graphs G: $xc(STAB(G)) = 2^{O(\log^2 n)} = n^{O(\log n)}$

Randomized Protocols Computing a Function in Expectation

The main differences:

• Alice and Bob can use (private) random bits to make choices

• $f: A \times B \to \mathbb{R}_+$, Alice and Bob can output any value $\in \mathbb{R}_+$

Randomized Protocols Computing a Function in Expectation

The main differences:

• Alice and Bob can use (private) random bits to make choices

• $f: A \times B \to \mathbb{R}_+$, Alice and Bob can output any value $\in \mathbb{R}_+$

Theorem (Faenza, F, Grappe & Tiwary '11)

If c = c(f) is the minimum complexity of a randomized communication protocol with nonnegative outputs computing f in expectation, then

 $\mathbf{rk}_+(f) = \Theta(2^c)$

Write
$$M = TU$$
, where

$$\begin{array}{l} T \in \mathbb{R}^{m \times r}_+ \text{ row-stochastic (w.l.o.g.)} \\ U \in \mathbb{R}^{r \times n}_+ \\ r \leqslant \mathsf{rk}_+(M) + 1 \end{array}$$

Write
$$M = TU$$
, where $\begin{array}{c} T \in \mathbb{R}^{m \times r}_+ \text{ row-stochastic (w.l.o.g.)} \\ U \in \mathbb{R}^{r \times n}_+ \\ r \leqslant \mathsf{rk}_+(M) + 1 \end{array}$

Protocol:

- Alice gets row index i, Bob gets column index j
- Alice picks random column index $k \in [r]$ w.p. T_{ik} , sends it to Bob
- Bob outputs value U_{kj}

Write
$$M = TU$$
, where $\begin{array}{c} T \in \mathbb{R}^{m \times r}_+ \text{ row-stochastic (w.l.o.g.)} \\ U \in \mathbb{R}^{r \times n}_+ \\ r \leqslant \mathsf{rk}_+(M) + 1 \end{array}$

Protocol:

- Alice gets row index i, Bob gets column index j
- Alice picks random column index $k \in [r]$ w.p. T_{ik} , sends it to Bob
- Bob outputs value U_{kj}

Expected value on input (i,j): $\sum_{k=1}^{r} T_{ik}U_{kj} = M_{ij}$

Complexity: $\log \mathsf{rk}_+(M) + O(1)$

Three equivalent ways to look at EFs:

 $\bullet \ \ \, {\rm A \ linear \ system \ } Ex+Fy=g, \ y\geqslant 0 \ {\rm with \ } y\in \mathbb{R}^r$

Three equivalent ways to look at EFs:

 $\bullet A \text{ linear system } Ex+Fy=g, \ y \geqslant 0 \text{ with } y \in \mathbb{R}^r$

2 A rank-r nonnegative factorization S = TU of slack matrix S

Three equivalent ways to look at EFs:

- A linear system Ex + Fy = g, $y \ge 0$ with $y \in \mathbb{R}^r$
- **2** A rank-r nonnegative factorization S = TU of slack matrix S
- **(**) A $\log r$ -complexity randomized protocol computing S in expectation

Monotone Boolean Functions, Monotone Circuits

Definition (monotone Boolean function)

A Boolean function $f:\{0,1\}^n \rightarrow \{0,1\}$ is said to be monotone if

 $\forall x,y \in \{0,1\}^n \quad : \quad x \leqslant y \implies f(x) \leqslant f(y)$

Monotone Boolean Functions, Monotone Circuits

Definition (monotone Boolean function)

A Boolean function $f:\{0,1\}^n \rightarrow \{0,1\}$ is said to be monotone if

 $\forall x,y \in \{0,1\}^n \quad : \quad x \leqslant y \implies f(x) \leqslant f(y)$

Examples:

• Weighted threshold function. Given $s_1, \ldots, s_n, D \in \mathbb{R}_+$:

$$f(x) = 1 \iff \sum_{i=1}^{n} s_i x_i \ge D$$

• Any function f computed by a **monotone circuit** with n inputs

Definition (monotone Karchmer-Wigderson game)

- Alice is given $a \in \{0,1\}^n$ such that f(a) = 0
- Bob is given $b \in \{0,1\}^n$ such that f(b) = 1

Goal: compute together an index i^* such that $a_{i^*} = 0$ and $b_{i^*} = 1$

Definition (monotone Karchmer-Wigderson game)

- Alice is given $a \in \{0,1\}^n$ such that f(a) = 0
- Bob is given $b \in \{0,1\}^n$ such that f(b) = 1

Goal: compute together an index i^* such that $a_{i^*} = 0$ and $b_{i^*} = 1$

Theorem (Karchmer and Wigderson '90)

min (# bits for solving the monotone KW game) = min (depth of a monotone circuit computing f)

Definition (monotone Karchmer-Wigderson game)

- Alice is given $a \in \{0,1\}^n$ such that f(a) = 0
- Bob is given $b \in \{0,1\}^n$ such that f(b) = 1

Goal: compute together an index i^* such that $a_{i^*} = 0$ and $b_{i^*} = 1$

Theorem (Karchmer and Wigderson '90)

min (# bits for solving the monotone KW game) = min (depth of a monotone circuit computing f)

Proof. (\leqslant)

- $P = P(f) := \operatorname{conv}(f^{-1}(1))$
- $Q=Q(f):=\{x\mid \forall a\in f^{-1}(0):\sum_{i:a_i=0}x_i\geqslant 1\}$

•
$$P = P(f) := \operatorname{conv}(f^{-1}(1))$$

•
$$Q = Q(f) := \{x \mid \forall a \in f^{-1}(0) : \sum_{i:a_i=0} x_i \ge 1\}$$

Observation (Hrubeš, rediscovered by Göös '16)

 $\exists \text{ depth-}D \text{ monotone circuit computing } f \implies \exists \text{ complexity-}D \text{ protocol for the corresponding monotone KW game} \implies \exists \text{ size-}n2^D \text{ EF of the pair } (P,Q)$

•
$$P = P(f) := \operatorname{conv}(f^{-1}(1))$$

•
$$Q = Q(f) := \{x \mid \forall a \in f^{-1}(0) : \sum_{i:a_i=0} x_i \ge 1\}$$

Observation (Hrubeš, rediscovered by Göös '16)

 $\exists \text{ depth-}D \text{ monotone circuit computing } f \implies \exists \text{ complexity-}D \text{ protocol for the corresponding monotone KW game} \implies \exists \text{ size-}n2^D \text{ EF of the pair } (P,Q)$

Proof.

$$S_{ab} = \left(\sum_{i:a_i=0} b_i\right) - 1 = \sum_{i:a_i=0, i \neq i^*} b_i = (a_1, \dots, a_{i^*-1}, a_{i^*+1}, \dots, a_n) \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_{i^*-1} \\ b_{i^*+1} \\ \vdots \\ b_n \end{pmatrix}$$

Consequences of the KW/EF connection

Theorem (Raz-Wigderson '90)

Every monotone circuit that decides if a given *n*-vertex graph has a perfect matching, has depth $\Omega(n)$.

follows in a black-box way from

Theorem (Rothvoss'14)

The matching polytope $P_{\text{match}}(K_n)$ has extension complexity $2^{\Omega(n)}$.

