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P = (V, %) partially ordered set (poset)
G = G(P) comparability graph of P (always perfect)

{(Yo-, Yu+) bvev is consistent with P if
@ Vv € V: (y,—,Yy+) open interval C (0,1)
UV W = Yo+ S Yu-

P 0 1

STAB(G(P)) = {ac €RY |3{(yo-, Yo+ ) }ocy consistent with P
St. Ty =Yp+ — Y- VUE V}



Extended Formulations as Communication Protocols

Deterministic Protocols

f:Ax B — {0,1} Boolean function (= binary matrix)
Two players:

° knows a € A
@ Bob knows b € B

want to compute f(a,b) by exchanging bits

Goal: Minimize complexity := #bits exchanged
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by by b3 by
0 0 0 1 Alice
0 0 O 1 a € {ay,az} a € {ay,as}
0j]0 0 O
oj1 1 1
b€ {by, by, by}, be {bs} b€ {bs, by, bu}, be{h}
o IR0
a € {ay}, @ € {as}
1 0

3 complexity ¢ protocol for computing f — rky(f) < 2¢
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G graph with n vertices
A ={a€{0,1}" | a encodes a clique in G}
B = {be{0,1}" | b encodes a stable set in G}

1 if a,b are disjoint
fla,b) = : .
0 if a,b intersect

Theorem (Yannakakis '91)
3 O(log? n)-complexity protocol for f = f(G)

Corollary (Yannakakis '91)
V perfect graphs G:  xc(STAB(G)) = 2000s* n) — O(logn)



Extended Formulations as Communication Protocols

Randomized Protocols Computing a Function in Expectation

The main differences:
° and Bob can use (private) random bits to make choices
i

pia) 1 —pi(a)

o f:AxB—>R,, and Bob can output any value € R



Extended Formulations as Communication Protocols

Randomized Protocols Computing a Function in Expectation

The main differences:

° and Bob can use (private) random bits to make choices
i
pi(a) 1 —pi(a)
o f:AxB—>R,, and Bob can output any value € R

Theorem (Faenza, F, Grappe & Tiwary '11)

If ¢ = ¢(f) is the minimum complexity of a randomized communication
protocol with nonnegative outputs computing f in expectation, then

rky (f) = ©(2°)
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T € R} row-stochastic (w.l.0.g.)
Write M = TU, where UeRX"
r<rke(M)+1

Protocol:
° gets row index i, Bob gets column index j
° picks random column index k € [r] w.p. T;x, sends it to Bob

@ Bob outputs value Uy;

K
Expected value on input (i, j): ZTikUkj = M;;
k=1

Complexity:  logrk (M) + O(1)
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Three equivalent ways to look at EFs:

Q A linear system Fx + Fy =g, y > 0 with y € R"
© A rank-r nonnegative factorization S = TU of slack matrix .S

© A logr-complexity randomized protocol computing S in expectation



A Boolean function f : {0,1}™ — {0,1} is said to be monotone if

Vo,y e {0,1}" : z<y = f(z) < f(v)



Monotone Boolean Functions, Monotone Circuits

Definition (monotone Boolean function)

A Boolean function f:{0,1}" — {0,1} is said to be monotone if
Ve,y €{0,1}" : z<y = f(z) <f(y)
Examples:

o Weighted threshold function. Given s1,...,8,,D € Ry:
fl@)=1 < Y sizi>D

@ Any function f computed by a monotone circuit with n inputs



Definition (monotone Karchmer-Wigderson game)
@ Alice is given a € {0,1}" such that f(a) =0
@ Bob is given b € {0,1}" such that f(b) =1

Goal: compute together an index ¢* such that a;« =0 and b;x =1
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Definition (monotone Karchmer-Wigderson game)
@ Alice is given a € {0,1}" such that f(a) =0
@ Bob is given b € {0,1}" such that f(b) =1

Goal: compute together an index ¢* such that a;« =0 and b;x =1

Theorem (Karchmer and Wigderson "90)

min (# bits for solving the monotone KW game) = min (depth of a
monotone circuit computing f)

Proof. (<)






@ P = P(f):=conv(f (1))
0 Q=Q(f) ={z|VYae fH0): 3, i > 1}

3 depth-D monotone circuit computing f = 3 complexity-D protocol
for the corresponding monotone KW game — 3 size-n2” EF of the

pair (P, Q)



