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Preface

Dear Participants,
welcome to ISCO 2018 the 5th International Symposium on Combinatorial
Optimization!
After the previous editions held in Hammamet, Athens, Lisbon and Vietri
sul Mare, we are happy to welcome you in Marrakesh, in the red city, one of
the famous city of Morocco.
ISCO is nowadays a highly anticipated biannual meeting for the combinato-
rial optimization research community.
We are grateful to all authors who contributed to our high-level scientific pro-
gram. Overall, we received about 120 submissions from researchers in many
different countries. Among them, about 75 full papers were submitted for the
LNCS post-conference proceedings book, and 36 of them were accepted. We
would like to also thank all PC members, the members of the organizing com-
mittee and the external reviewers for their excellent work, within demanding
time constraints. Our 21 contributed session span many different topics of
combinatorial optimization. Together with the 4 invited lectures by inter-
nationally renowned researchers such as Marcia Fampa, Bernard Gendron,
Fritz Eisenbrand and Franz Rendl, we are sure that they will be a source of
insights and fruitful discussions for all participants.

We hope you will all enjoy the conference and your stay in Marrakesh!

Abdellatif El Afia
Jon Lee
A. Ridha Mahjoub
Giovanni Rinaldi
ISCO 2018 Co-Chairs
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Challenges in MINLP - The Euclidean Steiner Tree Problem in n-dimensional
space
Marcia Fampa (Federal University of Rio de Janeiro, Brazil)

Proximity results and faster algorithms for Integer Programming using the
Steinitz Lemma
Friedrich Eisenbrand (EPFL, Lausanne, Switzerland)

Lagrangian Relaxations and Reformulations for Network Design
Bernard Gendron (University of Montreal, Canada)

Order through partition: A semidefinite Programming Approach
Franz Rendl (University of Klagenfurt, Graz, Austria)



Challenges in MINLP - The Euclidean
Steiner Tree Problem in n-dimensional space

Marcia Fampa
Federal University of Rio de Janeiro, Brazil, fampa@cos.ufrj.br

The Euclidean Steiner tree problem asks for a network of minimum length interconnecting
a given set of points in n-dimensional space. We present a historical background for this
problem, discuss existing algorithms to solve it, and identify characteristics of the problem
that make its solution a big challenge when n is greater than 2, focusing on the application of
MINLP solvers to different formulations. We present ideas that have been applied to handle
the main difficulties in the solution of the problem, and point out others as future research
directions.



Proximity results and faster algorithms for
Integer Programming using the Steinitz

Lemma

Friedrich Eisenbrand
EPFL, Lausanne, Switzerland, friedrich.eisenbrand@epfl.ch

We consider integer programming problems in standard form max{cTx : Ax = b, x ≥ 0
, x ∈ Zn} where A ∈ Zm×n, b ∈ Zm and c ∈ Zn. We show that such an integer program
can be solved in time (mδ)O(m) · ||b||2∞ , where δ is an upper bound on each absolute value
of an entry in A. This improves upon the longstanding best bound of Papadimitriou (1981)
of (m · δ)O(m2), where in addition, the absolute values of the entries of b also need to be
bounded by δ. Our result relies on a lemma of Steinitz that states that a set of vectors in
Rm that is contained in the unit ball of a norm and that sum up to zero can be ordered such
that all partial sums are of norm bounded by m. We also use the Steinitz lemma to show
that the `1-distance of an optimal integer and fractional solution, also under the presence of
upper bounds on the variables, is bounded by m · (2m · δ + 1)m. Here δ is again an upper
bound on the absolute values of the entries of A. The novel strength of our bound is that it
is independent of n. We provide evidence for the significance of our bound by applying it to
general knapsack problems where we obtain structural and algorithmic results that improve
upon the recent literature.



Lagrangian Relaxations and Reformulations
for Network Design

Bernard Gendron
University of Montreal, Canada, bernard.gendron@cirrelt.ca

We consider a general network design model for which we compare theoretically different
Lagrangian relaxations. Fairly general assumptions on the model are proposed, allowing us to
generalize results obtained for special cases. The concepts are illustrated on the fixed-charge
multicommodity capacitated network design problem, for which we present three different
Lagrangian relaxations: the well-known shortest path and knapsack relaxations, and a new
one, called the facility location relaxation. Dantzig-Wolfe reformulations are derived for
each of these Lagrangian relaxations and bundle methods are proposed for solving these
reformulations, along with Lagrangian heuristics and branch-and-price algorithms.



Order through partition: A semidefinite
Programming Approach

Franz Rendl
University of Klagenfurt, Graz, Austria, franz.rendl@aau.at

Ordering Problems on n objects involve pairwise comparison among all objects. This
typically requires

(
n
2

)
decision variables.

In this talk we investigate the idea of partitioning the objects into k groups (k-partition)
and impose order only among the partition blocks.

We demonstrate the efficiency of this approach in connection with the bandwidth min-
imization on graphs. We consider relaxations of the partition model with the following
characteristics:

1) The weakest model is formulated in the space of symmetric n × n matrices and has
the Hoffman-Wielandt theorem in combination with eigenvalue optimization as a theoretical
basis.

2) We also consider semidefinite relaxations in the space of n × n matrices, involving
k semidefinite matrix variables. The idea here is to linearize the quadratic terms using
eigenvalue decompositions.

3) Finally, the strongest model is formulated in the space of symmetric nk×nk matrices.
It is based on the standard reformulation-linearization idea.

We present theoretical results for these relaxations, and also some preliminary computa-
tional experience in the context of bandwidth minimization.

Co-authors: Renata Sotirov (Tilburg, Netherlands) and Christian Truden (Klagenfurt,
Austria)
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WEA1 : Polyhedral Approaches I

• Refining Column Generation Subproblems Using Classical Benders’ Cuts
Jonas Witt, Marco Lübbecke, Stephen J. Maher.

• An exact column generation-based algorithm for Bi-Objective Vehicle
Routing Problems
Estèle Glize, Nicolas Jozefowiez, Sandra Ulrich Ngueveu.

• The Stop Number Minimization Problem: complexity and polyhedral
analysis
Mourad Baiou, Rafael Colares, Hervé Kerivin.

• The Next Release Problem: Complexity, Exact Algorithms and Compu-
tations
José Carlos Almeida Jr., Felipe De C. Pereira, Marina V. A. Reis,
Breno Piva.



Refining Column Generation Subproblems Using
Classical Benders’ Cuts

Marco E. Lübbecke1, Stephen J. Maher2, and Jonas T. Witt1

1 Lehrstuhl für Operations Research, RWTH Aachen University
{marco.luebbecke,jonas.witt}@rwth-aachen.de

2 Department of Management Science, Lancaster University
s.maher3@lancaster.ac.uk

Column generation is an iterative solution algorithm that can be applied
to solve the linear programming (LP) relaxation of large-scale mixed-integer
programs (MIPs). In each iteration the restricted master problem (RMP) is
updated with the addition of promising variables, or columns, that are identified
by solving subproblems. Unfortunately, it is possible that columns are generated
by the subproblems that are not necessary to express an integer optimal solution
of the MIP. Such columns are called redundant [5]. Since redundant columns
are not necessary for an integer optimal solution, and the dual bound obtained
by solving the LP relaxation is potentially stronger if redundant columns are
not generated, it is expected to be advantageous to avoid their generation.
This can be achieved by refining the feasible region of the column generation
subproblems in order to eliminate (some) redundant columns. So far, only domain
propagation techniques were applied to obtain tighter variable bounds in the
column generation subproblems [2, 5]. In this work, we will address the refinement
of column generation subproblems by adding inequalities to avoid the generation
of redundant columns.

Consider a MIP that has been reformulated using Dantzig-Wolfe reformulation.
Column generation is then employed to solve the LP relaxation of the reformulated
problem. To evaluate the redundancy of a column, it must be determined whether
there exists an integer optimal solution that can be expressed without using this
column. Instead of testing this, we introduce a sufficient condition for redundancy,
which is based on the LP relaxation of the original MIP. We fix all integer variables
corresponding to a partial solution described by the evaluated column in the LP
relaxation of the original MIP. The resulting LP is called the redundancy LP. If
the redundancy LP is infeasible, the evaluated column is redundant since it is
not part of any integer feasible solution to the reformulated problem. The Farkas
proof of infeasibility of the redundancy LP can be used to generate classical
Benders’ feasibility cuts that eliminate the evaluated column: Potentially other
redundant columns from the column generation subproblem are also eliminated.
Additionally, the redundancy check can be strengthened by incorporating a primal
bound on the optimal solution value. Inequalities that are generated using the
redundancy LP are called subproblem cuts.

Column generation algorithms can then be adjusted as follows: After solv-
ing the column generation subproblems, we check each generated column for
redundancy by solving the corresponding redundancy LP. If the redundancy
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LP is infeasible for some column, we do not add the redundant column to the
column generation master problem, but refine the corresponding column genera-
tion subproblem by adding subproblem cuts. Hence, the redundant column is
forbidden in the subproblem and will not be generated again. If, on the other
hand, the redundancy LP is feasible, we add the column to the column gener-
ation master problem. Since only a sufficient condition redundancy is checked,
generated columns may still be redundant. In the case that all columns in a
particular column generation iteration are forbidden, no columns will be added
to the column generation master problem. For the exactness of the algorithm,
in this case it is required that all refined column generation subproblems are
resolved.

The column generation subproblem refinement algorithm is implemented in the
branch-price-and-cut (BP&C) solver GCG and evaluated using various publicly
available test instances arising from many application areas. Unfortunately,
almost no subproblem cuts are generated when solving instances from “classical”
applications of BP&C algorithms, such as bin packing, capacitated p-median or
coloring problems. We explain that for several of these “classical” applications
the underlying problem structure makes it difficult to identify redundant columns.
Nevertheless, several subproblem cuts are found on capacitated lot-sizing and
linearized unit commitment problem instances using temporal decompositions [1,
3, 4]. On several of these instances, the subproblem cuts strengthen the dual
bound in the root node and improve the performance when solving the instances
to optimality.

References

1. Fragkos, I., Degraeve, Z., Reyck, B.D.: A horizon decomposition approach for the
capacitated lot-sizing problem with setup times. INFORMS Journal on Computing
28(3), 465–482 (2016), https://doi.org/10.1287/ijoc.2016.0691

2. Gamrath, G., Lübbecke, M.: Experiments with a generic Dantzig-Wolfe decomposi-
tion for integer programs. In: Festa, P. (ed.) Proceedings of the 9th. vol. 6049, pp.
239–252. Springer-Verlag, Berlin (2010)

3. Kim, K., Botterud, A., Qiu, F.: Temporal decomposition for improved unit com-
mitment in power system production cost modeling. Tech. rep. (2017), http:

//www.mcs.anl.gov/papers/P7073-0717.pdf

4. Pimentel, C.M.O., e Alvelos, F.P., de Carvalho, J.M.V.: Comparing Dantzig-Wolfe
decompositions and branch-and-price algorithms for the multi-item capacitated
lotsizing problem. Optimization Methods and Software 25(2), 299–319 (2010), https:
//doi.org/10.1080/10556780902992837

5. Vanderbeck, F., Savelsbergh, M.W.: A generic view of Dantzig-Wolfe decomposition
in mixed integer programming. Operations Research Letters 34(3), 296 – 306 (2006),
http://www.sciencedirect.com/science/article/pii/S0167637705000659
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An exact column generation-based algorithm for
Bi-Objective Vehicle Routing Problems

Estle Glize1(�), Nicolas Jozefowiez2, and Sandra Ulrich Ngueveu1

1 CNRS, LAAS, INSA, INP Toulouse, Toulouse, France,
glize,ngueveu@laas.fr,

2 LCOMS, Université de Lorraine, Metz, France,
nicolas.jozefowiez@univ-lorraine.fr

We propose a new exact method for bi-objective vehicle routing problems
where edges are associated with two costs. The method generates the minimum
complete Pareto front of the problem by combining the scalarization of the objec-
tive function [2] and the column generation technique. The aggregated objective
allows to apply the exact algorithm for the mono-objective vehicle routing prob-
lem of Baldacci et al. [1]. The algorithm is applied to a bi-objective VRP with
time-windows. Computational results are compared with a classical bi-objective
technique [3]. The results show the pertinence of the new method, especially for
clustered instances.

References

1. Baldacci, R., Christofides, N., Mingozzi, A.: An exact algorithm for the vehicle
routing problem based on the set partitioning formulation with additional cuts.
Mathematical Programming 115, 351–385 (2008)

2. Ulungu, E.L., Teghem, J., Fortemps, P.H., Van Nieuwenhuyze, K.: The two phases
method: An efficient procedure to solve bi-objective combinatorial optimization
problems. Foundations of Computing and Decision Sciences 20, 149–165 (1995)

3. Haimes, Y., Lasdon, L., Wismer, D.: On a bicriterion formulation of the problems
of integrated system identification and system optimization. IEEE Transactions on
systems, man and cybernetics 1, 296–297 (1971)
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The Stop Number Minimization Problem:
complexity and polyhedral analysis

Mourad Bäıou, Rafael Colares, and Hervé Kerivin

LIMOS, CNRS and Université Clermont Auvergne, Clermont-Ferrand, France
{baiou,colares,kerivin}@isima.fr

Keywords: autonomous vehicles, branch-and-cut, complexity

1 The Unit Stop Number Minimization Problem

The Stop Number Minimization Problem (SNMP) arises in the management
of a dial-a-ride system [1] with autonomous vehicles. In such a system, a fleet
of capacitated vehicles travels along a closed circuit network with predefined
stations in a clockwise direction. Customers request for a ride, expressed as a
load (i.e., a number of seats) from an origin station to some destination station
of their choice. The SNMP consists of assigning the customer requests to the
vehicles such that no vehicle gets overloaded and the total number of pick-
up/drop-off operations is minimized.

In this talk we focus on a constrained version of SNMP where each demand
can only request a single seat in a vehicle and the fleet must respond to all re-
quests in a single tour. This constrained problem is called Unit SNMP (USNMP)
and is formally defined as follows. Let V = {1, . . . , n} denote the set of stations
sequentially ordered as they appear in the circuit network and E = {e1, . . . , em}
denote the set of unit load dial-a-ride demands such that each demand e ∈ E is
specified by an origin station oe ∈ V and a destination station de ∈ V , that is,
e = (oe, de). Also, let K denote the set of available identical vehicles each with
capacity C ∈ Z+.