Theorem (matroids from the bases)

A collection ${\cal B}$ of subsets of a finite set E form the bases of a matroid if and only if

• \mathcal{B} is nonempty

Definition (sparse paving matroid)

Let \mathcal{N} be a collection of subsets of E s.t.

 $\textbf{ 0 all the sets in } \mathcal{N} \text{ have the same size } r \\$

2 no two sets in ${\cal N}$ have Hamming distance $\leqslant 2$

Then $\mathcal{B} := {E \choose r} \setminus \mathcal{N}$ form the bases of a matroid, called a *sparse paving matroid*.

Exercise

Prove that there are at least $2^{2^{\Omega(n)}}$ sparse paving matroids.

Observation (Göös)

Facet-defining rank inequalities for sparse paving matroid of rank \boldsymbol{r} are all of the form

$$\sum_{e\in F} x_e\leqslant r-1=|F|-1\iff \sum_{e\in F}(1-x_e)\geqslant 1$$
 where $F\in \mathcal{B}$ or

$$\sum_{e \in E} x_e \leqslant r$$

Get from this:

- every depth-D monotone circuit for the function $f: \{0,1\}^E \to \{0,1\}$ such that f(x) = 1 iff \overline{x} is independent implies a size- $O(n2^D)$ extended formulation for the matroid polytope of a
 - sparse paving matroid.
- *f* is a *slice* function, so the same applies to non-monotone circuits \implies huge obstacle for lower bounds

Min-knapsack

Given sizes $s_1, \ldots, s_n \in \mathbb{R}_+$, demand $D \in \mathbb{R}_+$:

- Weighted threshold function: $f(x) = 1 \iff \sum_{i=1}^{n} s_i x_i \ge D$
- *Min-knapsack polytope*: $P := \operatorname{conv} \{ x \in \{0,1\}^n \mid \sum_{i=1}^n s_i x_i \ge D \}$

Question

Is there a size- $n^{O(1)} O(1)$ -apx EF for min-knapsack?

Min-knapsack

Given sizes $s_1, \ldots, s_n \in \mathbb{R}_+$, demand $D \in \mathbb{R}_+$:

- Weighted threshold function: $f(x) = 1 \iff \sum_{i=1}^n s_i x_i \ge D$
- Min-knapsack polytope: $P := \operatorname{conv} \{ x \in \{0,1\}^n \mid \sum_{i=1}^n s_i x_i \ge D \}$

Question

Is there a size- $n^{O(1)} O(1)$ -apx EF for min-knapsack?

Theorem (Bazzi, F, Huang, Svensson '16)

 $\forall \varepsilon > 0, \ \exists \ \textit{size-}(1/\varepsilon)^{O(1)} n^{O(\log n)} \ (2+\varepsilon) \text{-}\textit{apx EF for min-knapsack}$

Min-knapsack

Given sizes $s_1, \ldots, s_n \in \mathbb{R}_+$, demand $D \in \mathbb{R}_+$:

- Weighted threshold function: $f(x) = 1 \iff \sum_{i=1}^n s_i x_i \ge D$
- Min-knapsack polytope: $P := \operatorname{conv} \{ x \in \{0,1\}^n \mid \sum_{i=1}^n s_i x_i \ge D \}$

Question

Is there a size- $n^{O(1)} O(1)$ -apx EF for min-knapsack?

Theorem (Bazzi, F, Huang, Svensson '16)

 $\forall \varepsilon > 0, \ \exists \ \textit{size-}(1/\varepsilon)^{O(1)} n^{O(\log n)} \ (2+\varepsilon) \text{-}\textit{apx EF for min-knapsack}$

Starting point:

- Hrubeš-Göös connection
- $O(\log^2(n))$ -depth monotone circuits for weighted threshold functions (Beimel and Weinreb '06)
- Knapsack cover inequalities (Carr, Fleischer, Leung and Phillips '06)

Starting point:

- Hrubeš-Göös connection
- $O(\log^2(n))$ -depth monotone circuits for weighted threshold functions (Beimel and Weinreb '06)
- Knapsack cover inequalities (Carr, Fleischer, Leung and Phillips '06)

For
$$a \in f^{-1}(0)$$
, if let $D(a) := D - \sum_{i=1}^{n} s_i a_i > 0$ then

$$\sum_{i:a_i=0} \min(\{s_i, D(a)\}) \cdot x_i \ge D(a)$$

is a valid inequality, called the (capacitated) knapsack-cover inequality

Starting point:

- Hrubeš-Göös connection
- $O(\log^2(n))$ -depth monotone circuits for weighted threshold functions (Beimel and Weinreb '06)
- Knapsack cover inequalities (Carr, Fleischer, Leung and Phillips '06)

For
$$a \in f^{-1}(0)$$
, if let $D(a) := D - \sum_{i=1}^{n} s_i a_i > 0$ then

$$\sum_{i:a_i=0} \min(\{s_i, D(a)\}) \cdot x_i \ge D(a)$$

is a valid inequality, called the (capacitated) knapsack-cover inequality

Theorem (Carr et al. '06)

The (exponentially many) knapsack-cover inequalities provide a 2-apx of min-knapsack
Our approach:

- $\bullet\,$ relax right-hand side to $\alpha D(a)$ where $\alpha=2/(2+\varepsilon)\approx 1$
- $\bullet \ \ \text{coarse} + \ \text{fine approximation} \\$
- try to find a "big" item i^* such that $a_{i^*} = 0$, $b_{i^*} = 1$
- use several threshold functions
- make things constructive (given an objective function!)

Making things constructive

Consider for p, q large:

- p inequalities: $A_i x \ge b_i$ $(i \in [p])$
- q solutions: s_j $(j \in [q])$ of this system

Data defines slack matrix $M \in \mathbb{R}^{p \times q}_+$ by $M_{ij} := A_i s_j - b_i$

Making things constructive

Consider for p, q large:

- p inequalities: $A_i x \ge b_i \ (i \in [p])$
- q solutions: s_j $(j \in [q])$ of this system

Data defines slack matrix $M \in \mathbb{R}^{p \times q}_+$ by $M_{ij} := A_i s_j - b_i$

Assume: M = FV, where $F \in \mathbb{R}^{p \times r}_+$ and $V \in \mathbb{R}^{r \times q}_+$

Making things constructive

Consider for p, q large:

- p inequalities: $A_i x \ge b_i \ (i \in [p])$
- q solutions: s_j $(j \in [q])$ of this system

Data defines slack matrix $M \in \mathbb{R}^{p \times q}_+$ by $M_{ij} := A_i s_j - b_i$

Assume: M = FV, where $F \in \mathbb{R}^{p \times r}_+$ and $V \in \mathbb{R}^{r \times q}_+$

This gives extended formulation

$$Ax - b = Fy, \quad y \ge 0$$

Making things constructive

Consider for p, q large:

- p inequalities: $A_i x \ge b_i \ (i \in [p])$
- q solutions: s_j $(j \in [q])$ of this system

Data defines slack matrix $M \in \mathbb{R}^{p \times q}_+$ by $M_{ij} := A_i s_j - b_i$

Assume: M = FV, where $F \in \mathbb{R}^{p \times r}_+$ and $V \in \mathbb{R}^{r \times q}_+$

This gives extended formulation

$$Ax - b = Fy, \quad y \ge 0$$

This has p equations, only $\leq n + r$ are non-redundant!