@ P = P(f):=conv(f (1))
0 Q=Q(f) ={z|VYae fH0): 3, i > 1}

3 depth-D monotone circuit computing f = 3 complexity-D protocol
for the corresponding monotone KW game — 3 size-n2” EF of the
pair (P, Q)

Proof.
b1
bix_1
Sab = b, |—-1= P = PO ¢ i TN ¢ L DAY s P I
b (Z ) . Z | bi = (a1 Qi —1, Qi 41 an) bi 1
i:a;=0 i:a; =0, 1F#1*
bn
O



Extended Formulations as Communication Protocols

Consequences of the KW/EF connection

Theorem (Raz-Wigderson '90)

Every monotone circuit that decides if a given n-vertex graph has a
perfect matching, has depth Q(n).

follows in a black-box way from

Theorem (Rothvoss’14)

The matching polytope Pyaten(K,) has extension complexity PR



Theorem (matroids from the bases)

A collection B of subsets of a finite set E£ form the bases of a matroid if
and only if

Q@ B is nonempty
@ VA BeBandac ANB,3be BN Ast. A~ {alU{b} B

Definition (sparse paving matroid)
Let \V be a collection of subsets of E s.t.

@ all the sets in A/ have the same size r
@ no two sets in A/ have Hamming distance < 2

Then B := (f) \ NV form the bases of a matroid, called a sparse paving
matroid.

n) . .
Prove that there are at least 22" sparse paving matroids.



Facet-defining rank inequalities for sparse paving matroid of rank r are all
of the form

dwe<r—1=F|-1 < ) (1-z)>1

ecF ecF

erér

ecE

where F' € B or

Get from this:

@ every depth-D monotone circuit for the function
f:{0,1}F — {0,1} such that f(x) = 1 iff T is independent implies
a size-O(n2P”) extended formulation for the matroid polytope of a
sparse paving matroid.

@ f is a slice function, so the same applies to non-monotone circuits
= huge obstacle for lower bounds



Given sizes s1,...,5, € Ry, demand D € Ry:
@ Weighted threshold function: fle)=1 < Y sz 2D
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Is there a size-n®®) O(1)-apx EF for min-knapsack?
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@ Hrube3-Goos connection

e O(log?(n))-depth monotone circuits for weighted threshold
functions (Beimel and Weinreb '06)

@ Knapsack cover inequalities (Carr, Fleischer, Leung and Phillips '06)
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Starting point:
@ Hrube3-Goos connection

e O(log?(n))-depth monotone circuits for weighted threshold
functions (Beimel and Weinreb '06)

@ Knapsack cover inequalities (Carr, Fleischer, Leung and Phillips '06)

Fora € f~1(0), if let D(a) := D — >, s;a; > 0 then

> min({s;, D(a)}) - 2; > D(a)

1:a;=0

is a valid inequality, called the (capacitated) knapsack-cover inequality

Theorem (Carr et al. '06)

The (exponentially many) knapsack-cover inequalities provide a 2-apx of
min-knapsack



Our approach:
@ relax right-hand side to aD(a) where a =2/(2+¢) = 1
@ coarse + fine approximation
@ try to find a “big" item ¢* such that a;» =0, bj= =1
@ use several threshold functions

@ make things constructive (given an objective function!)



Consider for p, q large:

@ p inequalities: A;x > b; (i € [p])
@ ¢ solutions: s; (j € [g]) of this system
Data defines slack matrix M € RE*? by M;; := A;s; — b;



Extended Formulations as Communication Protocols

Making things constructive

Consider for p, ¢ large:
@ p inequalities: A;z > b; (i € [p])
@ ¢ solutions: s; (j € [g]) of this system
Data defines slack matrix M € R by M;; := A;s; — b;

Assume: M = FV, where F € RP*" and V € R



Extended Formulations as Communication Protocols

Making things constructive

Consider for p, ¢ large:

@ p inequalities: A;x > b; (i € [p])

@ ¢ solutions: s; (j € [g]) of this system
Data defines slack matrix M € R’j_xq by M;; := Ais; — b;
Assume: M = FV, where F € RP*" and V € R

This gives extended formulation

Ar—b=Fy, y=>0



Extended Formulations as Communication Protocols

Making things constructive

Consider for p, ¢ large:

@ p inequalities: A;x > b; (i € [p])

@ ¢ solutions: s; (j € [g]) of this system
Data defines slack matrix M € R’j_xq by M;; := Ais; — b;
Assume: M = FV, where F € RP*" and V € R

This gives extended formulation
Ar—b=Fy, y=>0

This has p equations, only < n + r are non-redundant!