Let ∆E(v) = {e ∈ E : oe ≤ v and de ≥ v + 1} be the set of demands
that cross or starts at station v. Demand e ∈ E intersects station v ∈ V if
e ∈ ∆E(v). Then a feasible solution to USNMP is a partition of E into |K|
subsets {E1, . . . , E|K|}, such that |∆Ei

(v)| ≤ C for any i ∈ K and v ∈ V . Given
a feasible solution {E1, . . . , E|K|}, vehicle i ∈ K stops in every station of V (Ei).

Therefore, the cost of this solution is
∑|K|
i=1 |V (Ei)|, and the USNMP is to find

a feasible solution of minimum cost.
The USNMP was formulated in [2] as the following integer linear problem,

where the variable xie expresses the fact that demand e is assigned or not to
vehicle i (that is, xie = 1 if e ∈ Ei, x

i
e = 0 otherwise) and the variable yiv

expresses whether or not vehicle i stops at station v (that is, yiv = 1 if v ∈ V (Ei),
yiv = 0 otherwise).

min
∑

v∈V

∑

i∈K
yiv (1)
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 s.t.
 ∑
 xie = 1 ∀e ∈ E, (2)

 i∈K
 ∑
 xie ≤ C ∀v ∈ V, i ∈ K, (3)

 e∈∆E(v)

 xie ≤ yv
i ∀i ∈ K, e ∈ E, v ∈ {oe, de}, (4)

 xie ∈ {0, 1} ∀e ∈ E, i ∈ K, (5)

 yv
i ∈ {0, 1} ∀v ∈ V, i ∈ K. (6)

2 Our Contribution

In [2], SNMP was shown to be weakly NP-Hard using a reduction from Partition
Problem and USNMP was conjectured to be NP-Hard. In this talk, we answer
affirmatively to this conjecture by showing that for any fixed capacity C ≥ 2,
USNMP is strongly NP-Hard and APX-Complete.

An interesting particular case arises when there exists some station v′ wherein
all demands intersect, that is, ∆E(v′) = E. We show that this can be solved in
polynomial time when C=2 but is NP-Hard for C ≥ 3 even when G = (V,E) is
restricted to the class of planar bipartite graphs.

From primal-dual relations, we show that the linear relaxation of (1)-(6)
always provides the trivial dual bound of value |V |. To reinforce the formulation
we introduce the following family of k-tree inequalities:

∑

e∈T
xie ≤

∑

v∈V (G[T ])

(d
G[T ]

(v)− 1)yiv ∀i ∈ K, j ∈ V, T ⊆ ∆E(j), (7)

such that the graph G[T ] induced by edge set T is a tree of C+1 edges, and
dG[T ](v) denote the degree of vertex v ∈ V in G[T ].

We give necessary and sufficient conditions for inequalities (7) to be facet-
defining. We also prove that their separation problem is NP-Hard.

Finally we show that adding inequalities (7), even separated heuristically, and
some symmetry-breaking constraints, significantly improves the performances of
a branch-and-cut algorithm based on (1)-(6).

References

1. Cordeau, J-F., Laporte, G.: Dial-a-Ride: models and algorithms. Annals of Opera-
tions Research 153, 29-46 (2007).

2. Pimenta, V., Quilliot, A., Toussaint, H., Vigo, D.: Models and algorithms for
reliability-oriented Dial-a-Ride with autonomous electric vehicles. European Journal
of Operational Research 257 601–613 (2017).
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The Next Release Problem: Complexity, Exact
Algorithms and Computations

José Carlos Almeida Jr., Felipe de C. Pereira, Marina V. A. Reis, and Breno
Piva ⋆

Universidade Federal de Sergipe, Departamento de Computação, Av. Marechal
Rondon, s/n, Jd. Rosa Elze, 49100-000, São Cristóvão, Sergipe, Brasil.

{fcpereira,marinavar,brenopiva}@dcomp.ufs.br

1 Introduction

The Next Release Problem (nrp) was first formalized by Bagnall et al. in [1] as
a description of a company’s next release plan considering its involvement in the
development and maintenance of large, complex systems to a set of clients that
have different needs and different values for the company.

The input of nrp can be formalized as been composed by a set R of require-
ments, a set of clients C, a budget B ∈ Z+ and a directed graph D = (R∪C, A)
indicating the association between requirements and between requirements and
clients. The set of arcs in D is A ⊆ R × (R ∪ C). There are also two func-
tions ω : R → Z+ and δ : C → Z+ indicating, respectively, the cost of each
requirement and the value of each client.

The nrp can be formalized using the following integer linear program (ip)
formulation due to Bagnall et al. [1]:

(nrp) z = max
∑

c∈C

δ(c)yc (1)

subject to
∑

r∈R

ω(r)xr ≤ B (2)

xr′ ≤ xr ∀ (r, r′) ∈ A (3)

yc ≤ xr ∀ (r, c) ∈ A (4)

xr, yc ∈ {0, 1}; r ∈ R, c ∈ C (5)

Our contribution. In this work we prove the strong NP-hardness of nrp and,
therefore, does not admit an fptas. We present a new family of valid inequalities
for the nrp ip formulation from [1]. We present a separation heuristic routine for
this family of valid inequalities and use this routine to construct a Branch-and-
Cut (b&c) algorithm. We create and make available a new set of bigger instances
for the nrp based on instances from the literature. Finally, the performance of
the b&c algorithm is compared against that of a Branch-and-Bound (b&b)
algorithm that is currently the faster algorithm in the experiments found in the
literature.

⋆ The authors would like to thank PIBIC/UFS for the support.
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2 The Complexity of nrp

In [1], Bagnall et al. showed that the nrp is NP-hard. The proof is based on the
fact that nrp generalizes the well-known 0-1 knapsack problem and, therefore,
there is an obvious reduction from this problem to the nrp.

Proposition 1. The nrp is strongly NP-hard.

The proof of Proposition 1 is obtained through a reduction from the k-clique
problem to nrp.

Corollary 1. The nrp does not admit an fptas, unless P = NP.

3 Integer Programming Approach

Cover Inequalities. Given that the weight limit in the knapsack problem and the
budget in the nrp have similar roles, it is possible to consider cover inequalities
for the nrp. Therefore, it is easy to see that the inequalities

∑
i∈H xri

≤ |H|− 1
and

∑
i∈E(H) xri

≤ |H| − 1 are valid for (nrp) where H ⊆ {1, ..., |R|} such that∑
i∈H ω(ri) > B and E(H) = H ∪ {j ∈ {1, ..., |R|} \ H|ω(rj) ≥ ω(ri)∀i ∈ H}.
Let E(H) be an extended cover for nrp. Let χ(C ′) denote an ordering of a set

of clients C ′ according to some criterion. And denote by χ(C ′)[0] the index of the
first client in this ordering. Now, let F (c, H ′) = {i ∈ {1, ..., |R|} \ H ′|(ri, c) ∈ A}
denote the set of requirements whose indexes are not in H ′ that are prereq-
uisites of client c. Finally, a client cover over sets H ′ of requirements indexes
and C ′ of clients can be defined as follows: CC(H ′, C ′) = χ(C ′)[0] ∪ CC(H ′ ∪
F (χ(C ′)[0], H ′), C ′ \ {χ(C ′)[0]}) if

∑
j∈F (c,H′) ω(rj) ≥ ω(ri) for all i ∈ E(H)

or CC(H ′, C ′) = CC(H ′, C ′ \ {χ(C ′)[0]}) otherwise, moreover, CC(H ′, ∅) = ∅.
With these definitions we can now define the extended client cover inequalities
as

∑
i∈E(H) xri

+
∑

j∈CC(E(H),C) ycj ≤ |H| − 1.
A separation heuristic was divised in order to find extended cover client

inequalities that are violated by fractional solutions found at each node the b&b
search and, that way, generate a b&c algorithm.

4 Conclusions and Future Works

nrp is strongly NP-hard and does not admit an fptas, however, it is still
not clear whether there is a ptas or if there is a limit on its approximability.
Despite having exponential time complexities, ip based algorithms have shown
their usefulness. Furthermore, the b&c algorithm suggests that there is still
room for improvement, since this algorithm was able to solve bigger instances
quicker than a simple b&b algorithm.
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Efficient Algorithms for Measuring the
Funnel-likeness of DAGs?

Marcelo Garlet Millani1, Hendrik Molter1, Rolf Niedermeier1, and
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Abstract. Funnels are a new natural subclass of DAGs. Intuitively, a
DAG is a funnel if every source-sink path can be uniquely identified by
one of its arcs. Funnels are an analog to trees for directed graphs that
is more restrictive than DAGs but more expressive than in-/out-trees.
Computational problems such as finding vertex-disjoint paths or tracking
the origin of memes remain NP-hard on DAGs while on funnels they
become solvable in polynomial time. Our main focus is to determine the
algorithmic complexity of finding out how funnel-like a given DAG is.
To this end, we focus on the NP-hard problem of computing for a given
DAG the arc-deletion distance to a funnel. We develop efficient exact and
approximation algorithms for the problem and test them on synthetic
random graphs and real-world graphs.

Introduction. Directed acyclic graphs (DAGs) are finite directed graphs (di-
graphs) without directed cycles and appear in many applications, including the
representation of precedence constraints in scheduling, data processing networks,
causal structures, or inference in proofs. From a more graph-theoretic point of
view, DAGs can be seen as a directed analog of trees; however, their combinato-
rial structure is much richer. Thus a number of directed graph problems remain
NP-hard even when restricted to DAGs. This motivates the study of subclasses
of DAGs. We study funnels which are DAGs where each source-sink path has at
least one private arc, that is, no other source-sink path contains this arc.

Funnels are both of combinatorial and graph-theoretic as well as of practical
interest: First, funnels are a natural compromise between DAGs and trees as,
similarly to in- or out-trees, the private-arc property guarantees that the overall
number of source-sink paths is upper-bounded linearly by the funnel’s number
of arcs, yet multiple paths connecting two vertices are possible. Second, we show
that funnels, in a divide & conquer spirit, allow for a vertex partition into a
set of forking vertices with indegree one and possibly large outdegree and a
set of merging vertices with outdegree one and possibly large indegree. This

? This is a two-page summary of the same-titled submission to ISCO 2018. A full
version is available on arXiv: https://arxiv.org/abs/1801.10401.
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partitioning helps in designing our algorithms. Third, in terms of applications,
due to the simpler structure of funnels, problems such as DAG Partitioning,
Vertex Disjoint Paths, (also known as k-Linkage), or a variation of the
problem Network Inhibition become tractable on funnels while they are NP-
hard on DAGs. Altogether, we feel that funnels are one of so far few natural
subclasses of DAGs.

Contribution and Results. The focus of this paper is on investigating the com-
plexity of turning a given DAG into a funnel by a minimum number of arc
deletions. The motivation for this is twofold. First, due to the noisy nature of
real-world data, we expect that graphs from practice are not pure funnels, even
though they may adhere to some form of funnel-like structure. To test this hy-
pothesis we need efficient algorithms to determine funnel-likeness. Second, as
mentioned above, natural computational problems become tractable on funnels
(e.g., k-Linkage). Thus it is promising to try and develop fixed-parameter al-
gorithms for such NP-hard DAG problems with respect to distance parameters
to funnels. This approach is known as exploiting the “distance from triviality”.
A natural way to measure the distance of a given DAG D to a funnel is the
arc-deletion distance to a funnel, the minimum number of arcs that need to be
deleted from D to obtain a funnel. The problem of computing this distance par-
allels the well-studied NP-hard Feedback Arc Set problem where the task is
to turn a given digraph into a DAG by a minimum number of arc deletions.

Formally, we study the problem Arc-Deletion Distance to a Fun-
nel (ADDF) where, given a DAG D, we want to find its arc-deletion distance d
to a funnel. Our main results are as follows.
– We show that ADDF is NP-hard.
– We give a linear-time factor-two approximation algorithm for ADDF.
– We present an O(3d · |D|) time algorithm for ADDF, where |D| is the size

of the input DAG.3

We empirically evaluated the practical usefulness of our algorithms through ex-
periments. The approximation algorithm always found solutions which where
within a factor of 1.16 of the optimal ones. The exact algorithm solved most in-
stances with 50 ≤ d ≤ 175 within ten minutes. Our data sets contain artificial
and real-world instances with between 250 and 29810 vertices. From the exper-
iments we conclude that our algorithms are of practical interest.

Conclusion. Our results add to the relatively small list of fixed-parameter trac-
tability results for directed graphs and introduce a novel interesting structural
parameter for directed (acyclic) graphs. In particular, our approximation and
fixed-parameter algorithms could help to establish the arc-deletion distance to a
funnel as a useful “distance-to-triviality measure” for designing fixed-parameter
algorithms for NP-hard problems on DAGs. We leave open whether computing
a DAG’s arc-deletion distance to a funnel is APX-hard. Finally, funnels might
provide a basis for defining some useful digraph width or depth measures.

3 There is also a simple O(5d · |D|2) time algorithm for general digraphs.
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The min-knapsack problem (MinKnap)

min cTx s.t. pTx ≥ 1, x ∈ {0, 1}n (1)

is the variant of the max knapsack problem (MaxKnap) where, given a cost vector
c and a profit vector p, we want to minimize the total cost given a lower bound on
the total profit. MinKnap is known to be NP-Complete, even when p = c, while
its complexity is settled with the classical FPTAS.

However, in applications one aims at developing techniques that remain valid
when less structured constraints are added on top of the original knapsack one. This
can be achieved by providing strong linear relaxations for the problem, providing a
good starting point for any branch-and-bound procedure. The most common way to
measure the strength of a linear relaxation is by measuring its integrality gap, and
this is the point where MinKnap and MaxKnap seem to be very different. Indeed,
the standard linear relaxation for MaxKnap has integrality gap 2, and this can
be boosted to (1 + ε) by an extended formulation with nŌ(1/ε) many variables and
constraints, for ε > 0 [2]. Conversely, the standard linear relaxation for MinKnap
has unbounded integrality gap, and this remains true even after Θ(n) rounds of
the Lasserre hierarchy [6]. It is an open problem whether there exists an extended
LP formulation for MinKnap with polynomially many constraints and constant
integrality gap.