Making things constructive

Consider for p, q large:

- p inequalities: $A_i x \ge b_i \ (i \in [p])$
- q solutions: s_j $(j \in [q])$ of this system

Data defines slack matrix $M \in \mathbb{R}^{p \times q}_+$ by $M_{ij} := A_i s_j - b_i$

Assume: M = FV, where $F \in \mathbb{R}^{p \times r}_+$ and $V \in \mathbb{R}^{r \times q}_+$

This gives extended formulation

$$Ax - b = Fy, \quad y \ge 0$$

This has p equations, only $\leq n + r$ are non-redundant!

Question

How can we pick the equations? How can we use the extended formulation in an algorithm?

In case the non-negative factorization comes from a communication protocol, can write:

$$\begin{aligned} A_i x - b_i &= \sum_{\ell \text{ leaf}} q_i(\ell) \cdot y_\ell \quad \forall i \in [p] \\ y_\ell &\ge 0 \quad \forall \ell \text{ leaf} \end{aligned}$$

where $q_i(u) :=$ probability of reaching node u of the protocol tree on any input pair of the form (i, *)

In case the non-negative factorization comes from a communication protocol, can write:

$$\begin{split} A_i x - b_i &= \sum_{\ell \text{ leaf}} q_i(\ell) \cdot y_\ell \quad \forall i \in [p] \\ y_\ell &\geqslant 0 \quad \forall \ell \text{ leaf} \end{split}$$

where $q_i(u) :=$ probability of reaching node u of the protocol tree on any input pair of the form (i, *)

Lemma

Let $\Delta := \max\{-\log(q_i(\ell)) \mid i \in [p], \ \ell \ leaf \ , \ q_i(\ell) > 0\}$ and let h denote the height of the protocol tree. For any fixed $i \in [p]$, one can write down the corresponding equation in $O(2^h \Delta \log \Delta \log \log \Delta)$ time and $O(2^h \Delta)$ space.

This leads to a **cutting plane algorithm**. Given costs $c \in \mathbb{R}^n$

- 1 Initialize $I \subseteq [p]$ 2 Solve $\min c^{\mathsf{T}} x$ s.t. $A_i x - b_i = \sum_{\ell \text{ leaf}} p_i(\ell) \cdot y_\ell \quad \begin{array}{l} \forall i \in I \\ y_\ell \geqslant 0 \end{array} \quad \forall \ell \text{ leaf}$
- **(3)** Get optimum solution x^*
- Check if x^* violates any constraint $A_i x \ge b_i$ $(i \in [p])$
- If yes, add i to I and repeat. If no, STOP.

This leads to a **cutting plane algorithm**. Given costs $c \in \mathbb{R}^n$

 $y_\ell \ge 0$

 $\forall \ell \text{ leaf}$

3 Get optimum solution x^*

• Check if x^* violates any constraint $A_i x \ge b_i$ $(i \in [p])$

(5) If yes, add i to I and repeat. If no, **STOP**.

Observation

At most n + r elements are added to I

This leads to a **cutting plane algorithm**. Given costs $c \in \mathbb{R}^n$

Initialize
$$I \subseteq [p]$$
Solve
$$\min c^{\mathsf{T}} x$$
s.t. $A_i x - b_i = \sum_{\ell \text{ leaf}} p_i(\ell) \cdot y_\ell \quad \forall i \in I$

$$y_{\ell} \ge 0$$
 $\forall \ell$ leaf

I Get optimum solution x^*

• Check if x^* violates any constraint $A_i x \ge b_i$ $(i \in [p])$

() If yes, add i to I and repeat. If no, **STOP**.

Observation

At most n + r elements are added to I

Assuming that the separation can be done in time ${\cal T}(n),$ can solve the LP in time

$$O\left((n+r)(T(n)+r\Delta\log\Delta\log\log\Delta+n^{O(1)}(n+r)\Delta)\right)$$

Announcement

It is time for a break!

Overview

Techniques to prove **lower bounds** on non-negative rank:

Overview

Techniques to prove **lower bounds** on non-negative rank:

• rectangle covering lower bound

Overview

Techniques to prove lower bounds on non-negative rank:

- rectangle covering lower bound
- In the separation lower bound (Rothvoss, F.)

rectangle covering lower bound

- In the separation lower bound (Rothvoss, F.)
- common information (Braun-Pokutta)

rectangle covering lower bound

- In the separation lower bound (Rothvoss, F.)
- common information (Braun-Pokutta)
- for CSPs: reduction to SA (Chan-Lee-Raghavendra-Steurer)

rectangle covering lower bound

- Approximation of the separation of the separa
- common information (Braun-Pokutta)
- for CSPs: reduction to SA (Chan-Lee-Raghavendra-Steurer)
- In reductions between problems

- rectangle covering lower bound
- Approximation of the separation of the separa
- common information (Braun-Pokutta)
- for CSPs: reduction to SA (Chan-Lee-Raghavendra-Steurer)
- In reductions between problems
- o counting (Rothvoss)

Hyperplane separation lower bound

Consider any matrix $S \in \mathbb{R}^{k \times \ell}_+$

Assume that weights $W \in \mathbb{R}^{k \times \ell}$ (-'s allowed) satisfy:

 $\langle W,X\rangle\leqslant\delta\cdot||X||_{\infty} \quad \forall X\in\mathbb{R}_{+}^{k\times\ell} \text{ that is rank-1}$

Then if $S = \sum_{i=1}^{r} X_i$ where $X_i \in \mathbb{R}^{k \times \ell}_+$ are rank-1:

Hyperplane separation lower bound

Consider any matrix $S \in \mathbb{R}^{k \times \ell}_+$

Assume that weights $W \in \mathbb{R}^{k \times \ell}$ (-'s allowed) satisfy:

 $\langle W,X\rangle\leqslant\delta\cdot||X||_{\infty}\quad \forall X\in\mathbb{R}_{+}^{k\times\ell}\text{ that is rank-1}$

Then if $S = \sum_{i=1}^{r} X_i$ where $X_i \in \mathbb{R}^{k \times \ell}_+$ are rank-1:

$$W, S\rangle = \langle W, \sum_{i=1}^{r} X_i \rangle$$
$$= \sum_{i=1}^{r} \langle W, X_i \rangle$$
$$\leqslant \sum_{i=1}^{r} \delta \cdot ||X_i||_{\infty}$$
$$\leqslant r \cdot \delta \cdot ||S||_{\infty}$$

Hyperplane separation lower bound

Consider any matrix $S \in \mathbb{R}^{k \times \ell}_+$

Assume that weights $W \in \mathbb{R}^{k \times \ell}$ (-'s allowed) satisfy:

 $\langle W,X\rangle\leqslant\delta\cdot||X||_{\infty} \quad \forall X\in\mathbb{R}_{+}^{k\times\ell} \text{ that is rank-1}$

Then if $S = \sum_{i=1}^{r} X_i$ where $X_i \in \mathbb{R}^{k \times \ell}_+$ are rank-1:

$$\langle W, S \rangle = \langle W, \sum_{i=1}^{r} X_i \rangle$$

$$= \sum_{i=1}^{r} \langle W, X_i \rangle$$

$$\leq \sum_{i=1}^{r} \delta \cdot ||X_i||_{\infty}$$

$$\leq r \cdot \delta \cdot ||S||_{\infty}$$

$$\Longrightarrow \boxed{r \geq \frac{\langle W, S \rangle}{\delta \cdot ||S||_{\infty}} }$$