Extended Formulations as Communication Protocols

Making things constructive

Consider for p, ¢ large:

@ p inequalities: A;x > b; (i € [p])

@ ¢ solutions: s; (j € [g]) of this system
Data defines slack matrix M € R by M;; := A;s; — b;
Assume: M = FV, where F € RP*" and V € R'*?

This gives extended formulation
Ar—b=Fy, y=>0

This has p equations, only < n + r are non-redundant!

How can we pick the equations? How can we use the extended
formulation in an algorithm?



In case the non-negative factorization comes from a communication
protocol, can write:

0 leaf
ye =0 VY leaf

where ¢;(u) := probability of reaching node w of the protocol tree on any
input pair of the form (i, *)



In case the non-negative factorization comes from a communication
protocol, can write:

£ leaf
ye =20 VY leaf

where ¢;(u) := probability of reaching node w of the protocol tree on any
input pair of the form (i, *)

Lemma

Let A := max{—1log(q;(¢)) | i € [p], ¢ leaf , q:(¢) > 0} and let h denote
the height of the protocol tree. For any fixed i € [p], one can write down
the corresponding equation in O(2"Alog A loglog A) time and O(2"A)
space.



This leads to a cutting plane algorithm. Given costs ¢ € R"

Q Initialize I C [p]
@ Solve

minc'z
st Aiw — by =) s Pil) - ye Viel
ye 20 Ve leaf
© Get optimum solution z*
@ Check if z* violates any constraint A;z > b; (i € [p])

@ If yes, add 7 to I and repeat. If no, STOP.
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Q Initialize I C [p]
@ Solve

mincTx
st Aiw — by =) s Pil) - ye Viel
ye 2 0 V¢ leaf
© Get optimum solution z*
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This leads to a cutting plane algorithm. Given costs ¢ € R”

Q Initialize I C [p]
@ Solve

min cTx
s.t. Ajix — b; = ZZ leaf pl(ﬁ) - Ye Viel
ye =0 Ve leaf

© Get optimum solution z*
@ Check if z* violates any constraint A;z > b; (i € [p])
@ If yes, add 7 to I and repeat. If no, STOP.

At most n 4 r elements are added to
Assuming that the separation can be done in time T'(n), can solve the LP

in time

O ((n+7)(T(n) +rAlog Aloglog A +n°D (n +1)A))



It is time for a break!



Techniques to prove lower bounds on non-negative rank:



Techniques to prove lower bounds on non-negative rank:

@ rectangle covering lower bound



Techniques to prove lower bounds on non-negative rank:

@ rectangle covering lower bound

@ hyperplane separation lower bound (Rothvoss, F.)



Techniques to prove lower bounds on non-negative rank:

@ rectangle covering lower bound
@ hyperplane separation lower bound (Rothvoss, F.)

© common information (Braun-Pokutta)



More Lower-Bounding techniques

Overview

Techniques to prove lower bounds on non-negative rank:

@ rectangle covering lower bound
@ hyperplane separation lower bound (Rothvoss, F.)
© common information (Braun-Pokutta)

@ for CSPs: reduction to SA (Chan-Lee-Raghavendra-Steurer)



More Lower-Bounding techniques

Overview

Techniques to prove lower bounds on non-negative rank:

@ rectangle covering lower bound

@ hyperplane separation lower bound (Rothvoss, F.)

© common information (Braun-Pokutta)

@ for CSPs: reduction to SA (Chan-Lee-Raghavendra-Steurer)

© reductions between problems



More Lower-Bounding techniques

Overview

Techniques to prove lower bounds on non-negative rank:

@ rectangle covering lower bound

@ hyperplane separation lower bound (Rothvoss, F.)

© common information (Braun-Pokutta)

@ for CSPs: reduction to SA (Chan-Lee-Raghavendra-Steurer)
© reductions between problems

@ counting (Rothvoss)
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Then if S = 327_, X; where X; € R¥** are rank-1:
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Consider any matrix S € RY*

Assume that weights W € R¥** (—’s allowed) satisfy:
(W, X) <6 ||X]|o VX € R¥* that is rank-1

Then if S = 327_, X; where X; € R¥** are rank-1:
<Wv S> = <W7ZX1>
i=1

r

= > (mXxy

i=1
< D6 1Ko
i=1
< 7015l
W, S)

T2
3 - 118]loo




Choose optimum 0:
6 := max{(W, X) | X rank-1, X € [0,1]**¢
= max{z Wiziy; |« € [0,1]%,y € [0,1]°}
g
= max{z Wiziy; |« € {0,1}F,y € {0,1}¢}
g
max{(W, R) | R rectangle}