Recent results showed the existence [1] and gave an explicit construction [5]
of a linear relaxation for MinKnap of quasi-polynomial size with integrality gap
2 + ε. This is obtained by giving an approximate formulation for Knapsack Cover
inequalities (KC) [4]. Adding those exponentially many inequalities that can be
approximately separated [4] gives an integrality gap of 2. This bound is tight even
in the simpler case when p = c. A well-behaved candidate for further reducing the
gap are so called bounded pitch inequalities [3]. Intuitively, the pitch is a parameter
measuring the complexity of an inequality, and the associated separation problem
is NP-Hard already for pitch-1 (also known as unweighted cover inequalities [1]).

In this paper, we study structural properties and separability of bounded pitch
inequalities for MinKnap, and the strength of linear relaxations for MinKnap when
they are added. Let F be the set given by pitch-1, pitch-2, and inequalities from
the linear relaxation of (1). We first show that, for any arbitrarily small precision,
we can solve in polynomial time the weak separation problem for the set F .
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Theorem 1. Given a MinKnap instance (1), for each fixed ε > 0, there exists an
algorithm that takes as input a point x̄ and, in time polynomial in n, either outputs
an inequality from F that is violated by x̄, or outputs a point ȳ, x̄ ≤ ȳ ≤ (1 + ε)x̄
that satisfies all inequalities in F .

It is then a natural question whether bounded pitch inequalities can help to
reduce the integrality gap below 2.

Theorem 2. Consider an instance of MinKnap (1) with p = c. Denote by K the
linear relaxation of (1) to which all pitch-1 and pitch-2 inequalities have been added.
The integrality gap of K is at most 3/2.

However, this is false in general. Indeed, we also prove that KC plus bounded
pitch inequalities do not improve upon the integrality gap of 2.

Theorem 3. For any fixed k ∈ N and n ∈ N sufficiently large, there exists a
MinKnap instance such that its standard linear relaxation, with added all valid KC
and inequalities of pitch at most k, has integrality gap 2

1+ k
n

≈ 2.

Moreover, bounded pitch alone can be much weaker than KC: we show that, for
each fixed k, the integrality gap may be unbounded even if all pitch-k inequalities
are added. Using the relation between bounded pitch and Chvátal-Gomory (CG)
closures established in [3] we obtain the following.

Theorem 4. For a fixed q ∈ N, let CGq(K) be the q-th CG closure of the MinKnap.
There exists an instance K such that the integrality gap of CGq(K) is Ω(

√
n).
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1 Introduction

In the model of streaming graph analysis, an algorithm observes the edges of an
input graph one by one while maintaining some representative summary. We seek
to understand how well different problems can be solved in this model, in terms
of the size of the summary and the accuracy of any approximation obtained.

Independent Sets and the Caro-Wei Bound. Given an n-vertex graph
G = (V,E), an independent set I ⊆ V is a set of nodes such that there is no
edge between any pair, and the independence number α(G) of G is the size of
a maximum independent set, i.e., one of maximum cardinality. Approximating
α(G) is a difficult task in the streaming model: Halldórsson et al. [ICALP 2012]

proved that space Ω(n
2

c2 ) is necessary for computing a c-approximation to α(G).
Due to these extensive space requirements, in this paper, we address the problem
of approximating the Caro-Wei bound, a well-known lower bound on α(G). Caro
[1979] and Wei [1981] proved that every graph G contains an independent set of
size

β(G) :=
∑

v∈V

1

degG(v) + 1
.

The quantity β(G) is an attractive bound. For example, the sequential min-
degree Greedy algorithm produces an independent set of size at least β(G), and
β(G) approximates α(G) within a poly-logarithmic factor in many interesting
graph classes, such as graph of polynomially bounded-independence [Halldórsson,
Konrad, DISC 2015].

Starting Point: −1 Frequency Moment. Approximating β(G) is essentially
the same as approximating the −1 (negative) frequency moment (or the har-
monic mean) of a frequency vector derived from the vertex degrees in a graph
stream. Braverman and Chestnut [APPROX 2015] showed that computing a
(1 + ε)-approximation to the harmonic mean in one pass requires Ω(n) space if
the length of the input sequence is Ω(n2). While this lower bound is designed for
arbitrary frequency vectors, it can be embedded into a graph with Θ(n2) edges
so that frequencies correspond to vertex degrees. This implies we cannot find an
algorithm to approximate the Caro-Wei bound within a factor of 1 + ε which
guarantees that the space used will always be sublinear.
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2 Our Results

Despite these lower bounds, we are able to provide upper and lower bounds
that improve on those stated above. Since in our setting the frequency vector
is derived from a graph stream, we can exploit the properties of the underlying
graph. In our first result, we relate the space complexity of our algorithm to a
given lower bound γ on β(G). A meaningful lower bound γ is easy to obtain:
It is easy to see that the Turán bound, which shows that n/(d+ 1) is a lower
bound on α(G), is also a lower bound on β(G), where d is the average degree
of the input graph. Our first result is then a one-pass randomized streaming
algorithm with space O(n logn

γc2 ) that approximates β(G) within a factor of c

with high probability. Using γ = n
d+1

, the space becomes O(d lognc2 ), which is

polylogarithmic for graphs of constant average degree such as planar graph or
bounded arboricity graphs. The algorithm can also give a (1 + ε)-approximation
using O(n logn

γε2 ) space.

We prove that our algorithm is best possible (up to a log factor). Via a
reduction from a hard problem in communication complexity, we show that every
p-pass streaming algorithm for computing a c-approximation to β(G) requires
Ω( n

β(G)c2p ) space. This lower bound also holds in the vertex arrival order, where

vertices arrive one by one together with those incident edges that connect to
vertices that have previously arrived. Our lower bound is more general than the
lower bound from Braverman and Chestnut, since their lower bound only holds
for (1 + ε)-approximation algorithms and does not establish a dependency on
the output quantity, i.e., the −1-negative frequency moment.

Our lower bound shows that the promise that the input stream is in vertex
arrival order is not helpful for approximating β(G). However, if we regard the
task of approximating β(G) as obtaining a (hopefully large) lower bound on the
size of a maximum independent set of the input graph, then any value sandwiched
between β(G) and the maximum independent set size would be equally suitable
(or even superior). In the vertex arrival setting, we give a randomized one-
pass streaming algorithm with space O(log3 n), which outputs a value β′ with
β′ = Ω(β(G)/ log n) and β′ is at most the maximum independent set size.

3 Conclusion

From a technical perspective, we leverage this problem to advance the study of
the degree moments in the streaming model. The fact that the frequencies are
derived from the degrees of the input graph adds an additional dimension to
the frequency moments problem, since, as illustrated by our two algorithms, the
arrival order of edges can now be exploited. Furthermore, it seems plausible that
exploiting additional graph structure could reduce the space complexity even
further. One of the objectives of this work was the popularization of the Caro-
Wei bound, and we thus only addressed the −1-negative frequency moment.
Generalizing our approach to other frequency moments is left for future work.
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A PTAS for the
Time-Invariant Incremental Knapsack problem
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2 École Polytechnique Fédéral de Lausanne (Switzerland)

In this work, we study a generalization of the classical Maximum Knapsack
problem to a discrete multi-period setting, known as Time-Invariant Incremental
Knapsack problem (IIK). In IIK, we are given a set of items [n] with profits p : [n]→
R>0 and weights w : [n] → R>0, and a knapsack with non decreasing capacities bt
over time t ∈ [T ]. We can add items at each time as long as the capacity constraint
is not violated, and once inserted, an item cannot be removed from the knapsack.
The goal is to maximize the total profit, which is defined to be the sum, over t ∈ [T ],
of profits of items in the knapsack at time t.

IIK models a scenario where available resources (e.g. money, labour force) aug-
ment over time in a predictable way, allowing to grow our portfolio. Take e.g. a
bond market with an extremely low level of volatility, where all coupons render
profit only at their common maturity time T (zero-coupon bonds) and an increas-
ing budget over time that allows buying more and more (differently sized and priced)
packages of those bonds. A different application arises in government-type decision
processes, where items are assets of public utility (schools, parks, etc.) that can be
built at a given cost and give a yearly benefit (both constant over the years), and
the community will profit each year those assets are available.

Previous work on IIK. Although the first publication on IIK appeared just very
recently [2], this problem has been introduced by Bienstock et al. in [1] and studied
in several PhD theses [3,5,6]. In [1], IIK is shown to be strongly NP-hard and an
instance showing that the natural LP relaxation has unbounded integrality gap is
provided. In the same paper, a PTAS is designed for T = O(log n). This improves
over [5], where a PTAS for the special case p = w is given when T is a constant.
Again when p = w, a 1/2-approximation algorithm for generic T is provided in
[3]. Results from [6] can be adapted to give an algorithm that solves IIK in time
polynomial in n and of order (log T )O(log T ) for a fixed approximation guarantee ε
[4]. The authors in [2] provide an alternative PTAS for IIK with constant T , and a
1/2-approximation for arbitrary T with under the assumption that every item alone
fits into the knapsack at t = 1.

Our contributions. In this paper, we give an algorithm for computing a (1− ε)-
approximated solution for IIK that depends polynomially on the number n of items
and, for any fixed ε, also polynomially on the number of times T . In particular, our
algorithm provides a PTAS for IIK, regardless of T .
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Theorem 1. There exists an algorithm that, when given as input ε ∈ R>0 and an
instance I of IIK with n items and T ≥ 2 times, produces a (1− ε)-approximation
to the optimum solution of I in time O(Th(ε) · nfLP (n)). Here fLP (m) is the time
required to solve a linear program with O(m) variables and constraints, and h :
R>0 → R≥1 is a function depending on ε only. In particular, there exists a PTAS
for IIK.

Theorem 1 dominates all previous results on IIK [1,2,3,5,6] and, due to the
hardness results in [1], settles the complexity of the problem. Interestingly, it is
based on designing a disjunctive formulation – a tool mostly common among inte-
ger programmers and practitioners – and then rounding the solution to its linear
relaxation with a greedy-like algorithm. We see Theorem 1 as an important step
towards understanding the complexity landscape of knapsack problems over time.

Extensions. Following Theorem 1, one could ask for a PTAS for the general Incre-
mental Knapsack (IK) problem. This is the modification of IIK (also introduced in
[1]) where the objective function is p∆(x) :=

∑
t∈[T ]∆t · pTxt, where ∆t ∈ Z>0 for

t ∈ [T ] can be seen as time-dependent discounts. We show here some partial results.

Corollary 1. There exists a PTAS-preserving reduction from IK to IIK, assuming
∆t ≤ ∆t+1 for t ∈ [T − 1]. Hence, under the hypothesis above, IK has a PTAS.

Of independent interest is the fact that there is a PTAS for the modified version
of IIK when each item can be taken multiple times. Unlike Corollary 1, this is not
based on a reduction between problems, but on a modification of our algorithm.

Corollary 2. There is a PTAS for the generalization of IIK where we are allowed
to take object i at most di times, for each i ∈ [n], and the vector d = (d1, . . . , dn) ∈
Zn>0 is part of the input.
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On the Efficient Algorithm for Shortest Path in
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Abstract. Shortest path problem is a well-known problem in the area
of graph algorithms and theoretical computer science. It has applications
in finding the optimal path in internet to download files and other opti-
mization problems. .

Hexagonal graphs are also very important because of their many ap-
plications in mathematics and computer science. A hexagonal block is
a hexagon formed by creating a cycle with 6 vertices and 6 edges. A
hexagonal graph is a graph which is created by joining different hexago-
nal blocks. This hexagonal graph is a planar graph in two dimensions.

The inner dual planar hexagonal graphs are well studied in the litera-
ture[?]. In our presentation we replace each finite face of the hexagonal
graph by a vertex. Two vertices are joined by an edge if two faces in
hexagonal graph are separated by an edge. In this way we form inner
dual graph. See Fig. 1 below.
These standard techniques of representing graphs like adjacency matrix
and adjacency lists do not preserve the information about the orientation
of any edges in the inner dual. We are interested in keeping track of the
angle of each edge with the x-axis. There are several methods to save
this information and one of them is the He-Matrix[?] which is given by
two Chinese scientists. (See [?])

Fig. 1. Hexagonal Graphs H1 and H2 and their corresponding Inner Dual (ID) of
Hexagonal Graphs
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He-Matrix is an extension of adjacency matrix, where an entry of 0 means
that the corresponding vertices are not connected directly by an edge. If
there is an edge between two vertices then the entry in the matrix can
be 1, 2 or 3 if the edge lies at an angle of 0◦,60◦ or120◦ degrees with the
x-axis respectively. He-matrix representation is only applicable to inner
dual graphs of hexagonal systems because of its geometry.

If the inner dualist graph is rotated and reflected then there can be at
most 6 non-isomorphic adjacency matrices of the graph. Each of them
will correspond to a different orientation of the graph. These rotations
and reflections will change the weight of each edge, resulting in the change
in shortest path. The length of the shortest path in the new graph can
increase or decrease depending on the orientation.

Finding shortest path between two given points is a well-known prob-
lem. Also there are known algorithms to solve this problem. Dijkstra’s
algorithm [?] and Bellman Ford’s algorithm[?] are two of the fundamen-
tal algorithms used for solving the shortest path problem. None of the
known algorithms for solving this problem have linear running time. In
our presentation we give a linear time algorithm to find shortest path
in the inner dual graphs of hexagonal graph for the first time using He-
matrix.

Moreover, In this presentation we discuss different results regarding the
shortest path of the inner dual graph in any given orientation. We present
a formula that calculates the total weight of the shortest path between
any two given points.

We compare shortest paths in different orientations which is in the form
of an algorithm. This algorithm finds the shortest path between the given
points which is of least weight among different shortest paths in all pos-
sible orientations. This algorithm also identifies the orientation that con-
tains the minimum of all shortest paths. Our algorithm runs in deter-
ministic linear time.