Observation

Choose optimum δ :

$$\begin{split} \delta &:= \max\{\langle W, X \rangle \mid X \; \mathsf{rank-1}, X \in [0,1]^{k \times \ell} \\ &= \max\{\sum_{i,j} W_{ij} x_i y_j \mid x \in [0,1]^k, y \in [0,1]^\ell\} \\ &= \max\{\sum_{i,j} W_{ij} x_i y_j \mid x \in \{0,1\}^k, y \in \{0,1\}^\ell\} \\ &= \max\{\langle W, R \rangle \mid R \; \mathsf{rectangle}\} \end{split}$$

Observation

Choose optimum δ :

$$\begin{split} \delta &:= \max\{\langle W, X \rangle \mid X \text{ rank-1}, X \in [0, 1]^{k \times \ell} \\ &= \max\{\sum_{i,j} W_{ij} x_i y_j \mid x \in [0, 1]^k, y \in [0, 1]^\ell\} \\ &= \max\{\sum_{i,j} W_{ij} x_i y_j \mid x \in \{0, 1\}^k, y \in \{0, 1\}^\ell\} \\ &= \max\{\langle W, R \rangle \mid R \text{ rectangle}\} \end{split}$$

The hyperplane separation bound was used to prove:

• UDISJ(n) still has super-polynomial non-negative rank even if add same number ρ everywhere, as long as $\rho \leqslant n^{1/2-\varepsilon}$ (Braun, F, Pokutta & Steurer)

•
$$\operatorname{xc}(P_{\operatorname{match}}(K_n)) = 2^{\Theta(n)}$$
 (Rothvoss'14)

A Sample Result

G = (V, E) *n*-vertex graph

Definition

 $U \subseteq V$ is a vertex cover if every edge has at least one endpoint in U

Basic IP for VC:

$$\begin{array}{ll} \min & \sum_{i \in V} c_i x_i \\ \text{s.t.} & x_i + x_j \geqslant 1 \quad \forall i j \in E \\ & x_i \in \{0,1\} \quad \forall i \in V \end{array}$$

A Sample Result

G = (V, E) *n*-vertex graph

Definition

 $U \subseteq V$ is a *vertex cover* if every edge has at least one endpoint in U

Basic IP LP for VC:

$$\begin{array}{ll} \min & \sum_{i \in V} c_i x_i \\ \text{s.t.} & x_i + x_j \geqslant 1 \quad \forall ij \in E \\ & \frac{x_i \in \{0,1\}}{0 \leqslant x_i \leqslant 1} \quad \forall i \in V \\ \end{array}$$

The basic LP has integrality gap := $\sup_{G,c} \frac{\text{OPT}}{\text{LP}} = 2$

The basic LP has integrality gap := $\sup_{G,c} \frac{\mathsf{OPT}}{\mathsf{LP}} = 2$

How can we improve on this?

The basic LP has *integrality*
$$gap := \sup_{G,c} \frac{\mathsf{OPT}}{\mathsf{LP}} = 2$$

How can we improve on this?

Q Explicit constraints: e.g., if G contains odd cycle C then

$$\sum_{i \in V(C)} x_i \geqslant \frac{|C|+1}{2}$$

is a valid inequality \implies can add it to the LP (\exists many more!)

The basic LP has *integrality*
$$gap := \sup_{G,c} \frac{\mathsf{OPT}}{\mathsf{LP}} = 2$$

How can we improve on this?

① Explicit constraints: e.g., if G contains odd cycle C then

$$\sum_{i \in V(C)} x_i \geqslant \frac{|C|+1}{2}$$

is a valid inequality \implies can add it to the LP (\exists many more!)

- Implicit constraints (lift-and-project): e.g., Sherali-Adams hierarchy strengthens current relaxation Ax ≥ b by
 - Multiplying each inequality of $Ax \ge b$ by $\prod_{i \in I} x_i \prod_{i \in J} (1 x_i)$ for each pair (I, J) of disjoint subsets of [n] with |I| + |J| = r
 - Expand using $x_i^2 = x_i$
 - Replace each monomial $\prod_{i\in S} x_i$ by a variable y_S where $S\subseteq [n],$ $|S|\leqslant r+1$
 - Add the constraint $y_{\emptyset} = 1$
 - Project by letting $x_i := y_{\{i\}}$

Does this help?

Theorem (ABLT'06)

- Adding all inequalities with support at most ϵn leaves a gap $\ge 2 \epsilon$
- **2** Performing $O(\log n)$ rounds of lift-and-project (LS) leaves a gap of 2

Theorem (ABLT'06)

- **1** Adding all inequalities with support at most ϵn leaves a gap $\ge 2 \epsilon$
- **2** Performing $O(\log n)$ rounds of lift-and-project (LS) leaves a gap of 2
- \implies No obvious way to improve the integrality gap!

Theorem (ABLT'06)

- $\textbf{O} \ \ \textit{Adding all inequalities with support at most } \epsilon n \ \textit{leaves a gap} \geq 2-\epsilon$
- **2** Performing $O(\log n)$ rounds of lift-and-project (LS) leaves a gap of 2

 \implies No obvious way to improve the integrality gap!

Many follow-up works on lift-and-project hierarchies:

- STT'07: o(n) rounds of LS do not help
- GMPT'07: $O(\sqrt{\log n / \log \log n})$ rounds of LS₊ do not help
- CMM'09: n^{δ} rounds of SA do not help (for small $\delta > 0$)

We generalize the results on hierarchies and prove that every polynomial size LP for VC has integrality gap 2
$\Pi = (\mathcal{S}, \mathfrak{I})$ (min) problem

 $\Pi = (\mathcal{S}, \mathfrak{I})$ (min) problem

 $\operatorname{VC}(G)$ for fixed G

 $\Pi = (\mathcal{S}, \mathfrak{I}) \text{ (min) problem}$ $\mathcal{S} \text{ set of solutions}$

 $\Pi = (\mathcal{S}, \mathfrak{I}) \text{ (min) problem}$ \mathcal{S} set of solutions $\left|\begin{array}{c} \mathrm{VC}(G) \text{ for fixed } G \\ U \subseteq V \text{ vertex cover} \end{array}\right|$

 $\Pi = (\mathcal{S}, \mathfrak{I}) \text{ (min) problem}$ $\mathcal{S} \text{ set of solutions}$

 $\ensuremath{\mathfrak{I}}$ set of instances

 $\begin{array}{c|c} \mathrm{VC}(G) \text{ for fixed } G\\ U \subseteq V \text{ vertex cover} \end{array}$

 $\Pi = (\mathcal{S}, \mathfrak{I}) \text{ (min) problem}$ \mathcal{S} set of solutions

 $\ensuremath{\mathfrak{I}}$ set of instances

 $\begin{array}{l} \mathrm{VC}(G) \text{ for fixed } G\\ U \subseteq V \text{ vertex cover}\\ \mathcal{I} = \mathcal{I}(c) \text{ with } c \in \mathbb{R}^V_+ \text{ cost vector} \end{array}$

$$\begin{split} \Pi &= (\mathcal{S}, \mathfrak{I}) \text{ (min) problem} \\ \mathcal{S} \text{ set of solutions} \\ \mathfrak{I} \text{ set of instances} \\ \forall \mathcal{I} \in \mathfrak{I} \text{ have } \text{Cost}_{\mathcal{I}} : \mathcal{S} \to \mathbb{R}_+ \text{ obj fn} \end{split}$$