Choose optimum 0:
6 := max{(W, X) | X rank-1, X € [0,1]**¢
= max{z Wiziy; |« € [0,1]%,y € [0,1]°}
2%
= max{z Wiziy; |« € {0,1}F,y € {0,1}¢}
0,J

= max{(W, R) | R rectangle}

The hyperplane separation bound was used to prove:

@ UDISJ(n) still has super-polynomial non-negative rank even if add
same number p everywhere, as long as p < n'/?=¢ (Braun, F,
Pokutta & Steurer)

@ XC(Paten(Ky)) = 22 (Rothvoss'14)



G = (V, E) n-vertex graph

U C V is a vertex cover if every edge has at least one endpoint in U

Basic IP for VC:
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%

zit+x; =21 VijeFE
z; €{0,1} VieV



G = (V, E) n-vertex graph

U C V is a vertex cover if every edge has at least one endpoint in U

Basic HP LP for VC:

Zcm

%

Tit+z; =21 Vijekl

#efo}t VieV
<1

7
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The basic LP has integrality gap := supg . 9o = 2

How can we improve on this?

@ Explicit constraints: e.g., if G contains odd cycle C' then

|IC|+1
- E €Xr; =2 9
eV (C)

is a valid inequality == can add it to the LP (3 many more!)

@ Implicit constraints (lift-and-project): e.g., Sherali-Adams
hierarchy strengthens current relaxation Az > b by
o Multiplying each inequality of Az > b by [],c; @i [[;c,(1 — ;) for
each pair (I, J) of disjoint subsets of [n] with |I| + |J| =7
e Expand using z? = x;
o Replace each monomial [], ¢ = by a variable ys where S C [n],
IS|<r+1

e Add the constraint yp = 1

Project by letting x; := yy4y



Does this help?
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Does this help? “NO”

Theorem (ABLT’06)
Q@ Adding all inequalities with support at most en leaves a gap > 2 — €
@ Performing O(logn) rounds of lift-and-project (LS) leaves a gap of 2

—> No obvious way to improve the integrality gap!

Many follow-up works on lift-and-project hierarchies:
@ STT'07: o(n) rounds of LS do not help

e GMPT'07: O(y/logn/loglogn) rounds of LS do not help
e CMM'09: n° rounds of SA do not help (for small § > 0)



We generalize the results on hierarchies and prove that

every polynomial size LP for VC has integrality gap 2
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IT = (S,73) (min) problem VC(G) for fixed G
S set of solutions U C V vertex cover
J set of instances T = I(c) with ¢ € RY cost vector

VZ € J have Costz : S — Ry obj fn | Costz(U) := >, ;i = c(U)

S solutions J instances

Costr



Setting up an LP relaxation:
© pick d, system Az > b in R?

© realize each S € S as point 27 in R? s.t.

© realize each Z € J as affine fn fz(x) on R? s.t. ‘ fr(z%) = Costz(9) ‘
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Setting up an LP relaxation:
©Q pick d, system Az > b in R4

© realize each S € S as point 27 in R? s.t.

© realize each Z € J as affine fn fz(x) on R? s.t. ‘ fr(z®) = Costz(9) ‘

Instance T 2% [Az >b| LP(Z) := min{fz(x) | Az > b}

Always: LP(Z) < OPT(Z) p-apx LP if: OPT(Z) < pLP(Z)

Similar for max problems, e.g., IS(G) = max independent set problem on G
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Definition
Size of LP relaxation Az > b := # inequalities of Ax > b

Tradeoff between quality p and size for LPs of a given problem?

Theorem (BFPS’15)
Ve > 0, Vng, 3 graph G with n > ng vertices such that

@ every (2 — €)-apx LP relaxation for VC(G) has size n (et
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Definition
Size of LP relaxation Az > b := # inequalities of Ax > b

Tradeoff between quality p and size for LPs of a given problem?