We also discuss the number of shortest paths present in the inner dual
graph. A combinatorial formula for the number of paths is also given
if all intermediate hexagons are present. Finally, we give a linear time
algorithm to calculate the number of shortest paths in case where some
hexagons are missing from the graph under consideration.
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An orientation of an undirected graph is an assignment of a direction to each
of its edges. The computational complexity of constructing graph orientations
that optimize various criteria has been studied, e.g., in [1–4, 6–9], and positive
as well as negative results are known for many variants of these problems. An
example is the Minimum Maximum Outdegree Problem (MMO) [3–6, 9], which
takes as input an undirected, edge-weighted graph and asks for an orientation
that minimizes the resulting maximum weighted outdegree taken over all vertices
in the oriented graph. In this paper, we introduce a new variant of MMO called
the p-Split Minimum Maximum Outdegree Problem (p-Split-MMO), where p is
a specified non-negative integer. Here, one is allowed to perform a sequence of
p split operations on the vertices before orienting the edges. When thinking of
MMO as a load balancing problem, the split operation can be interpreted as a
way to alleviate the burden on the existing machines by adding an extra machine.

Formally, let G = (V,E,w) be an undirected, edge-weighted graph with
vertex set V , edge set E, and edge weights defined by the function w : E → Z+.
An orientation Λ of G is an assignment of a direction to every edge {u, v} ∈ E,
i.e., Λ({u, v}) is either (u, v) or (v, u). For any orientation Λ of G, the weighted
outdegree of a vertex u is d+

Λ(u) =
∑

{u,v}∈E:
Λ({u,v})=(u,v)

w({u, v}) and the cost of Λ is c(Λ) =

maxu∈V {d+
Λ(u)}. MMO is defined as follows:

The Minimum Maximum Outdegree Problem (MMO):

Given an undirected, edge-weighted graph G = (V,E,w), where V , E, and w
denote the set of vertices of G, the set of edges of G, and an edge-weight
function w : E → Z+, output an orientation Λ of G with minimum cost.

Next, for any v ∈ V , the set of vertices in V that are neighbors of v is denoted
by Γ [v] and the set of edges incident to v is denoted by E[v]. A split operation
on a vertex vi in G is an operation that transforms: (i) the vertex set of G to
(V \ vi) ∪ {vi,1, vi,2}, where vi,1 and vi,2 are two new vertices; and (ii) the edge
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set of G to (E \E[vi])∪{{vi,1, s} : s ∈ S}∪{{vi,2, s
′} : s′ ∈ Γ [vi] \S} for some

subset S ⊆ Γ [vi]. For any non-negative integer p, a p-split on G is a sequence of
p split operations successively applied to G. In a p-split, a new vertex resulting
from a split operation may in turn be the target of a later split operation. The
following new problem generalizes MMO:

The p-Split Minimum Maximum Outdegree Problem (p-Split-MMO):

Given an undirected, edge-weighted graph G = (V,E,w), where V , E, and w
denote the set of vertices of G, the set of edges of G, and an edge-weight
function w : E → Z+, output a graph G′ and an orientation Λ′ of G′ such
that: (i) G′ is obtained by a p-split on G; (ii) Λ′ has minimum cost among
all orientations of all graphs obtainable by a p-split on G.

We have analyzed the computational complexity of p-Split-MMO and the
results are summarized in the table below. (Please see the full version of this
paper for details.) The number of vertices in G is denoted by n. Note that the
edge weights are included in the input so it is possible to further classify the
NP-hardness results as either weakly NP-hard or strongly NP-hard. The special
case where w(e) = 1 for all e ∈ E is referred to as the unweighted case.

Unweighted case General case

Constant p O((n + p)p · poly(n)) time Weakly NP-hard
Unbounded p NP-hard Strongly NP-hard

References

1. Y. Asahiro, J. Jansson, E. Miyano, and H. Ono. Graph orientations optimizing the
number of light or heavy vertices. Journal of Graph Algorithms and Applications,
19(1):441–465, 2015.

2. Y. Asahiro, J. Jansson, E. Miyano, and H. Ono. Degree-constrained graph orienta-
tion: Maximum satisfaction and minimum violation. Theory of Computing Systems,
58(1):60–93, 2016.

3. Y. Asahiro, J. Jansson, E. Miyano, H. Ono, and K. Zenmyo. Approximation al-
gorithms for the graph orientation minimizing the maximum weighted outdegree.
Journal of Combinatorial Optimization, 22(1):78–96, 2011.

4. G. Borradaile, J. Iglesias, T. Migler, A. Ochoa, G. Wilfong, and L. Zhang. Egalitar-
ian graph orientations. Journal of Graph Algorithms and Applications, 21(4):687–
708, 2017.

5. G. S. Brodal and R. Fagerberg. Dynamic representations of sparse graphs. In
Proceedings of WADS 1999, volume 1663 of LNCS, pages 342–351. Springer, 1999.

6. M. Chrobak and D. Eppstein. Planar orientations with low out-degree and com-
paction of adjacency matrices. Theoretical Computer Science, 86(2):243–266, 1991.

7. R. W. Deming. Acyclic orientations of a graph and chromatic and independence
numbers. Journal of Combinatorial Theory, Series B, 26:101–110, 1979.

8. K. Khoshkhah. On finding orientations with the fewest number of vertices with
small out-degree. Discrete Applied Mathematics, 194:163–166, 2015.

9. V. Venkateswaran. Minimizing maximum indegree. Discrete Applied Mathematics,
143(1–3):374–378, 2004.

  WEA3 - Algorithms on Graphs 25



Even flying cops should think ahead
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Abstract. We study the entanglement game, which is a version of cops
and robbers, on sparse graphs. While the minimum degree of a graph G
is a lower bound for the number of cops needed to catch a robber in G,
we show that the required number of cops can be much larger, even for
graphs with small maximum degree. In particular, we show that there
are 3-regular graphs where a linear number of cops are needed.

Keywords: Cops and robbers, entanglement game, probabilistic method

In this paper we consider the entanglement game, introduced by Berwanger
and Grädel [1] that is the following version of the cops and robbers game on a
(directed or undirected) graph G. First, the robber chooses a starting position
and the k cops are outside the graph. In every turn, the cops can either stay
where they are, or they can fly one of them to the current position of the robber.
Regardless of whether the cops stayed or one of them flew to the location of the
robber, the robber then has to move to a neighbor of his current position that
is not occupied by a cop. If there is no such neighbor, the cops win. The robber
wins if he can run away from the cops indefinitely. The entanglement number of
a graph G, denoted by ent(G), is the minimal integer k such that k cops can
catch a robber on G. In order to get accustomed to the rules of the game, it is
a nice exercise to show that the entanglement number of an (undirected) tree is
at most 2.

The main property that distinguishes the entanglement game from other
variants of cops and robbers is the restriction that the cops are only allowed to
fly to the current position of the robber. This prevents the cops from cutting
off escape routes or forcing the robber to move into a certain direction. As we
will show in this paper, it is this restriction that enables the robber to run away
from many cops.

In a similar way to how the classical game of cops and robbers can be used
to describe the treewidth of a graph, the entanglement number is a measure
of how strongly the cycles of the graph are intertwined, see [2]. Just like many
problems can be solved efficiently on graphs of bounded treewidth, Berwanger
and Grädel [1] have shown that parity games of bounded entanglement can be
solved in polynomial time.

As the cops do not have to adhere to the edges of the graph G in their
movement, adding more edges to G can only help the robber. In fact, it can be
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seen easily that on the complete graph Kn with n ≥ 2 vertices, n 1 cops are 

needed to catch the robber. Furthermore, observe that the minimum degree of 

the graph G is a lower bound on the entanglement number, as otherwise the 

robber will always find a free neighbor to move to. These observations seem to 

suggest that, on sparse graphs, the cops should have an advantage and therefore
few cops would suffice to catch the robber. Indeed, on 2-regular graphs, it is
easily checked that three cops can always catch the robber.

Motivated by this, we study the entanglement game on several classes of
sparse graphs. We show that for sparse Erdős-Rényi random graphs, with high
probability linearly many cops are needed.
Theorem 1. For every 0 < α < 1 there exists a constant C = C(α) > 0 such
that for any p ≥ C/n, αn cops do not suffice to catch the robber on Gn,p with
high probability. The same result holds for directed random graphs.

We then apply similar ideas to show our main result.
Theorem 2. There exists an α > 0 such that with high probability αn cops do
not suffice to catch the robber on the graph G = M1∪M2∪M3, whereM1,M2,M3
are independent uniformly chosen random perfect matchings.

Further, we give an upper bound on the entanglement number on 3-regular
graphs.
Theorem 3. For any 3-regular graph on n vertices, bn

4 c+ 4 cops suffice.
Finally, we consider the entanglement game for graphs that are given by a

more specific union of three perfect matchings, in fact, that are the union of a
Hamilton cycle and a perfect matching. For graphs given by a Hamilton cycle
and a perfect matching connecting every vertex to its diagonally opposite vertex,
it may seem that the diagonal “escape” edges are quite nice for the robber. This,
however, is not so: we show that for these graphs six cops are always sufficient.
However, we also show, that if we replace this specific perfect matching by a
random one, then with high probability a linear number of cops is needed.

We conclude that in contrast to the intuition that sparse graphs are advanta-
geous for the cops, they are often not able to use the sparsity to their advantage.
This shows that the freedom of the cops of being able to fly to any vertex is not
helpful when they are only allowed to fly to the current position of the robber.
In other words, they should not only follow the robber, but they should think
ahead of where the robber might want to go, as the title of our paper indicates.
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Among the many variants of the domination problems [5, 6], we consider
in this work a family of generalizations of the classical domination and total
domination problems known as k-domination and total k-domination. Given a
positive integer k and a graph G, a k-dominating set in G is a set S ⊆ V (G)
such that every vertex v ∈ V (G)\S has at least k neighbors in S [4], and a total
k-dominating set in G is a set S ⊆ V (G) such that every vertex v ∈ V (G) has at
least k neighbors in S [9]. The k-domination and the total k-domination problems
aim to find the minimum size of a k-dominating, resp. total k-dominating set,
in a given graph. The k-domination and total k-domination problems are known
to be NP-hard [7, 12] and also hard to approximate [3]. They are NP-hard not
only for general graphs but also in the class of chordal graphs. More specifically,
the problems are NP-hard in the class of split graphs [10,12] and, in the case of
total k-domination, also in the class of undirected path graphs [11]. We consider
k-domination and total k-domination in another subclass of chordal graphs, the
class of proper interval graphs. A graph G is an interval graph if it has an
interval model, that is, a family I of intervals on the real line and a one-to-one
correspondence between the vertices of G and the intervals of I such that two
vertices are joined by an edge in G if and only if the corresponding intervals
intersect. A proper interval graph is an interval graph that has an interval model
in which no interval contains another one [13].

Recent results due to Kang et al. [8], building on previous works by Bui-
Xuan et al. [2] and Belmonte and Vatshelle [1], imply that for each fixed integer
k ≥ 1, the k-domination and total k-domination problems are solvable in time
O(n6k+4) in the class of interval graphs where n is the order of the input graph.
In this work, we significantly improve the above result for the case of proper

? This work is supported in part by the Slovenian Research Agency (I0-0035, research
program P1-0285 and research projects N1-0032, J1-6720, and J1-7051). The work for
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and Slovenia, financed by the Slovenian Research Agency (BI-AR/15–17–009) and
MINCYT-MHEST (SLO/14/09).
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interval graphs. We show that for each positive integer k, the k-domination and
total k-domination problems are solvable in time O(n3k) in the class of n-vertex
proper interval graphs. Except for k = 1, this improves on the best known
running times. Our approach is based on a reduction showing that for each
positive integer k, the total k-domination problem on a given proper interval
graph G can be reduced to a shortest path computation in a derived edge-
weighted directed acyclic graph. A similar reduction works for k-domination.
The reductions immediately result in algorithms with running time O(n4k+1).
We show that with a suitable implementation the running time can be improved
to O(n3k). The algorithms can be easily adapted to the weighted case, at no
expense in the running time.
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The distance polytope for vertex coloring
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Abstract. In this work we consider the distance model for the classical
vertex coloring problem, introduced by Delle Donne in 2009. This formu-
lation involves decision variables representing the distance between the
colors assigned to every pair of distinct vertices, thus not explicitly rep-
resenting the colors assigned to each vertex. We show close relations be-
tween this formulation and the so-called orientation model for graph col-
oring. In particular, we prove that we can translate many facet-inducing
inequalities for the orientation model polytope into facet-inducing in-
equalities for the distance model polytope, and viceversa.

Given a simple undirected graph G = (V,E) and a set C of colors, the
vertex coloring problem asks for a mapping c : V → C such that c(i) 6= c(j)
whenever ij ∈ E. Many integer programming formulations for this problem have
been explored in the literature. In this work we are interested in the distance
formulation [1] and its relations with the orientation model [2].

The orientation model involves an integer variable zi ∈ {1, . . . , |C|} for each
vertex i ∈ V representing the color assigned to i, and an ordering variable yij
for each edge ij ∈ E, i < j, in such a way that yij = 1 if and only if zi < zj .
We refer the reader to [2] for details on this formulation. On the other hand, the
distance formulation employs an integer variable xij for every i, j ∈ V , i < j,
denoting the difference between the colors assigned to i and j (i.e., if i takes
color c(i) and j takes color c(j), then xij = c(i) − c(j)), and, for every ij ∈ E,
i < j, the variable yij is considered, with the same meaning as in the orientation
model:

xik = xij + xjk ∀i, j, k ∈ V, i < j < k (1)

xij ≥ 1− |C|yij ∀(i, j) ∈ E, i < j (2)

xij ≤ −1 + |C|(1− yij) ∀(i, j) ∈ E, i < j (3)

xi ∈ {−|C|+ 1, . . . , |C| − 1} ∀i ∈ V (4)

yij ∈ {0, 1} ∀(i, j) ∈ E, i < j (5)

The first set of constraints is composed by O(|V |3) equations, and may gen-
erate a large model in practice. The following result allows us to replace these
contraints by O(|V |2) equations.
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Theorem 1 ([1]). If V = {1, . . . , n}, then constraints (1) are equivalent to

xi,i+1 + xi+1,i+2 = xi,i+2 ∀i ∈ V, i ≤ n− 2 (6)

xij + xi+1,j−1 = xi,j−1 + xi+1,j ∀i, j ∈ V, i ≤ n− 3, i+ 3 ≤ j (7)

Let PD(G,C) be the convex hull of the vectors (x, y) satisfying constraints
(1)-(5). Theorem 1 allows us to calculate the dimension of this polytope.