VC(G) for fixed G $U \subseteq V \text{ vertex cover}$ $\mathcal{I} = \mathcal{I}(c) \text{ with } c \in \mathbb{R}^V_+ \text{ cost vector}$

$$\begin{split} \Pi &= (\mathcal{S}, \mathfrak{I}) \text{ (min) problem} \\ \mathcal{S} \text{ set of solutions} \\ \mathfrak{I} \text{ set of instances} \\ \forall \mathcal{I} \in \mathfrak{I} \text{ have } \mathsf{Cost}_{\mathcal{I}} : \mathcal{S} \to \mathbb{R}_+ \text{ obj fn} \end{split} \begin{array}{l} \mathrm{VC}(G) \text{ for fixed } G \\ U \subseteq V \text{ vertex cover} \\ \mathcal{I} = \mathcal{I}(c) \text{ with } c \in \mathbb{R}^V_+ \text{ cost vector} \\ \mathsf{Cost}_{\mathcal{I}}(U) := \sum_{i \in U} c_i = c(U) \end{split}$$

 $\begin{array}{ll} \Pi = (\mathcal{S}, \mathfrak{I}) \text{ (min) problem} \\ \mathcal{S} \text{ set of solutions} \\ \mathfrak{I} \text{ set of instances} \\ \forall \mathcal{I} \in \mathfrak{I} \text{ have } \mathsf{Cost}_{\mathcal{I}} : \mathcal{S} \to \mathbb{R}_+ \text{ obj fn} \end{array} \begin{array}{ll} \mathrm{VC}(G) \text{ for fixed } G \\ U \subseteq V \text{ vertex cover} \\ \mathcal{I} = \mathcal{I}(c) \text{ with } c \in \mathbb{R}_+^V \text{ cost vector} \\ \mathsf{Cost}_{\mathcal{I}}(U) := \sum_{i \in U} c_i = c(U) \end{array}$

- **1** pick d, system $Ax \ge b$ in \mathbb{R}^d
- ${f 0}$ realize each $S\in {\cal S}$ as point x^S in ${\Bbb R}^d$ s.t. $Ax^S \geqslant b$

- pick d, system $Ax \ge b$ in \mathbb{R}^d
- $\textbf{@ realize each } S \in \mathcal{S} \text{ as point } x^S \text{ in } \mathbb{R}^d \text{ s.t. } | Ax^S \geqslant b$

- pick d, system $Ax \ge b$ in \mathbb{R}^d
- $\textbf{@ realize each } S \in \mathcal{S} \text{ as point } x^S \text{ in } \mathbb{R}^d \text{ s.t. } | Ax^S \geqslant b$

- pick d, system $Ax \ge b$ in \mathbb{R}^d
- $\textbf{@} \text{ realize each } S \in \mathcal{S} \text{ as point } x^S \text{ in } \mathbb{R}^d \text{ s.t. } | Ax^S \geqslant b$

- pick d, system $Ax \ge b$ in \mathbb{R}^d
- $\textbf{@} \text{ realize each } S \in \mathcal{S} \text{ as point } x^S \text{ in } \mathbb{R}^d \text{ s.t. } | Ax^S \geqslant b$

- pick d, system $Ax \ge b$ in \mathbb{R}^d
- $\textbf{@} \text{ realize each } S \in \mathcal{S} \text{ as point } x^S \text{ in } \mathbb{R}^d \text{ s.t. } | Ax^S \geqslant b$

• realize each $\mathcal{I} \in \mathfrak{I}$ as affine fn $f_{\mathcal{I}}(x)$ on \mathbb{R}^d s.t. $f_{\mathcal{I}}(x^S) = \text{Cost}_{\mathcal{I}}(S)$

Instance $\mathcal{I} \xrightarrow{f_{\mathcal{I}}(x)} Ax \ge b \xrightarrow{\mathsf{LB}} \mathsf{LP}(\mathcal{I}) := \min\{f_{\mathcal{I}}(x) \mid Ax \ge b\}$

Always: $LP(\mathcal{I}) \leq OPT(\mathcal{I})$ ρ -apx LP if: $OPT(\mathcal{I}) \leq \rho LP(\mathcal{I})$ Similar for max problems, e.g., IS(G) = max independent set problem on G

Size of LP relaxation $Ax \ge b := \#$ inequalities of $Ax \ge b$

Size of LP relaxation $Ax \ge b := \#$ inequalities of $Ax \ge b$

Main question

Tradeoff between quality ρ and size for LPs of a given problem?

Size of LP relaxation $Ax \ge b := \#$ inequalities of $Ax \ge b$

Main question

Tradeoff between quality ρ and size for LPs of a given problem?

Theorem (BFPS'15)

- every (2ϵ) -apx LP relaxation for VC(G) has size $n^{\Omega(\frac{\log n}{\log \log n})}$
- every $(1/\epsilon)$ -apx LP relaxation for IS(G) has size $n^{\Omega(\frac{\log n}{\log \log n})}$

Size of LP relaxation $Ax \ge b := \#$ inequalities of $Ax \ge b$

Main question

Tradeoff between quality ρ and size for LPs of a given problem?

Theorem (BFPS'15)

- every (2ϵ) -apx LP relaxation for VC(G) has size $n^{\Omega(\frac{\log n}{\log \log n})}$
- every $(1/\epsilon)$ -apx LP relaxation for IS(G) has size $n^{\Omega(\frac{\log n}{\log \log n})}$
- Answers questions by Singh'10, CLRS'13

Size of LP relaxation $Ax \ge b := \#$ inequalities of $Ax \ge b$

Main question

Tradeoff between quality ρ and size for LPs of a given problem?

Theorem (BFPS'15)

- every (2ϵ) -apx LP relaxation for VC(G) has size $n^{\Omega(\frac{\log n}{\log \log n})}$
- every $(1/\epsilon)$ -apx LP relaxation for IS(G) has size $n^{\Omega(\frac{\log n}{\log \log n})}$
- Answers questions by Singh'10, CLRS'13
- "Geometric" limitations to what small LPs can express

Size of LP relaxation $Ax \ge b := \#$ inequalities of $Ax \ge b$

Main question

Tradeoff between quality ρ and size for LPs of a given problem?