Theorem (BFPS’15)
Ve > 0, Vng, 3 graph G with n > ng vertices such that
@ every (2 — €)-apx LP relaxation for VC(G) has size n (et

@ every (1/€)-apx LP relaxation for IS(G) has size St

@ Answers questions by Singh'10, CLRS'13
@ "“Geometric” limitations to what small LPs can express

@ Strong consequence of NP & P/poly that can be proved without
assuming NP & P/poly
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We just care about the existence or non-existence of LP relaxations:
o do not bound the time it takes to write down the LP (important)
@ do not bound the coefficients! (not so important)

From FJ'14:

3 O(n)-size O(y/n)-apx LP relaxation for IS(G) for any graph G

max E Wiy
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s.t. 0<$z<y3<1 ViESj
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We just care about the existence or non-existence of LP relaxations:
o do not bound the time it takes to write down the LP (important)

@ do not bound the coefficients! (not so important)
From FJ'14:
3 O(n)-size O(y/n)-apx LP relaxation for IS(G) for any graph G

max E Wiy

eV
s.t. 0<$z<y3<1 ViESj

>4 < [v2n]
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We just care about the existence or non-existence of LP relaxations:
o do not bound the time it takes to write down the LP (important)

@ do not bound the coefficients! (not so important)
From FJ'14:
3 O(n)-size O(y/n)-apx LP relaxation for IS(G) for any graph G

max E Wiy

eV
s.t. 0<$z<y3<1 ViESj

>4 < [v2n]

S| S2 | Sz | Ss| Ss
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Constraint satisfaction problems

Parameters of the problem:

@ number of variables n
@ domain size R

@ arity k

Definition (Max-CSP(n, R, k))
@ Solutions: assignments z € [R]|™ of values to the vars z1, ..., @,

o Instances: sets Z := {P,..., P, } of Boolean predicates
P; : [R]™ — {0,1} : © — P;(z), each depending on k variables
e Objective function: Valz(z) := 23" P;(z)
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Constraint satisfaction problems

Parameters of the problem:
@ number of variables n
@ domain size R

@ arity k

Definition (Max-CSP(n, R, k))
@ Solutions: assignments x € [R]™ of values to the vars z1, ..., =,

o Instances: sets Z := {P,..., P, } of Boolean predicates
P; : [R]™ — {0,1} : x — P;(x), each depending on k variables

o Objective function:  Valz(z) := L+ 3" Pi(x)

@ arity k=2
@ domain size R = 2 and domain {0, 1}

o predicates of the form P(z) = z; & z;
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Recent results

BPZ'14 prove super-polynomial lower bounds for
@ (1.5 — e)-apx LP relaxations of VC(G)
@ (2 — €)-apx LP relaxations of IS(G)
by combining
@ lower bound of CLRS'13 for (2 — €)-apx LP relaxations of MAX-CuT
@ reductions from MAX-CuT(n) to VC(G) and IS(G)







Our proof

We use:
@ a different starting point: UG (unique games)
@ CMM'09: UG fools O(n’) rounds of Sherali-Adams
@ a different leaving point: 1F-CSP (one free bit CSPs)
@ CLRS'13: Sherali-Adams is “optimal” among all LPs for CSPs



One free bit CSPs

Definition (1F-CSP(n, k))
@ Solutions: assignments = € {0,1}"

o Instances: sets 7 := {P,..., P, } of Boolean predicates
P; :{0,1}™ — {0,1} :  — P;(x), each depending on k of the n
variables, and each having exactly two satisfying assignment on
these k bits
1

@ Objective function:  Valz(z) := = > Pi(x)

Rem:
@ Max-Cut(n) is a special case for k = 2



FGLSS graphs

after Feige, Goldwasser, Lovasz, Safra and Szegedy '96

G*(n, k) is the graph with:

@ two vertices per one free bit predicate P : {0,1}° — {0, 1} where
SClnl, |5 =k

@ one vertex for each partial assignment « € {0, 1} satisfying P

@ edges between conflicting partial assignments




Given:
@ G = (U,V, E) bipartite graph, A-regular
@ domain [R]

@ permutation 7y, : [R] — [R] for each edge uv € E



Unique games

Given:

@ G = (U,V, E) bipartite graph, A-regular

@ domain [R]

@ permutation 7y, : [R] — [R] for each edge uv € E
UG (unique games) is the MAX-CSP with

@ arity k=2

@ one predicate per edge uv € E that is true iff 7wy »(2) = To



Unique games conjecture

Conjecture (Khot’02)

For every €, > 0, there exists a sufficiently large domain size R = R(e, )
such that the following promise problem is NP-hard. Given a UG
instance (G, [R], (Tuv)uver), distinguish between the following two cases:
© I assignment satisfying at least a (1 — ¢)-fraction of the edges;
© 7 assignment satisfying more than a d-fraction of the edges.