Theorem 2. If |C| > χ(G) + 1, then dim(PD(G,C)) = |V |+ |E| − 1.

Call PO(G,C) to the convex hull of feasible solutions (z, y) ∈ Z|V |+|E| for the
orientation model. The main results of this work show that certain facet-inducing
inequalities for PO(G,C) can be translated into PD(G,C), and viceversa.

Theorem 3. Let αzi+πy ≤ αzj +π0 be a valid (resp. facet-inducing) inequality
for PO(G,C), where ij ∈ E. Then, αxij +πy ≤ π0 is valid (resp. facet-inducing
if |C| ≥ χ(G) + 2) for PD(G,C).

The construction in Theorem 3 can be generalized in a straightforward way
to (facet-inducing) inequalities involving pairs of variables {(zik , zjk)}pk=1, where
ik, jk ∈ V , ik 6= jk, for k = 1, . . . , p, such that zik and zjk appear with the same
coefficient in both sides of the inequality. Many inequalities presented in [3] and
[4] fit into this pattern, hence this result provides many facet-inducing inequali-
ties for PD(G,C). Finally, the following theorem provides a converse result, thus
showing that all facets of PD(G,C) come from facets of an orientation polytope.

Theorem 4. Assume C = {1, . . . , |C|}. Let γx+πy ≤ π0 be a valid (resp. facet-
inducing) inequality for PD(G,C). Then,

∑
i6=j γij(zi − zj) + πy ≤ π0 is valid

(resp. facet-inducing if |C| ≥ χ(G) + 2) for PD(G,C ∪ {|C|+ 1}).
Theorem 3 and Theorem 4 imply that all facets of PD(G,C) can be obtained

from facets of PO(G,C) and PO(G,C ∪ {|C| + 1}), although these polytopes
are neither isomorphic nor combinatorially equivalent. This fact is not directly
implied by the relation between the x- and the z-variables, but also relies on
(simple) properties of vertex coloring. It would be interesting to study further
pairs of polytopes with similar relations between their sets of variables, in order
to gain more knowledge on these issues.
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1 Introduction

For difficult mixed integer non linear optimization (MINLO) problems, spatial
branch-and-bound (sBB) is the algorithmic framework used to find globally op-
timal solutions (for example, see [1]). At a high level, sBB works by generating
a convex relaxation of the problem over a given domain to obtain a bound, and
then branching on the domain of a variable and re-convexifying to obtain better
bounds. Therefore, the quality of the convexification obtained is very important
in the success of the algorithm. Speakman and Lee ([4]) developed a method
for comparing alternative convexifications of the graph of a trilinear monomial,
y = x1x2x3, over a nonnegative box xi ∈ [ai, bi], 0 ≤ ai < bi. They calcu-
lated the 4-dimensional volume of various natural convexifications of the graph
of y = x1x2x3, and used this as a measure to compare the tightness of those
convexifications. In particular, they computed the 4-dimensional volume of the
convex hull. Define

P3
H := conv

{
(y, x1, x2, x3) ∈ R4 : y = x1x2x3, xi ∈ [ai, bi], i = 1, 2, 3

}
.

The extreme points of P3
H are the eight points that correspond to the 23 = 8

choices of each x-variable at its upper or lower bound ([2]). Assuming we label
the variables so that they are ordered by the ratios of their lower and upper
bounds, i.e., a1

b1
≤ a2

b2
≤ a3

b3
, the volume of P3

H is given by the following:

Theorem 1 (see [4]).

Vol(P3
H) = (b1 − a1)(b2 − a2)(b3 − a3)×

(b1(5b2b3− a2b3− b2a3− 3a2a3) + a1(5a2a3− b2a3− a2b3− 3b2b3)) /24.

2 Our contribution

In this work, we present an alternative method for the proof of Theorem 1. To
do this, we note that the extreme points of P 3

H , lie in two parallel hyperplanes.
Four points lie in the hyperplane x3 = a3 and four points lie in the hyperplane
x3 = b3. In this way we can think of P 3

H as the convex hull of two (3 dimensional)
tetrahedra, let these be P and Q. The volume of P 3

H can therefore be calculated
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via an integral as x3 varies from a3 to b3.

Vol(P3
H) =

∫ b3

a3

Vol

(
b3 − t

b3 − a3
P +

t− a3
b3 − a3

Q

)
dt

= (b3 − a3)−3

∫ b3

a3

Vol((b3 − a3)P + (t− a3)Q)dt

= (b3 − a3)−3

∫ b3

a3

(b3 − t)3 Vol(P ) + 3(b3 − t)2(t− a3)V (P, P,Q)

+ 3(b3 − t)(t− a3)2V (P,Q,Q) + (t− a3)3 Vol(Q)dt,

where V (P, P,Q) and V (P,Q,Q) are so-called mixed volumes; for more informa-
tion see [3]. Given that they are tetrahedra, the volumes of P and Q are easy to
compute. The technical detail of the proof lies in using the appropriate formulae
to compute V (P, P,Q) and V (P,Q,Q) and integrating. In doing this, we obtain
the formulae of [4].

3 Possible extensions

A natural extension of this problem is to allow the variables to have mixed-sign
domains. Our alternative proof method restricts the sections of the proof that
depend on the sign of the bounds, and therefore, this method may make the
extension to mixed-sign domains easier. Additionally, it would be interesting to
be able to compute the volume of the convex hull of the graph of a general
multilinear term (over a box). In the work of [4], the jump to the case of general
n seemed to be computationally unrealistic. Now, with this alternative method,
it remains unclear that the leap will be possible, but a natural approach for
this extension is more obvious. In the case of general n, we can write down the
volume as:

Vol(Pn
H) =

∫ bn

an

Vol

(
bn − t

bn − an
Pn−1 +

t− an
bn − an

Qn−1

)
dt,

where each of the polytopes Pn−1 and Qn−1, are no longer tetrahedra, but are
closely related to Pn−1

H (the extreme points of both are the extreme points of
Pn−1
H with a scaling applied to the first component). Being able to express the

volume of Pn
H in terms of the volume of Pn−1

H is hopefully be the first step in
obtaining more general results.
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Abstract. We study the Connected Assignment Problem in Arrays. We
present a large family of facet-defining inequalities. In particular, it com-
prises all facet-defining inequalities with righthand side 1. We prove that
it gives a complete description of the polytope in some cases. We com-
putationally evaluate its strength for tightening the linear relaxation.

Keywords: Connected Assignment Problem, Polyhedral Combinatorics.

1 Introduction

Motivated by Radio Resource Allocation in mobile networks [1, 2], we define the
Connected Assignment Problem in Arrays (CAPA) as follows. Let us be given a
set of symbols I = {1, 2, . . . ,M}, a set of indices J = {1, 2, . . . , N} of the entries
of an array and a gain function ρ : I × J → Q+ such that ρ(i, j) (or simply
ρij) describes the utility value of assigning i to j. A connected assignment is an
assignment of exactly one symbol from I to each position indexed by J such that
repeated symbols appear consecutively in the array. Precisely, it is a function
A : J → I such that, for all i ∈ I, there is an interval [ai, bi] ⊆ J (possibly
empty) where A(j) = i if, and only if, j ∈ [ai, bi]. The gain of an assignment
A is ρ(A) =

∑
j∈J ρ(A(j), j). Problem CAPA consists in finding a connected

assignment of maximum gain.

2 The pattern-based polytope

Let us call pattern a nonempty interval of the set J = {1, 2, . . . , N} of positions.
Let us denote P the set of all patterns. Note that |P | = N(N + 1)/2.

In CAPA, each symbol i ∈ I is either not allocated or assigned to a pattern
p ∈ P thus returning a gain of ρi(p) =

∑
j∈p ρij . Thus, using a binary variable

xip ∈ {0, 1} to indicate whether i is assigned or not to p, we get the model:

max
∑

i∈I

∑

p∈P
ρi(p)xip (1)

s.t.
∑

p∈P
xip ≤ 1,∀i ∈ I,

∑

i∈I

∑

p∈P :j∈p
xip ≤ 1,∀j ∈ J, (2)

xip ∈ {0, 1},∀i ∈ I, ∀p ∈ P. (3)
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Constraints (2) ensure that each symbol can be assigned according to at most
one pattern and each position is occupied by at most one symbol.

We denote P(M,N) the polytope defined by the convex hull of the points
satisfying (2)-(3). If M and N are not relevant in the context, we simply use P.

Let P∩(p) = {p′ ∈ P : p∩ p′ 6= ∅} and P⊃(p) = {p′ ∈ P : p′ ⊇ p}. The results
below hold for P.

Theorem 1. For p ∈ P and i ∈ I, the inequality
∑

i′∈I\{i}

∑

p′∈P⊃(p)
xi′p′ +

∑

p′∈P∩(p)
xip′ ≤ 1 (4)

is valid for P, and it is facet-defining if M ≥ 2. For M = 2 or N = 2, P(M,N) =
{x ≥ 0 : x satisfies (4) ∀i ∈ I, ∀p ∈ P}.

We can show that the family of inequalities (4) comprises all facet-defining
inequalities on integer coefficients with righthand side 1. On the other hand, this
family can be generalized to include facet-defining inequalities with all possible
righthand sides in the range 1 . . .min(M,N − 1), as follows. For a nonempty
subset I ′ ⊆ I of symbols and p be a pattern, let us consider the inequality

∑

i′∈I′

∑

p′∈P∩(p)
max(δp′ , 1)xi′,p′ +

∑

i′∈I\I′

∑

p′∈P∩(p)
max(δp′ , 0)xi′,p′ ≤ |I ′|, (5)

where δp′ = |I ′| − |p \ p′|, for all p′ ∈ P . Observe that, if we restrict I ′ to be a
singleton, we get inequality (4).

Theorem 2. Let I ′ ⊆ I, I 6= ∅, and p ∈ P . Inequality (5) is valid for P if, and
only if, |I ′| ≤ |p| or |p| = 1. For M ≥ 3, it defines a facet of P if, and only if,
|I ′| ≤ |p| − 1 or |p| = 1.

3 Computational Experiments

We carried out some computational experiments to evaluate the strenght of the
derived facet-defining inequalities. We used 300 randomly generated instances
with N ∈ {20, 40} and M ∈ {kN/5 : k = 1, . . . , 5}. The percentage gap of
the linear relaxation is generally small but nonzero in all instances. Adding
inequalities (4) reduces it in 18% in average. Moreover, the relaxed optimum
solution becomes integer in 12.3% of the cases. Adding inequalities (5) with
|I ′| = 2 could further reduce the gap at much higher computational cost.
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In this work, we study the stable set polytope, some of its linear and semi-
definite relaxations, and graph classes for which certain relaxations are tight.

The stable set polytope STAB(G) of a graph G is defined as the convex hull
of the incidence vectors of all stable sets of G. Two canonical relaxations of
STAB(G) are

ESTAB(G) = {x ∈ [0, 1]V : xi + xj ≤ 1, ij ∈ E}
QSTAB(G) = {x ∈ [0, 1]V : x(Q) =

∑
i∈Q xi ≤ 1, Q ⊆ V clique},

where STAB(G) equals ESTAB(G) for bipartite graphs, and QSTAB(G) for
perfect graphs only [3]. Lovász and Schrijver introduced in [5] the PSD-operator
LS+ which, applied to ESTAB(G), generates a positive semi-definite relaxation
LS+(G) of STAB(G). Results of Lovász and Schrijver imply that

STAB(G) ⊆ LS+(G) ⊆ ASTAB∗(G) (1)

where ASTAB∗(G) is a linear relaxation of STAB(G) given by joined antiweb
constraints ∑

i≤k

1

α(Ai)
x(Ai) + x(Q) ≤ 1, (2)

associated with the complete join of some antiwebs A1, . . . , Ak and a clique Q,
where an antiweb Ak

n is a graph with n nodes 0, . . . , n − 1 and edges ij if and
only if k ≤ |i− j| ≤ n− k(modn) and i 6= j.

GraphsG with STAB(G) = LS+(G) are called LS+-perfect, and the following
conjecture has been proposed in [1]:

Conjecture 1 (LS+-Perfect Graph Conjecture). G is LS+-perfect if and only if
LS+(G) = ASTAB∗(G).

Note that graphs G with STAB(G) = ASTAB∗(G) are called joined a-perfect.
By (1), we have that all joined a-perfect graphs are LS+-perfect. Subclasses of
joined a-perfect graphs include, besides perfect graphs, t-perfect, h-perfect, a-
perfect graphs as well as near-bipartite graphs. Moreover, we can easily see from
the above remarks that the conjecture states that LS+-perfect graphs coincide
with joined a-perfect graphs. Conjecture 1 has been already verified for several
graph classes, e.g., near-perfect graphs, webs, line graphs, and claw-free graphs.
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Our aim is to verify Conjecture 1 for further graph classes and to identify
further subclasses of joined a-perfect and LS+-perfect graphs. For that, we study
graph classes where clique cutsets play a role in a decomposition theorem: pseu-
dothreshold graphs and graphs without certain Truemper configurations. We
describe the facet-defining system of the stable set polytopes for each of those
basic families and then apply the result of Chvátal [3] that the facets of STAB(G)
belong to the union of the facets of the stable set polytopes of the blocks of the
decomposition.

Chvátal and Hammer [4] characterize a graph G = (V,E) as pseudothreshold
if and only if there is a partition V = S ∪Q ∪ U such that

– S is stable, and there are no edges between S and U ,
– Q is a clique, and there are all edges between Q and U ,
– U does not contain a stable set of size 3.