Theorem (BFPS'15)

- every (2ϵ) -apx LP relaxation for VC(G) has size $n^{\Omega(\frac{\log n}{\log \log n})}$
- every $(1/\epsilon)$ -apx LP relaxation for IS(G) has size $n^{\Omega(\frac{\log n}{\log \log n})}$
- Answers questions by Singh'10, CLRS'13
- "Geometric" limitations to what small LPs can express
- Strong consequence of NP ⊈ P/poly that can be proved without assuming NP ⊈ P/poly

We just care about the existence or non-existence of LP relaxations:

- do not bound the time it takes to write down the LP (important)
- do not bound the coefficients! (not so important)

We just care about the existence or non-existence of LP relaxations:

- do not bound the time it takes to write down the LP (important)
- do not bound the coefficients! (not so important)

From FJ'14:

$$\begin{array}{ll} \max & \sum_{i \in V} w_i x_i \\ \text{s.t.} & 0 \leqslant x_i \leqslant y_j \leqslant 1 \quad \forall i \in S_j \\ & \sum_j y_j \leqslant \lfloor \sqrt{2n} \rfloor \end{array}$$

We just care about the existence or non-existence of LP relaxations:

- do not bound the time it takes to write down the LP (important)
- do not bound the coefficients! (not so important)

From FJ'14:

$$\begin{array}{ll} \max & \sum_{i \in V} w_i x_i \\ \text{s.t.} & 0 \leqslant x_i \leqslant y_j \leqslant 1 \quad \forall i \in S_j \\ & \sum_j y_j \leqslant \lfloor \sqrt{2n} \rfloor \end{array}$$

We just care about the existence or non-existence of LP relaxations:

- do not bound the time it takes to write down the LP (important)
- do not bound the coefficients! (not so important)

From FJ'14:

$$\begin{array}{ll} \max & \sum_{i \in V} w_i x_i \\ \text{s.t.} & 0 \leqslant x_i \leqslant y_j \leqslant 1 \quad \forall i \in S_j \\ & \sum_j y_j \leqslant \lfloor \sqrt{2n} \rfloor \end{array}$$

We just care about the existence or non-existence of LP relaxations:

- do not bound the time it takes to write down the LP (important)
- do not bound the coefficients! (not so important)

From FJ'14:

$$\begin{array}{ll} \max & \sum_{i \in V} w_i x_i \\ \text{s.t.} & 0 \leqslant x_i \leqslant y_j \leqslant 1 \quad \forall i \in S_j \\ & \sum_j y_j \leqslant \lfloor \sqrt{2n} \rfloor \end{array}$$

We just care about the existence or non-existence of LP relaxations:

- do not bound the time it takes to write down the LP (important)
- do not bound the coefficients! (not so important)

From FJ'14:

 $\exists \ O(n)$ -size $O(\sqrt{n})$ -apx LP relaxation for IS(G) for any graph G

$$\begin{array}{ll} \max & \sum_{i \in V} w_i x_i \\ \text{s.t.} & 0 \leqslant x_i \leqslant y_j \leqslant 1 \quad \forall i \in S_j \\ & \sum_j y_j \leqslant \lfloor \sqrt{2n} \rfloor \end{array}$$

We just care about the existence or non-existence of LP relaxations:

- do not bound the time it takes to write down the LP (important)
- do not bound the coefficients! (not so important)

From FJ'14:

$$\begin{array}{ll} \max & \sum_{i \in V} w_i x_i \\ \text{s.t.} & 0 \leqslant x_i \leqslant y_j \leqslant 1 \quad \forall i \in S_j \\ & \sum_j y_j \leqslant \lfloor \sqrt{2n} \rfloor \end{array}$$

We just care about the existence or non-existence of LP relaxations:

- do not bound the time it takes to write down the LP (important)
- do not bound the coefficients! (not so important)

From FJ'14:

$$\begin{array}{ll} \max & \sum_{i \in V} w_i x_i \\ \text{s.t.} & 0 \leqslant x_i \leqslant y_j \leqslant 1 \quad \forall i \in S_j \\ & \sum_j y_j \leqslant \lfloor \sqrt{2n} \rfloor \end{array}$$

Constraint satisfaction problems

Parameters of the problem:

- $\bullet\,$ number of variables n
- $\bullet \ \textit{domain size } R$
- arity k

Constraint satisfaction problems

Parameters of the problem:

- \bullet number of variables n
- \bullet domain size R
- $\bullet \ \text{arity} \ k$

Definition (Max-CSP(n, R, k))

- Solutions: assignments $x \in [R]^n$ of values to the vars x_1, \ldots, x_n
- Instances: sets $\mathcal{I} := \{P_1, \dots, P_m\}$ of Boolean predicates $P_i : [R]^n \to \{0, 1\} : x \mapsto P_i(x)$, each depending on k variables
- Objective function: $\operatorname{Val}_{\mathcal{I}}(x) := \frac{1}{m} \sum_{i=1}^{m} P_i(x)$

Constraint satisfaction problems

Parameters of the problem:

- \bullet number of variables n
- \bullet domain size R
- $\bullet \ \text{arity} \ k$

Definition (Max-CSP(n, R, k))

- Solutions: assignments $x \in [R]^n$ of values to the vars x_1, \ldots, x_n
- Instances: sets $\mathcal{I} := \{P_1, \dots, P_m\}$ of Boolean predicates $P_i : [R]^n \to \{0, 1\} : x \mapsto P_i(x)$, each depending on k variables
- Objective function: $\operatorname{Val}_{\mathcal{I}}(x) := \frac{1}{m} \sum_{i=1}^{m} P_i(x)$

Example (Max-Cut(n))

- arity k=2
- domain size R = 2 and domain $\{0, 1\}$
- predicates of the form $P(x) = x_i \oplus x_j$

Recent results

BPZ'14 prove super-polynomial lower bounds for

- (1.5ϵ) -apx LP relaxations of VC(G)
- $(2-\epsilon)$ -apx LP relaxations of $\mathrm{IS}(G)$

Recent results

BPZ'14 prove super-polynomial lower bounds for

- (1.5ϵ) -apx LP relaxations of VC(G)
- $(2-\epsilon)$ -apx LP relaxations of $\mathrm{IS}(G)$

by combining

- \bullet lower bound of CLRS'13 for $(2-\epsilon)\mbox{-}{\rm apx}$ LP relaxations of ${\rm MAX-CUT}$
- \bullet reductions from $\operatorname{Max-Cut}(n)$ to $\operatorname{VC}(G)$ and $\operatorname{IS}(G)$

Recent results

BPZ'14 prove super-polynomial lower bounds for

- (1.5ϵ) -apx LP relaxations of VC(G)
- $(2-\epsilon)$ -apx LP relaxations of $\mathrm{IS}(G)$

by combining

- \bullet lower bound of CLRS'13 for $(2-\epsilon)\text{-apx}$ LP relaxations of MAX-CUT
- \bullet reductions from $\operatorname{Max-Cut}(n)$ to $\operatorname{VC}(G)$ and $\operatorname{IS}(G)$

Our proof

Our proof

We use:

- a different starting point: UG (unique games)
- CMM'09: UG fools $O(n^{\delta})$ rounds of Sherali-Adams
- a different leaving point: 1F-CSP (one free bit CSPs)
- CLRS'13: Sherali-Adams is "optimal" among all LPs for CSPs

Definition (1F-CSP(n,k))

- Solutions: assignments $x \in \{0, 1\}^n$
- Instances: sets $\mathcal{I} := \{P_1, \dots, P_m\}$ of Boolean predicates $P_i : \{0,1\}^n \to \{0,1\} : x \mapsto P_i(x)$, each depending on k of the n variables, and each having exactly **two** satisfying assignment on these k bits
- Objective function: $\operatorname{Val}_{\mathcal{I}}(x) := \frac{1}{m} \sum_{i=1}^{m} P_i(x)$

Rem:

• MAX-CUT(n) is a special case for k = 2

after Feige, Goldwasser, Lovász, Safra and Szegedy '96

 $G^{\ast}(n,k)$ is the graph with:

- two vertices per one free bit predicate $P:\{0,1\}^S \to \{0,1\}$ where $S \subseteq [n], \, |S| = k$
- \bullet one vertex for each partial assignment $\alpha \in \{0,1\}^S$ satisfying P
- edges between conflicting partial assignments

Unique games

Given:

- G = (U, V, E) bipartite graph, Δ -regular
- domain [R]
- permutation $\pi_{u,v}: [R] \to [R]$ for each edge $uv \in E$

Unique games

Given:

- G = (U, V, E) bipartite graph, Δ -regular
- domain [R]
- permutation $\pi_{u,v}: [R] \to [R]$ for each edge $uv \in E$

UG (unique games) is the MAX-CSP with

- arity k = 2
- one predicate per edge $uv \in E$ that is true iff $\pi_{u,v}(x_u) = x_v$

Conjecture (Khot'02)

For every $\epsilon, \delta > 0$, there exists a sufficiently large domain size $R = R(\epsilon, \delta)$ such that the following promise problem is NP-hard. Given a UG instance $(G, [R], (\pi_{uv})_{uv \in E})$, distinguish between the following two cases:

- ${\rm \bigcirc}\ \exists\ {\rm assignment\ satisfying\ at\ least\ a}\ (1-\epsilon){\rm -fraction\ of\ the\ edges};$
- **2** \nexists assignment satisfying more than a δ -fraction of the edges.

The Bansal-Khot PCP and 1F-CSP's

For every bipartite, Δ -regular UG instance $(G, [R], (\pi_{uv})_{uv \in E})$ we obtain a 1F-CSP instance by reinterpreting the PCP due to BK'09

Reductions

Consider:

- $\Pi_1 = (\mathcal{S}_1, \mathfrak{I}_1)$ max problem
- $\Pi_2 = (\mathcal{S}_2, \mathfrak{I}_2)$ min problem

Reductions

Consider:

- $\Pi_1 = (\mathcal{S}_1, \mathfrak{I}_1)$ max problem
- $\Pi_2 = (\mathcal{S}_2, \mathfrak{I}_2)$ min problem

A reduction from Π_1 to Π_2 is defined by two maps

$$\begin{array}{l} \mathbf{\hat{J}}_1 \rightarrow \mathbf{\hat{J}}_2 : \mathcal{I}_1 \mapsto \mathcal{I}_2 \\ \\ \mathbf{\hat{S}}_1 \rightarrow \mathcal{S}_2 : S_1 \mapsto S_2 \end{array}$$

subject to:

$$\mathsf{Val}_{\mathcal{I}_1}(S_1) = \underbrace{\mu(\mathcal{I}_1)}_{\text{affine shift}} - \underbrace{\alpha(\mathcal{I}_1)}_{\geqslant 0} \cdot \mathrm{Cost}_{\mathcal{I}_2}(S_2) \qquad \forall \mathcal{I}_1 \in \mathfrak{I}_1, S_1 \in \mathcal{S}_1$$

Reductions

Consider:

- $\Pi_1 = (\mathcal{S}_1, \mathfrak{I}_1)$ max problem
- $\Pi_2 = (\mathcal{S}_2, \mathfrak{I}_2)$ min problem

A reduction from Π_1 to Π_2 is defined by two maps

$$\begin{array}{l} \mathbf{\mathfrak{I}}_1 \rightarrow \mathbf{\mathfrak{I}}_2 : \mathcal{I}_1 \mapsto \mathcal{I}_2 \\ \mathbf{\mathfrak{S}}_1 \rightarrow \mathcal{S}_2 : S_1 \mapsto S_2 \end{array}$$

subject to:

$$\mathsf{Val}_{\mathcal{I}_1}(S_1) = \underbrace{\mu(\mathcal{I}_1)}_{\text{affine shift}} - \underbrace{\alpha(\mathcal{I}_1)}_{\geqslant 0} \cdot \mathrm{Cost}_{\mathcal{I}_2}(S_2) \qquad \forall \mathcal{I}_1 \in \mathfrak{I}_1, S_1 \in \mathcal{S}_1$$

The reduction is exact if additionally

$$\mathsf{OPT}(\mathcal{I}_1) = \mu(\mathcal{I}_1) - \alpha(\mathcal{I}_1) \cdot \mathsf{OPT}(\mathcal{I}_2) \qquad \quad \forall \mathcal{I}_1 \in \mathfrak{I}_1$$

Definition

For $c\geqslant s>0,$ an LP relaxation is a $(c,s)\text{-}\mathsf{apx}$ for a \max problem $\Pi=(\mathcal{S},\Im)$ if

 $\forall \mathcal{I} \in \Im: \qquad \mathsf{OPT}(\mathcal{I}) \leqslant s \quad \Longrightarrow \quad \mathrm{LP}(\mathcal{I}) \leqslant c$

Definition

For $c\geqslant s>0,$ an LP relaxation is a $(c,s)\text{-}\mathsf{apx}$ for a \max problem $\Pi=(\mathcal{S},\Im)$ if

$$\forall \mathcal{I} \in \mathfrak{I}: \qquad \mathsf{OPT}(\mathcal{I}) \leqslant s \quad \Longrightarrow \quad \mathrm{LP}(\mathcal{I}) \leqslant c$$

Intuitively:

"Whenever the optimum is small, the LP knows that the optimum is somewhat small."

Definition

For $c\geqslant s>0,$ an LP relaxation is a $(c,s)\text{-}\mathsf{apx}$ for a \max problem $\Pi=(\mathcal{S},\Im)$ if

$$\forall \mathcal{I} \in \mathfrak{I}: \qquad \mathsf{OPT}(\mathcal{I}) \leqslant s \quad \Longrightarrow \quad \mathrm{LP}(\mathcal{I}) \leqslant c$$

Intuitively:

"Whenever the optimum is small, the LP knows that the optimum is somewhat small."

Rem:

- \bullet *c* is the *completeness*
- $\bullet \ s$ is the soundness

Theorem (BPZ'14)

Let Π_1 be a max problem and let Π_2 be a min problem. Suppose \exists an **exact** reduction from Π_1 to Π_2 with constant affine shift $\mu(\mathcal{I}_1) = \mu$. Then, every ρ_2 -apx LP relaxation for Π_2 gives a (c_1, s_1) -apx LP relaxation for Π_1 , of the same size, where

$$\rho_2 = \frac{\mu - s_1}{\mu - c_1}$$

Theorem (BPZ'14)

Let Π_1 be a max problem and let Π_2 be a min problem. Suppose \exists an **exact** reduction from Π_1 to Π_2 with constant affine shift $\mu(\mathcal{I}_1) = \mu$. Then, every ρ_2 -apx LP relaxation for Π_2 gives a (c_1, s_1) -apx LP relaxation for Π_1 , of the same size, where

$$\rho_2 = \frac{\mu - s_1}{\mu - c_1}$$

Proof. Consider ρ_2 -apx LP relaxation $Ax \ge b$ for Π_2 with realizations

- x^{S_2} for $S_2 \in \mathcal{S}_2$
- $f_{\mathcal{I}_2}: \mathbb{R}^d \to \mathbb{R}$ for $\mathcal{I}_2 \in \mathfrak{I}_2$