The Bansal-Khot PCP and 1F-CSP'’s

For every bipartite, A-regular UG instance (G, [R], (Tuv)uveE) We
obtain a 1F-CSP instance by reinterpreting the PCP due to BK'09

el

RN



Consider:
o II; = (S1,71) max problem
@ II; = (S3,T2) min problem



Consider:
o II; = (S1,71) max problem
o II; = (S3,72) min problem

A reduction from 11; to Il is defined by two maps
° 31—>32 ZIl '_>IQ
Q 81—>82151l—>52
subject to:
Va|j_'1 (Sl) = /,L(Il) — a(Il) . COStIz(SQ) VI, € jl, S1 e85

——
affine shift >0



Reductions

Consider:
o II; = (S1,71) max problem
o II; = (S3,72) min problem

A reduction from 11; to Il is defined by two maps
(4] I =TIy — 1o
Q Sl—>SQZS1?—>SQ

subject to:

Va|Z1 (Sl) = /.L(Il) — Oé(Il) . COStI2 (SQ) VI, € 31, S1 eSS

——
affine shift >0

The reduction is exact if additionally

OPT(Il) = ,U,(Il) — a(Il) . OPT(IQ) VI, € 71



For ¢ > s > 0, an LP relaxation is a (¢, s)-apx for a max problem
= (S,7) if

VIeT: OPT(ZT)<s = LP(Z)<c



Definition
For ¢ > s > 0, an LP relaxation is a (¢, s)-apx for a max problem
= (S,7) if

VIeT: OPT(ZT)<s = LP(Z)<c

Intuitively:

“Whenever the optimum is small, the LP knows that the
optimum is somewhat small.”



Definition
For ¢ > s > 0, an LP relaxation is a (¢, s)-apx for a max problem
= (S,7) if

VIeT: OPT(ZT)<s = LP(Z)<c

Intuitively:

“Whenever the optimum is small, the LP knows that the
optimum is somewhat small.”

Rem:

@ c is the completeness

@ s is the soundness



Theorem (BPZ’14)

Let Iy be a max problem and let I1y be a min problem. Suppose 3 an
exact reduction from I1; to Il with constant affine shift u(Z;) = p.
Then, every pa-apx LP relaxation for Ily gives a (c1,s1)-apx LP
relaxation for I1;, of the same size, where

H =51
==

p2 =



Theorem (BPZ’14)

Let Iy be a max problem and let I1y be a min problem. Suppose 3 an
exact reduction from I1; to Il with constant affine shift u(Z;) = p.
Then, every pa-apx LP relaxation for Ily gives a (c1,s1)-apx LP
relaxation for I1;, of the same size, where

H =51
==

p2 =

Proof. Consider ps-apx LP relaxation Ax > b for Iy with realizations
@ 2% for S, €S,
° fr, ‘R 5 R for T, € J
Use same LP Ax > b for II; with realizations
e 21 ;= 252 with S; — S5
o fr,(x) :=p—a(Zq)fr,(z) with Zy — Iy

We claim this is a (¢, s1)-apx for Iy
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we have:
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Proof (continued). Using:

OPT(Z) < p2 LP(Z2) and OPT(Z1) = u— a(Z1) OPT(Z?)
we have:

LP(Zy) = max{p — a(Z1) fz, (2) |

= p— a(lr) min{fz, (z) |

= p— (1) LP(Z2)
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Proof (continued). Using:
OPT(IQ) < P2 LP(IQ) and OPT(Il) = U — Oé(Il) OPT(IQ)
we have:

LP(Zy) = max{u — a(Th) fz, () |
= pt — (Zy) min{ fz, () |
=u— a(I1) LP(IQ)

<p- pi “a(Z,) - OPT(Zy)
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Proof (continued). Using:
OPT(IQ) < P2 LP(IQ) and OPT(Il) = U — Oé(Il) OPT(IQ)

we have:
LP(Zy) = max{p — a(Z1) fr,(z) | Az 2 b
= p— a(Zy) min{fz, (z) | Az > b}
= p— (1) LP(Z2)

<p- pi “a(Z,) - OPT(Zy)
2
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Proof (continued). Using:
OPT(Z;) < p2 LP(Zy)

we have:

LP(Zy) = max{u — o(Z1) fz,(x) |
= pt — (Zy) min{ fz, () |

and

OPT(Il) = U — Oé(Il) OPT(IQ)

= p— (1) LP(Z2)

<p- - a(T)OPT(Ty)

<p+

P2
n—=C
B 51

!
w—= 51

-(OPT(Zy) —p)
—_——

<s1

“(s1—p)