We present the facet-defining inequalities of the stable set polytope STAB(G) for
G pseudothreshold. As a consequence, we can verify the LS+-Perfect Graph Con-
jecture for pseudothreshold graphs. Moreover, we define strongly pseudothresh-
old graphs as further subclass containing all pseudothreshold graphs G such that
also the complement G is pseudothreshold and show that strongly pseudothresh-
old graphs are joined a-perfect.

Boncompagni et al. [2] define GU as the class of all graphs which either are

– a light clique obtained from a clique by removing a (possibly empty) match-
ing,

– a fat universal wheel obtained as complete join of a hole Ck with k ≥ 5 and
a (possibly empty) clique,

or have a clique cutset. Based on this result, we give a complete description of
the stable set polytope for graphs in GU and conclude that every graph in GU is
joined a-perfect

Finally, we discuss the relations of the studied graph classes, revealing that
strongly pseudothreshold graphs form a subclass of GU and that GU is a new
subclass of joined a-perfect graphs, being incomparable to all such classes known
so far.
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Team Formation on Social Networks

Nihal Berktaş and Hande Yaman
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Abstract. People work in teams to complete a job or project that re-
quires a number of skills. The success of a team depends on the technical
capabilities of people as well as the quality of the communication among
them. We study the team formation problem in which communication is
taken into consideration by assuming the potential members constitute
a social network. The aim is to construct a capable team with minimum
communication cost. We formulate the problem as an integer program
and develop a branch and bound algorithm which are tested using dif-
ferent social networks.

Keywords: team formation, integer programming, branch and bound

1 Introduction

The complexity of products and services in today’s world requires many skills,
knowledge and experience from different fields while the pace of consumption
demands agility in the production and development phases. To be able to meet
these requirements, we see people working in teams in various organizations.
The quality of work done depends on the technical capabilities of people as well
as the quality of the communication among them. We define Team Formation
Problem (TFP) as finding a group of people who posses a required set of skills
and can function as a team. To measure the functionality of the team in terms
of communication, we assume that the candidates constitute a social network
from which the communication quality can be obtained.

In a social network, nodes correspond to candidates and edges among them
represent the relations. The weight of an edge can be interpreted as the effort
required for those people to communicate effectively as team members. In other
words, it is the cost of communication between the people connected by that
edge. The existence of such a network is an acceptable assumption because either
such network really exists, e.g. LinkedIn (www.linkedin.com) and Stack Overflow
(www.stackoverflow.com), or people are part of an actual organization and their
relations can be modeled via a social network.

The first study of TFP on social networks was by Lappas et al. [1]. The
authors define two different communication cost functions: first as the diameter
of the subgraph induced by the team members and second as the cost of the
minimum spanning tree on this subgraph. Algorithms are developed for both
versions of the problems. Following this work, the problem is studied with dif-
ferent cost definitions and settings, all of which is compared by Wang et al. [2].
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This comparative study concluded that it is a more robust approach to define
the communication cost as the sum of distances between each team member
since the other cost functions are very sensitive the changes in the team. Min-
imizing sum of distances amounts to maximizing the average familiarity of the
team which has a positive effect on the performance as discussed in [3] therefore
we use this communication cost function in our study.

2 Solution Methods

We formulated TFP first as a quadratic set covering problem and then the objec-
tive function is linearized by defining a new set of binary variables. The models
are implemented in Java using Cplex 12.7 and run on a a 64-bit machine with In-
tel Xeon E5-2630 v2 processor at 2.60 GHz and 96 GB of RAM. Our preliminary
analysis show that with both of the quadratic and mixed integer programming
formulations the optimal solution can be obtained within few minutes for the
instances from IMDB network which has 1021 nodes. We construct a collabo-
ration network with 12855 nodes using DBLP database and for some instances
from this larger network the state-of-the-art solver fails to build the mixed inte-
ger model. To be able to reach the optimal solutions in reasonable time for the
large instances, we develop a branch and bound algorithm. First a new set of
constraints are obtained from the set covering constraint applying the general
procedure proposed in [4]. We add these new constraints to the integer program
and then we relax some of the constraints which connect the binary variables
so that the problem decomposes. In our branch and bound algorithm we solve
n+ 1 set covering problems in the root node where n is the number nodes in the
network. In other nodes of the tree, at most 3 set covering problems are required
to be solved.

3 Conclusion

To the best of our knowledge, this is the first study where exact solution tech-
niques are developed for the team formation problem in the presence of a social
network. A novel branch and bound scheme which can be generalized to other
combinatorial optimization problems is developed and shown to be efficient.
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1 Introduction

When talking about structural representation of objects and patterns, one could
consider graph-based representation, which has been proven in the past decades
to be efficient and convenient in many fields. A graph consists of two sets of
vertices and edges, where vertices depict the main components of the objects
and edges draw the relationships between them. Also, a group of numerical or
nominal values can be assigned to vertices and edges in order to provide more
information and characteristics. Such values are referred to as attributes/labels.
Throughout the years, the attention towards using graphs to model objects have
grown in many fields such as Pattern Recognition and Chemionformatics [4].
The problematic then occurs when having two graphs, how to compare and
measure the (dis)similarities between them? Such question has intrigued many
researchers who have come up with different classes of problems that are all
Graph Matching problems. The Graph Edit Distance (GED) problem, which is
one of them, provides a dissmilarity measure between two graphs and belongs to
Error-tolerant graph matching class of problems in particular. The GED problem
defines a set of edit operations, which are substitution, insertion and deletion
of a vertex or edge where each operation has an associated cost. Solving the
problem consists in finding the set of edit operations that transform one graph
into another while minimizing the total cost. Let G = (V,E, µ, ξ) and G′ =
(V ′, E′, µ′, ξ′) be two graphs, with µ and ζ the functions to assign attributes for
vertices/edges. The optimal solution of the GED problem is the set of operations
λ(G,G′) = {o1, ..., ok} with oi an elementary vertex/edge edit operation and k
the number of operations with the minimum cost. This problem has been proved
to be NP-hard [5] and numerous heuristics can be found in the literature to solve
it. However, only two mixed integer linear programs (MILP) exist in the literature
[1, 2]. The intent of this work is to propose a new MILP formulation.
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2 New MILP formulation for the GED problem

The proposed MILP formulation is inspired from the formulation presented in [2],
referred to as (F2). It defines two sets of binary variables: variables xi,k represent
the substitution of two vertices ui ∈ V and vk ∈ V ′, variables yij,kl represent the
substitution of two edges eij ∈ E and fkl ∈ E′. The number of variables in total is
(|V |×|V ′|)+(|E|×|E′|×2) for undirected graphs, where y variables are doubled,
in comparison with (F2), by considering yij,kl and yij,lk for every two edges eij
and fkl. Another variation from (F2) is the constraint that preserves the topology
of the graphs, where a new constraint is introduced that only depends on the
number of vertices in the new formulation. The number of constraints is then
|V ′|+ |V |+(|V |× |V ′|), against |V |+ |V ′|+(|V ′|× |E|) constraints in (F2). Two
assumptions are made here: the new formulation has a number of constraints
independent from the number of edges of the graphs, which should logically
lead to a better formulation than (F2) especially in the case of dense (highly
connected) graphs. The second assumption is that even having more variables
and reducing the number of constraints, the new formulation will perform better
than (F2). These assumptions can only be validated through experiments. So far,
the new formulation is tested against (F2) on CMU-House graph database [3] of
medium graph sizes. Over 660 instances, the new formulation was able to solve
333 instances to optimality against 25 instances by (F2). Both formulations were
solved by CPLEX 12.6.0 with 900 seconds as time limit. This preliminary result
is promising and shows that the two assumptions hold for this graph database.
More graph databases will be considered to evaluate both formulations with
different graph sizes and structures in order to confirm the assumptions and the
effectiveness of the proposed formulation. The obtained results will be presented
at the conference.
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4. Sanfeliu, A., Alquézar, R., Andrade, J., Climent, J., Serratosa, F., Vergés, J.: Graph-
based representations and techniques for image processing and image analysis. Pat-
tern recognition 35(3), 639–650 (2002)

5. Zeng, Z., Tung, A.K., Wang, J., Feng, J., Zhou, L.: Comparing stars: On approx-
imating graph edit distance. Proceedings of the VLDB Endowment 2(1), 25–36
(2009)

  WEB2 - Mixed Integer Programming I 45



Finding Minimum Stopping and Trapping Sets: An
Integer Linear Programming Approach

Alvaro Velasquez1, K. Subramani2, Steven L. Drager3

Department of Computer Science, University of Central Florida, Orlando, FL1

LCSEE, West Virginia University, Morgantown, WV2

Information Directorate, Air Force Research Laboratory, Rome, NY3

velasquez@cs.ucf.edu, ksmani@csee.wvu.edu, steven.drager@us.af.mil

In this paper, we discuss the problems of finding minimum stopping sets and trap-
ping sets in Tanner graphs, using integer linear programming. These problems are im-
portant for establishing reliable communication across noisy channels. Indeed, stopping
sets and trapping sets correspond to combinatorial structures in information-theoretic
codes which lead to errors in decoding once a message is received. In this paper, we
make two contributions. First, we propose integer linear programming solutions for
finding stopping sets and several trapping set variants. We improve on the results of [1],
which demonstrate that the minimum stopping set in the (4896, 2474) Margulis code [2]
is of size 24 and that no stopping sets of size 25 and 26 exist. Our results establish that
the next largest stopping sets in said code are of sizes 36 and 48 (See Figures 10 and 11
in https://www.cs.ucf.edu/~velasquez/StoppingSets/). As a point of reference, the num-
ber of points in the search spaces for finding stopping sets of sizes 26, 36, and 48 are
( 489626 ) ≈ 2 × 1069, ( 489636 ) ≈ 1.61 × 1091, and ( 489648 ) ≈ 8.28 × 10115, respectively.
The second contribution we make pertains to the previously unknown complexities of
two trapping set variants. We prove that these variants are NP-hard, thereby rounding
out the complexity results in the literature.

Stopping sets and trapping sets are defined by simple combinatorial structures in
the graph representation of the underlying code. Due to space constraints, we will focus
on stopping sets in this brief. However, trapping sets are similarly defined. An (n, k)
code is one whose codewords are bit-vectors of length n and whose dimension is k.
The dimension k of the code specifies the number of linearly independent codewords
that form the basis c1, . . . , ck ∈ {0, 1}n for the code. That is, any codeword can be
expressed as a linear combination of these basis vectors. Any given codeword of length
n contains k original bits of information and n−k redundant check bits that are used to
detect and correct errors that arise during message transmission across a noisy channel.

Given an (n, k) code, its corresponding parity-check matrix H ∈ {0, 1}(n−k)×n

defines the linear relations among codeword variables. Each column in H corresponds
to a bit in the codeword and each row corresponds to a redundant check bit. Given a
codeword c = c1, . . . , cn, the entry Hij is 1 if cj is involved in a check operation,
which is used to detect errors after transmission. For any such matrix H , let G =
(V ∪C,E) denote its representation as a bipartite graph, where V = {v1, . . . , vn} and
C = {c1, . . . , cm} are the sets of variable and check nodes, and E = {(vi, cj)|Hji =
1} defines the adjacency set. This is known as the Tanner graph of a code. We can now
define the stopping and trapping set problems.
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Definition 1 (Stopping set). Given a Tanner graph G = (V ∪ C,E), a stopping set
S ⊆ V is a set of variable nodes such that all neighbors of nodes in S are connected to
S at least twice.

As an example, suppose we are given the parity-check matrix H below with Tanner
graph G = (V ∪ C,E). We can determine the minimum stopping set S = {v7, v9} as
pictured in Figure 1. A comparison of our approach against methods in the literature
can be seen in Table 1.

H =

(
0 0 1 1 0 0 1 1 1 0
1 0 0 1 0 1 0 0 0 1
1 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 1 0 1 0
0 1 0 0 0 0 1 1 1 1

)

1

v10
v9
v8
v7
v6
v5
v4
v3
v2
v1

c5
c4
c3
c2
c1

v9
v7

c5
c4
c1

Fig. 1. (left) Parity-check matrix H for some code. (center) Tanner graph G = (V ∪C,E) of H .
(right) Subgraph GS induced by the minimum stopping set S = {v7, v9} in G.

Minimum Stopping Set Size
Code [3] [4] [1] Us

(504, 252) Mackay 16 (N/A) 16 (600 hours) 16 (N/A) 16 (37 seconds)
(504, 252) PEG N/A (N/A) 19 (25 hours) 19 (N/A) 19 (365 seconds)
(1008, 504) Mackay 28 (N/A) 26 (3085 hours) N/A (N/A) 26 (18.73 hours)
(4896, 2474) Margulis 24 (N/A) 24 (162 hours) 24 (N/A) 24 (267 seconds)

Table 1. The size of minimum stopping sets in 4 popular codes are presented based on the results
of various methods in the literature. The numbers in parentheses denote the execution time to
find said sets. See figures 6 through 9 in https://www.cs.ucf.edu/~velasquez/StoppingSets/ for a
visualization of the sets found by our approach.
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This paper deals with the cyclic job shop problem where the task durations
are uncertain and belong to a polyhedral uncertainty set. We formulate the cyclic
job shop problem as a two-stage robust optimization model. The cycle time and
the execution order of tasks executed on the same machines correspond to the
here-and-now decisions and have to be decided before the realization of the un-
certainty. The starting times of tasks corresponding to the wait-and-see decisions
are delayed and can be adjusted after the uncertain parameters are known. In
the last decades, different solution approaches have been developed for two-stage
robust optimization problems. Among them, the use of affine policies, column
generation algorithms, row and row-and-column generation algorithms. In this
paper, we propose a Branch-and-Bound algorithm to tackle the robust cyclic
job shop problem with the worst case cycle time minimization. The algorithm
uses, at each node of the search tree, a robust version of the Howard algorithm
to derive a lower bound on the optimal cycle time. We also develop a heuris-
tic method that permits to compute an initial upper bound for the cycle time.
Finally, encouraging preliminary results of numerical experiments performed on
randomly generated instances are presented.
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A p-Median Based Exact Method for the Large-Scale 

Optimal Diversity Management Problem 
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Abstract. The p-median problem (PMP) is the well known network optimiza-

tion problem of discrete location theory. In many real applications PMP is de-

fined on large scale networks, for which ad-hoc exact and/or heuristic methods 

have to be developed. A very interesting industrial application is constituted by 

the optimal diversity management problem (ODMP) which arises when a com-

pany producing a good and/or a service (which can be customized with options) 

needs to satisfy many client demands with various subset of options, but only a 

limited number of option configurations can be produced. Exploiting a suitable 

network representation, ODMP can be formulated as a PMP on a large-scale 

disconnected network. In this paper we revise and improve a decomposition ap-

proach where a lot of smaller PMPs related to the network components can be 

solved instead of the initial large-scale problem. Proposed approach drastically 

reduces number and dimension of these subproblems, solving them to optimali-

ty by a MIP solver, and combining their solutions to find the optimal solution of 

the original problem, formulated as a multiple choice knapsack problem. The 

computational tests show that our approach is able to find optimal solutions of 

known and new test instances, considerably outperforming state-of-the-art ap-

proaches to the large-scale PMP on disconnected networks. 