Use same LP $Ax \ge b$ for Π_1 with realizations

•
$$x^{S_1} := x^{S_2}$$
 with $S_1 \mapsto S_2$

•
$$f_{\mathcal{I}_1}(x) := \mu - \alpha(\mathcal{I}_1) f_{\mathcal{I}_2}(x)$$
 with $\mathcal{I}_1 \mapsto \mathcal{I}_2$

We claim this is a (c_1, s_1) -apx for Π_1

 $\mathsf{OPT}(\mathcal{I}_2) \leqslant \rho_2 \operatorname{LP}(\mathcal{I}_2)$ and $\mathsf{OPT}(\mathcal{I}_1) = \mu - \alpha(\mathcal{I}_1) \operatorname{OPT}(\mathcal{I}_2)$

we have:

 $\operatorname{LP}(\mathcal{I}_1)$

 $\mathsf{OPT}(\mathcal{I}_2) \leqslant \rho_2 \operatorname{LP}(\mathcal{I}_2) \qquad \text{and} \qquad \mathsf{OPT}(\mathcal{I}_1) = \mu - \alpha(\mathcal{I}_1) \operatorname{OPT}(\mathcal{I}_2)$ we have:

$$LP(\mathcal{I}_1) = \max\{\mu - \alpha(\mathcal{I}_1)f_{\mathcal{I}_2}(x) \mid Ax \ge b\}$$

 $\mathsf{OPT}(\mathcal{I}_2) \leqslant \rho_2 \operatorname{LP}(\mathcal{I}_2) \qquad \text{and} \qquad \mathsf{OPT}(\mathcal{I}_1) = \mu - \alpha(\mathcal{I}_1) \operatorname{OPT}(\mathcal{I}_2)$ we have:

$$LP(\mathcal{I}_1) = \max\{\mu - \alpha(\mathcal{I}_1) f_{\mathcal{I}_2}(x) \mid Ax \ge b\}$$
$$= \mu - \alpha(\mathcal{I}_1) \min\{f_{\mathcal{I}_2}(x) \mid Ax \ge b\}$$

 $\mathsf{OPT}(\mathcal{I}_2) \leqslant \rho_2 \operatorname{LP}(\mathcal{I}_2)$ and $\mathsf{OPT}(\mathcal{I}_1) = \mu - \alpha(\mathcal{I}_1) \operatorname{OPT}(\mathcal{I}_2)$ we have:

$$LP(\mathcal{I}_1) = \max\{\mu - \alpha(\mathcal{I}_1)f_{\mathcal{I}_2}(x) \mid Ax \ge b\}$$
$$= \mu - \alpha(\mathcal{I}_1)\min\{f_{\mathcal{I}_2}(x) \mid Ax \ge b\}$$
$$= \mu - \alpha(\mathcal{I}_1)LP(\mathcal{I}_2)$$

 $OPT(\mathcal{I}_2) \leq \rho_2 \operatorname{LP}(\mathcal{I}_2)$ and $OPT(\mathcal{I}_1) = \mu - \alpha(\mathcal{I}_1) \operatorname{OPT}(\mathcal{I}_2)$ we have:

$$LP(\mathcal{I}_1) = \max\{\mu - \alpha(\mathcal{I}_1)f_{\mathcal{I}_2}(x) \mid Ax \ge b\}$$
$$= \mu - \alpha(\mathcal{I}_1)\min\{f_{\mathcal{I}_2}(x) \mid Ax \ge b\}$$
$$= \mu - \alpha(\mathcal{I}_1)LP(\mathcal{I}_2)$$
$$\leqslant \mu - \frac{1}{\rho_2} \cdot \alpha(\mathcal{I}_1) \cdot \mathsf{OPT}(\mathcal{I}_2)$$

 $OPT(\mathcal{I}_2) \leq \rho_2 \operatorname{LP}(\mathcal{I}_2)$ and $OPT(\mathcal{I}_1) = \mu - \alpha(\mathcal{I}_1) \operatorname{OPT}(\mathcal{I}_2)$ we have:

$$LP(\mathcal{I}_1) = \max\{\mu - \alpha(\mathcal{I}_1)f_{\mathcal{I}_2}(x) \mid Ax \ge b\}$$
$$= \mu - \alpha(\mathcal{I}_1)\min\{f_{\mathcal{I}_2}(x) \mid Ax \ge b\}$$
$$= \mu - \alpha(\mathcal{I}_1)LP(\mathcal{I}_2)$$
$$\leqslant \mu - \frac{1}{\rho_2} \cdot \alpha(\mathcal{I}_1) \cdot \mathsf{OPT}(\mathcal{I}_2)$$
$$= \mu + \frac{\mu - c_1}{\mu - s_1} \cdot (\underbrace{\mathsf{OPT}(\mathcal{I}_1)}_{\leqslant s_1} - \mu)$$

 $OPT(\mathcal{I}_2) \leq \rho_2 \operatorname{LP}(\mathcal{I}_2)$ and $OPT(\mathcal{I}_1) = \mu - \alpha(\mathcal{I}_1) \operatorname{OPT}(\mathcal{I}_2)$ we have:

$$LP(\mathcal{I}_{1}) = \max\{\mu - \alpha(\mathcal{I}_{1})f_{\mathcal{I}_{2}}(x) \mid Ax \ge b\}$$
$$= \mu - \alpha(\mathcal{I}_{1})\min\{f_{\mathcal{I}_{2}}(x) \mid Ax \ge b\}$$
$$= \mu - \alpha(\mathcal{I}_{1})LP(\mathcal{I}_{2})$$
$$\leqslant \mu - \frac{1}{\rho_{2}} \cdot \alpha(\mathcal{I}_{1}) \cdot \mathsf{OPT}(\mathcal{I}_{2})$$
$$= \mu + \frac{\mu - c_{1}}{\mu - s_{1}} \cdot (\underbrace{\mathsf{OPT}(\mathcal{I}_{1})}_{\leqslant s_{1}} - \mu)$$
$$\leqslant \mu + \frac{\mu - c_{1}}{\mu - s_{1}} \cdot (s_{1} - \mu)$$

$$OPT(\mathcal{I}_2) \leq \rho_2 \operatorname{LP}(\mathcal{I}_2)$$
 and $OPT(\mathcal{I}_1) = \mu - \alpha(\mathcal{I}_1) \operatorname{OPT}(\mathcal{I}_2)$
we have:

$$LP(\mathcal{I}_{1}) = \max\{\mu - \alpha(\mathcal{I}_{1})f_{\mathcal{I}_{2}}(x) \mid Ax \ge b\}$$
$$= \mu - \alpha(\mathcal{I}_{1})\min\{f_{\mathcal{I}_{2}}(x) \mid Ax \ge b\}$$
$$= \mu - \alpha(\mathcal{I}_{1})LP(\mathcal{I}_{2})$$
$$\leqslant \mu - \frac{1}{\rho_{2}} \cdot \alpha(\mathcal{I}_{1}) \cdot \mathsf{OPT}(\mathcal{I}_{2})$$
$$= \mu + \frac{\mu - c_{1}}{\mu - s_{1}} \cdot (\underbrace{\mathsf{OPT}(\mathcal{I}_{1})}_{\leqslant s_{1}} - \mu)$$
$$\leqslant \mu + \frac{\mu - c_{1}}{\mu - s_{1}} \cdot (s_{1} - \mu)$$
$$= c_{1}$$