Keywords: p-median, optimal diversity management, decomposition approach. 

1 Problem definition and proposed method 

The optimal diversity management problem (ODMP) is a well-known optimization 

problem arising in many application fields, i.e. every time a company produces a 

good and/or a service which can be provided with options. In this case the product can 

be personalized by the customer that can choose different option combinations (con-

figurations) depending on her/his needs or preferences. In this context, satisfying all 

the possible demands with exactly the required options would impose the company to 

produce in advance all the possible configurations at the assembly lines. Moreover, 
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the production operations could start only after a demand is received, so providing 

huge delays in satisfying the request. To overcome these drawbacks, the company 

usually produces a limited number of opportunely chosen configurations to cover all 

the possible ones. In this way a demand, if no available configuration covers all the 

required options, can be satisfied by a compatible configuration, i.e. by a configura-

tion containing all the required options plus some others not demanded by the cus-

tomer. This implies that a client could receive some not demanded options, so gener-

ating an over-cost for the company.  

 The ODMP consists in choosing a subset of configurations to cover all the custom-

er demands, minimizing the total over-cost. It was introduced in [1] for a car industry 

application. Indeed, a car could be equipped with a large number of options, each of 

them requiring the installation of related electrical wiring. The total number of options 

can be up to forty and possible electrical wiring configurations can be many thou-

sands, but obviously only a limited number of them can be made available at the as-

sembly line. For this reason, a not available wiring configuration has to be replaced 

by another one containing all the needed wirings and some others not required.  

 ODMP can be formulated in terms of p-median problem (PMP) on a disconnected 

network [1]. This representation allows a natural decomposition of the initial large-

scale problem into several smaller p-median sub-problems (sub-PMPs). The solutions 

of the sub-problems can be combined by solving a multiple choice knapsack problem 

(MCKP) to find an optimal solution of the original problem.  

 In this work we develop an improved version of the solution method presented in 

[2]. The improvements affect both the solution quality and the computation time. 

They include a reduction of the number of sub-PMPs to be solved, a more efficient 

versions of Lagrangian relaxation-based and heuristic techniques for solving the sub-

PMPs, a very fast dynamic programming algorithm to optimally solve the MCKP, and 

a parallel implementation of particular components of the method. The proposed ap-

proach has been tested on a wide range of problem instances, known from the litera-

ture and randomly generated. The obtained results show that our approach is able to 

find optimal solutions to large-scale problem instances, considerably outperforming 

state-of-the-art approaches to large-scale PMPs on disconnected networks [3]. 

Research perspectives are devoted to apply the proposed method in the application 

fields where ODMP can play a relevant role, in all the systems where it is necessary 

to resolve effectively the trade-off between diversity and redundancy of the decision 

problem solutions. 
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On the Optimal Cost of the Transportation
Problem with Interval Right-Hand-Sides

R. Cerulli, C. D’Ambrosio, M. Gentili

Abstract The Interval Trasportation Problem (ITP) is a variant of the well known
transportation problem where the coefficients of the problem range in an interval
(i.e., are interval numbers). In this paper we focus on the special case of ITP when
only right-hand-sides are interval numbers. We focus in determining the best and
worst values of the optimal cost of the ITP among all the feasible realizations of
the right-hand-side parameters. While finding the best optimum is an easy task [1],
to the best of our knowledge, a formal proof of the computational complexity of
finding the worst optimum is still missing. In this paper we prove some general
properties of the best and worst optimum values, and we propose a new heuristic
approach that outperforms the existing approaches on a set of benchmark instances.

Key words: Transportation Problem, Uncertainty, Interval Optimization
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travelling salesman problem?
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The Split-Demand One-Commodity Pickup-and-Delivery Travelling Sales-
man Problem (SD1PDTSP) is defined as follows. Let us consider a finite set
of locations. Each location is related to a customer, with a known positive or
negative demand of a commodity. For example, the commodity can be bicycles
of identical type, the locations can represent bike stations in a city, and the de-
mand can be the difference between the number of bicycles at the beginning of a
day and at the end of the previous day in each station. We assume that the sum
of all demands is equal to zero. Customers with negative demands correspond to
pickup locations, and customers with positive demands correspond to delivery
locations. The travel distances (or costs) between the locations are assumed to be
known. There is one vehicle with a given capacity that must visit each location
at least once through a route to move the commodity between the customers as
they require. Each visit may partially satisfy the demand of a customer, and all
the visits to that customer must end up with exactly its complete demand. The
SD1PDTSP consists of finding a minimum-cost route for the vehicle such that
it satisfies the demand of all customers without violating the vehicle capacity.
Although a customer may be visited several times, a maximum number of al-
lowed visits is assumed on each customer. The vehicle is not required to leave
any location with an a-priori known load (neither empty nor full). Thus, if a
location is considered the starting (ending) point of the route, the initial (final)
load of the vehicle in the SD1PDTSP is a decision that must be determined
within the optimization problem. Although our results can be adapted to the
variant with a fixed initial load of the vehicle in a location, we do not consider
it in this paper. Since several visits to a location are allowed, the vehicle could
deliver some units of the commodity in a location and collect them later in an-
other visit. Similarly, the vehicle can collect some units of the commodity in a
location and deliver them later in another visit. The SD1PDTSP allows these
solutions and therefore it can be seen as an inventory-routing problem where
each customer has an a-priori stock of the commodity, requires to have an a-
posteriori stock, has a capacity, and the demand is the difference between the
a-priori and a-posteriori stocks. In other words, a customer in the SD1PDTSP
may be used to temporarily deliver or collect units of commodity. This charac-

? This work has been partially supported by MTM2015-63680-R (MINECO/FEDER)
and by Fundación CajaCanarias.
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teristic is called preemption and it may provide routes with smaller costs respect
to the non-preemption variant.

Let Vi be an ordered set of m nodes representing potential visits to location
i. The set V = ∪i∈IVi is the node set of a directed graph G = (V,A) where A
is the arc set connecting nodes associated with different locations. For a given
subset S of nodes, we write δ+(S) = {(v, w) ∈ A : v ∈ S,w 6∈ S} and δ−(S) =
{(v, w) ∈ A : v 6∈ S,w ∈ S}. Given an arc a = (v, w) we also denote the cost ca
from v to w as the travel cost cij from the location i associated with v to the
location j associated with w. We consider the following mathematical variables.
For each arc a ∈ A, a binary variable xa assumes value 1 if and only if the
route includes a, and a continuous variable fa is the load of the vehicle when
traversing a. For each node v ∈ V , a binary variable yv assumes value 1 if and
only if the route includes v, and a continuous variable gv determines the number
|gv| of units delivered (if gv > 0) or collected (if gv < 0) when performing the
visit v. Then, the SD1PDTSP can be formulated as min

∑
a∈A caxa subject to:

∑

a∈δ+(v)

xa =
∑

a∈δ−(v)

xa = yv for all v ∈ V

∑

a∈δ+(S)

xa ≥ yv + yw − 1 for all S ⊆ V , v ∈ S , w ∈ V \ S

∑

a∈δ+(S)\δ+(11)

xa ≥ yil+1
for all i ∈ I , l = 1, . . . ,m− 1 (il 6= 11),

S ⊆ V : 11, il ∈ S , il+1 ∈ V \ S∑

a∈δ−(v)

fa −
∑

a∈δ+(v)

fa = gv for all v ∈ V

0 ≤ fa ≤ Qxa for all a ∈ A
yi1 = 1 ,

∑

1≤l≤m
gil = di for all i ∈ I

0 ≤ pi +
∑

1≤k≤l
gik ≤ qi for all i ∈ I , l = 1, . . . ,m− 1

−qiyil ≤ gil ≤ qiyil for all i ∈ I , l = 2, . . . ,m

yv, xa ∈ {0, 1} for all v ∈ V , a ∈ A.
Based on this model, our talk at ISCO2018 analyzes a new branch-and-cut ap-
proach to solve the SD1PDTSP that outperforms the ones proposed in [1,2].
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   In most Vehicle Routing Problems (VRPs), a characterization of the visited customers or 
facilities in terms of different commodity demand needs is not considered. In this talk we 
tackle a variant of the VRP with time-windows that arises in a real-life application related to 
the collection and delivery of pathological specimens in the transportation network of a 
pathology healthcare service provider. There are different types of specimens that have to be 
collected from a set of hospitals and clinics, and processed in potentially different ways at a 
set of laboratories within a transportation network. The variation of the pathological 
specimen types may be due to the nature of the specimens themselves, such as their purpose 
and processing requirements, as well as to the need of maintaining standards associated with 
a specimen, or may even be due to the intended destinations of the specimens.  We segregate 
the available specimen processing facilities according to their respective processing and 
storage capabilities into a set of tiers.  This tier allocation is nested in the sense that a facility 
of tier i can process any type of specimen that can be processed at a facility of tier j if j < i, but 
there exist certain commodity types which can be processed at a facility of tier i that cannot 
be processed at any facility of a lower tier.  Facilities of the lowest tier represent customers 
(i.e. hospitals and clinics) at which the specimens originate and have to be collected --- these 
facilities have no specimen processing or storage capabilities --- their only role is that of 
introducing new specimens into the system.  Facilities of higher tiers (i.e. laboratories) may or 
may not introduce new specimens into the system, but their distinguishing feature is that they 
all offer specimen processing capabilities or intermediate specimen storage capabilities. All 
facilities, excluding the facilities of the lowest tier, are assumed to offer the same storage 
capabilities.  
 
   We allow for handover of specimens at facilities in the sense that a specimen requiring 
processing at a facility of a specific tier may be transported by one vehicle to a facility of a 
lower tier than the required one, and then be collected later by some other vehicle which 
transports it to a facility of the required tier.  We refer to this type of specimen handover, 
which may occur at a facility of any tier (save the lowest and the highest ones), as global cross-
docking.  
 
   Another novel feature of the considered VRP variant is that we allow demand for specimen 
collection to spill-over into a subsequent planning period.  We essentially assume that the 
time continuum may be partitioned into planning periods of fixed length. One planning period 
is considered at a time, and if the demand for a specimen collection occurs at a facility after 
the last vehicle has departed from that facility, then this specimen is simply collected from the 
facility during the following planning period.  
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   It is also assumed that the possible deterioration of the quality of a specimen over time 
(specimen expiration time) is given by the time required for the specimen to be collected from 
a facility of the lowest tier and transported to the first facility that has the appropriate 
processing, storage or consolidation capabilities (i.e. the specimen deterioration occurs only 
as a result of being in transit prior to the first facility of a tier not of the lowest tier). It is 
therefore assumed that once a specimen has been delivered to a facility (of tier greater than 
the lowest one), the specimen is either processed there or stored in such a manner that its 
expiration window remains unaffected during storage (i.e. in a vacuum or at a low 
temperature) or future transportation (i.e. repackaged in such a manner so as to retain the 
specimen's integrity). 
 
   The specimen collection and processing system, with global cross-docking and demand spill-
over to subsequent planning periods, described above is formulated, through a Mixed Integer 
Linear Programming (MILP) model, as a tri-objective VRP minimizing: i) the total time 
required to transport the specimens, ii) the difference between the longest and the shortest  
travel times associated with the vehicles (i.e., the balancing of the driver workload), and iii) 
the number of vehicles required to implement the specimen collection routing schedule. The 
MILP model builds on a combination of several models proposed in the literature for well-
known variants of the VRP, but exhibits various novel features to take into account the 
characteristics previously outlined.  The proposed MILP model is validated by implementing it 
through the MILP Solver CPLEX, and by applying it to a small hypothetical problem instance. 
 
   Although conceived within the context of pathological specimen collection, the considered 

problem also has several alternative applications, such as that of a national postal service and other 

organizations that incorporate consolidation centers within their distribution network. 
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The Benders Algoritm for the b-CMS Dual
Problem.
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Abstract. In this work, we present the Benders algorithm for the dual
of the a b-Complementary Multisemigroup problem.

1 Introduction

Let (A, +̂) be a multisemigroup b-complementary and the b-Complementary
Multisemigroup problem is

P : min{ct : b ∈
∑̂

g∈A
t(g)g, t ∈ ZA

+}

where c ∈ RA [2].
Let (L,E) is a base for C(A). In this paper we considered the following

problems:Pp : max{ct : Γt = ρr, Πt ≥ πr, t ∈ Rr
+}; Pd : max{vρr + wπr :

vΓ+wΠ ≤ c, v ∈ Rl, w ∈ Re
+}. where t = (t1, , , , tr); ρr = (ρi(gr) : i ∈ {1, .., l});

πr = (πj(gr) : j ∈ {1, .., e}); Γ = [ρij ]l×r, where ρij = ρi(gj) for all i ∈ {1, .., l}
and j ∈ {1, .., r}; Π = [πkj ]e×r, where πkj = πk(gj) for all k ∈ {1, .., e} and
j ∈ {1, .., r}, for r = |A+|, l = |L| and e = |E|

In [2] we proved that he dual problem of Pp is the problem Pd. In the section
2, we present an algorithm for the dual problem of the a b-Complementary
Multisemigroup used Bendres Decompostion [1].

2 The Benders Algorihtm of the Pd problem

For C = {(t0, t) ∈ R×Rr | Πt ≥ πrt0, t ≥ 0, t0 ≥ 0}. And H(C) will denote the
intersection of all subsets:

H(C) =
⋂

(t0,t)∈C
{(x0, v) ∈ R×Rl | x0t0 + t(ΓT v)− t0(ρrv) ≤ tc}.

References

1. J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

2. M. E. Duality for a b-complementary multisemigroup master problem. Discrete
Otimization, 22:363–371, 2016.

  WEC1 - Polyhedral Approaches II 62



1 n = 0;
2 Select a finite set Qn ⊂ C ;
3 if H(Qn) = ∅ then
4 Algorithm terminates;
5 else
6 if there are t0 > 0 and t ∈ Rr

+ such that (t0, t) ∈ Qn then
7 solveMaxProblem = True;
8 else
9 put x0 = +∞, take (x0, v

n) ∈ H(Qn) ;
10 solveMaxProblem = False;

11 end

12 end
13 terminated = False;
14 repeat
15 if solveMaxProblem then
16 Solve the problem max{x0 | (x0, v) ∈ H(Qn)} (1)
17 if the problem (1) is not feasible then
18 Algorithm terminates;
19 end
20 Take (xn0 , v

n) the optimal solution of the problem (1);

21 end

22 Solve the problem min{(c− ΓT vn)t | Πt ≥ πr, t ≥ 0} (2)
23 solveMaxProblem = True;
24 if the problem (2) is not feasible then
25 terminated = True;
26 else
27 if the problem (2) has a finite optimal solution tn then
28 if (c− ΓT vn)tn = xn0 − ρrvn then
29 Solve the dual problem of the problem (2);
30 Take (vn, wn) the optimal solution of problem Pd;
31 terminated = True;

32 else
33 if (c− ΓT vn)tn < xn0 − ρrvn then
34 Qn+1 = Qn ∪ {(1, tn)};
35 n = n+ 1;

36 end

37 end

38 else
39 Select a vertex tn ∈ P and extreme direction dn ∈ C0 such that

tn + λdn →∞, where λ→ +∞;

40 if (c− ΓT vn)tn ≥ xn0 − ρrvn then
41 Qn+1 = Qn ∪ {(0, dn)};
42 n = n+ 1;

43 else
44 Qn+1 = Qn ∪ {(1, tn), (0, dn)};
45 n = n+ 1;

46 end

47 end

48 end

49 until terminated;
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Abstract. In this work, we investigate the tour scheduling problem with
a multi-activity context, a challenging problem that often arises in per-
sonnel scheduling. We propose a primal-dual approach, which makes use
of column generation to get a lower bound, and large neighbourhood
search to get upper bounds and good primal integer solutions. The two
methods are embedded in the overall approach by working on and ex-
changing sets of columns.

Keywords: multi-activity tour scheduling, column generation, large neigh-
borhood search

1 Introduction

Personnel scheduling problems consists of constructing feasible shift schedules to
be assigned to staff, in order to satisfy workload requirements. These problems
arise in several organizations such as airline and railways companies, hospitals,
restaurants, retail stores and call centres. Due to economic considerations, per-
sonnel scheduling represents an intense and challenging research field [1]. Three
main categories of problems can be distinguished in personnel scheduling: shift
scheduling, days-off scheduling and tour scheduling. In this work, we deal with
a problem in the latter category. We aim at specifying the time periods of the
day and the days of the week in which employees have to work. Moreover, more
than one work activity has to be scheduled, making the problem fall into multi-
activity tour scheduling category. In these problems, we need not only to define
the working days and the working periods, but also to specify the allocation of
work activities.

2 Primal-dual approach

We solve the multi-activity tour scheduling problem by combining column gen-
eration and large neighborhood search into a primal-dual approach. The first
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solves the linear relaxation providing lower bound and fractional solutions, while
the second starts from integer rounded solutions and aims at improving them,
providing upper bounds on the integer problem.

Column generation (CG). CG is a classical technique to solve linear programs
with a large number of variables. Recently, CG approaches have been widely used
to solve multi-activity tour scheduling problems [1]. This method considers on
one hand a master problem that takes into account workload requirements, min-
imizing the total cost given by under and over coverage. On the other hand, new
feasible schedules are built solving the subproblems, where the legal constraints,
such as consecutive working hours, daily working hours, breaks and skills, are
considered. Each subproblem is decomposed and solved in different phases. First
(phase 1 ), work activities are combined to build feasible timeslots, which are in
turn used to build feasible daily shifts (phase 2 ). Finally (phase 3 ), daily shifts
are combined to build feasible weekly schedules. Rules defining timeslots and
daily shifts are taken into account both by means of automata, and by solving
resource constrained shortest path problems on the extended graphs.

Large Neighborhood Search (LNS). The LNS algorithm was first introduced by
[3], and it iteratively destroys part of the current solution and repairs it in the
hope of finding a better solution. Similarly to [2], destroying here means choosing
an employee and removing his schedule, while repairing means assigning a new
schedule to the selected employee in order to improve the global solution.

The overall primal-dual approach. The proposed primal-dual approach itera-
tively calls CG and LNS at each iteration. It starts by solving the linear relax-
ation using CG. When optimality is achieved, a lower bound and a fractional
solution are available. The latter is rounded to provide a feasible integer solu-
tion which is improved by means of LNS. As soon as a local optimum is found,
the best solution is given as initial solution to CG, which again solves the linear
relaxation and stops when the value of the master problem is close to optimality.
Preliminary computational results on instances built with input from quick ser-
vice restaurants, show that the primal-dual method proposed allows an average
gap of 5% between the lower bound given by the linear relaxation and the upper
bound of the best integer solution obtained.
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branch-cut-and-price code for applications where pricing

is a resource constrained shortest path
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Column generation algorithms where the pricing is solved as a resource constrained short-
est path problem have been used in a variety of applications, as surveyed in [5]. Pioneering
work on a generic solver using column generation based on a resource constrained shortest
path subproblem was the GenCol software [13]. Our aim is to develop such a platform that
includes both generic modeling tools and an highly efficient branch-cut-and-price. Our solver
relies on generalizing the most advanced techniques that were recently developed for classical
variants of the vehicle routing problem. It considers several resource constraints simultane-
ously, even allowing for continuous resources (as opposed to the discrete assumptions made
by traditional dynamic programming approaches), sometimes even allowing zero or negative
resource consumptions. The pricing is done by a bi-directional labeling algorithm, imple-
mented over the so-called bucket graph (as proposed in [11]). Besides the good performance
of the pricing oracle, the overall efficiency of the branch-cut-and-price relies on advanced
features such as a procedure for fixing arc variables by reduced costs [4,8]; an algorithm
for gradually enforcing total or partial elementarity of subproblem solution paths [10]; an
self-adjusting dual price smoothing stabilization for improving the convergence of the col-
umn generation [7]; a heuristic local search separation procedure for limited-memory rank-1
Chvatal–Gomory cuts [6]; a labeling dynamic programming algorithm for enumerating ele-
mentary subproblem solution paths [1]; a multi-phase pseudo-costs based strong branching
procedure [6]; and the generic diving heuristic for improving the initial primal bound of [12].

In this presentation we will focus on the scope of applications that are amenable to our
branch-cut-and-price solver. The goal is to convey the ease of access to an efficient solver
for the many combinatorial optimization problems that can be decomposed into resource
constrained shortest path subproblems, once linking constraints have been dualized in a
Lagrangian way. Beyond the case of vehicle routing problems (VRP) for which the solver
was originally developed, we will focus on problems where the VRP-like structure is not
evident, including machine scheduling, packing, resource allocation, and network design
problems [8,2,9,3]. After showing how such problems reduce to our approach, we evaluate
how it performs in practice when compared to the best existing approaches.
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Approximation algorithm for scheduling a chain
of tasks on hybrid platform with energy
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1 Introduction

Heterogeneous computing platforms offer significant computational power while
preserving the energy consumption for running High Performance Parallel (HPC)
applications [1]. Thus, they represent nowadays interesting means of calculations.
In particular, hybrid platforms using GPU accelerators in addition to classical
computing units such as CPU are widely used architectures in HPC.

In order to reap the benefits of heterogeneous platforms, efficient and au-
tomatic strategies to manage computing resources is increasingly important for
running applications. These new hybrid architectures have given rise to new
scheduling problems for allocating and sequencing calculations on different re-
sources by optimizing one or more criteria.

This paper addresses task scheduling of a chain of task application onto a
hybrid platform composed of two types of resources (CPU et GPU) which is a
special case of [2]. Compared to the work presented in [3,4] we introduce energy
constraint and communication delays between the resources as well as between
the tasks that are linked by precedence constraints. We present a detailed math-
ematical formulation as well as some preliminary approximation results.

2 Problem definition

This study considers a heterogeneous platform composed of one GPU and one
CPU . An application A of n tasks is represented by an oriented chain of tasks
Graph GCh(V,E), each vertex v ∈ V represents a task ti. Each arc e = {ti, ti+1} ∈
E represents a precedence constraint between two successive tasks ti and ti+1,
i = 1..n− 1. The communication cost between ti and ti+1 is denoted by cti,i+1.

A task can be executed by CPU or GPU . Executing the task ti on a CPU
(resp. GPU) generates an execution time equal to wi0 (resp. wi1) and an energy
equal to ei0 (resp. ei1). We denote by E the allowed quantity of energy consumed
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during the execution. E represents in our case an energy bound that should not
be exceeded during the execution. A communication delay is also considered if
two tasks are executed on two different resource types, [5] provides the exact
formula to evaluate cti,i+1 which takes into consideration latencies and avail-
able bandwidth between processors. A task ti can be executed only after the
complete execution of its predecessor ti+1. We do not allow duplication of tasks
and preemption. We denote by Ci the completion time of the task ti and Cmax

the completion time of the application A (makespan). The aim is to find the
minimum makespan scheduling respecting the energy bound E.

3 Preliminary results

We have proposed a two-phase algorithm to solve the problem of scheduling
chain of tasks with energy constraint. In the first phase, we start by solving an
assignment problem to find which resource (CPU or GPU) will execute each
task. We propose mathematic model (P1) for solving the assignment problem
while the energy and precedence constraints are satisfied. The solution obtained
by this model represents a lower bound for the final makespan. Then we solve
the relaxation (P1

′
) of the model (P1). In order to obtain a feasible assignment

for the tasks, we rounded up the fractional solution of program (P1
′
). In the

second phase, we use the assignment of tasks to get a feasible schedule. This
algorithm guarantees a ratio of 2 compared to the optimal solution. Tests on
large instances close to reality demonstrated the efficiency of our method and
shows the limits of solving the problem with a solver such as CPLEX [6].

As part of the future, we will use the energy constraint by varying the value
E to find a Pareto set which minimizes both the total execution time (makespan)
and the energy consumption. An extension to more general classes of graphs is
also planned to handle real applications.
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Abstract. We study the fundamental problem of polytope membership
aiming at large convex polytopes, i.e. in high dimension and with many
facets, given as an intersection of halfspaces. Standard data-structures as
well as brute force methods cannot scale, due to the curse of dimension-
ality. We design an efficient algorithm, by reduction to the approximate
Nearest Neighbor (ANN) problem based on the construction of a Voronoi
diagram with the polytope being one bounded cell. We thus trade ex-
actness for efficiency so as to obtain complexity bounds polynomial in
the dimension, by exploiting recent progress in the complexity of ANN
search. We employ this algorithm to present a novel practical bound-
ary oracle based on a Newton-like iterative intersection procedure. We
implement our algorithms and compare with brute-force approaches to
show that they scale very well as the dimension and number of facets
grow larger.

Keywords. Geometric optimization, convex polytope, membership ora-
cle, approximation algorithms, general dimension, nearest-neighbor search,
implementation.

Introduction. Let us consider a convex polytope P in H-representation, i.e. as
the intersection of a finite set of linear inequalities: P = {x ∈ Rd | Ax ≤ b, A ∈
Rn×d, b ∈ Rn}. The main focus of our work is to create efficient data structures
for the problems of polytope membership and boundary when the dimension d
is high. The membership problem is to preprocess P such that, given a query
point q, we can efficiently decide whether q lies inside or outside P . The polytope
boundary problem is to preprocess P such that, given a query ray emanating
from inside the polytope, we can efficiently compute the point where it intersects
the boundary of the polytope. We will allow ourselves (i.e. our data structures)
to answer correctly within some approximation error ε and with some success
probability, in order to gain some margin for efficient high-dimensional solutions.

The motivation stems from an algorithmic point of view, where improving
the complexity of oracles, in particular membership, implies improvements to
algorithms used to solve combinatorial optimization problems such as the el-
lipsoid, interior point or randomized methods. Another important example of
application is volume approximation which has also an established connection
to combinatorial optimization. For example, the volume of order polytopes gives
the number of linear extentions of the associated partial order set.
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Fig. 1. A conceptual presentation of the alternative view of the polytope as a Voronoi
cell instead of an intersection of hyperplanes.

Recent advances in approximate nearest neighbor (ANN) search guide us to
using ANN for answering these crucial geometric predicates in convexity theory.

Our contribution. We describe a simple constructive reduction from the poly-
tope membership problem to point location (Figure 1), then show under which
conditions this reduction holds for the respective approximate versions of the
problems. This gives us the flexibility to exploit advances in the research of
ANN, but for the approximate polytope membership problem. Thus, we use a
high dimensional solution to ANN[4] in order to offer a practical approximate
polytope membership oracle in high dimension with complexity bounds poly-
nomial in the dimension d and sublinear in the number of inequalities n. We
remark that any (high-)dimensional ANN solution can be utilized and we can
inherit its complexity and its properties.

We further present an application of the designed membership data structures
in order to obtain novel experimental (approximate) solutions for the polytope
boundary problem. Our approach exploits the nature of the aforementioned re-
duction in order to iteratively close in on the boundary point, in a Newton’s
method-like manner.

We implement and experimentally examine our algorithms and illustrate that
they scale well as the dimension and the number of facets grow larger, compared
to the trivial approach of checking every hyperplane, which is a plausible solu-
tion in the exact setting, especially in the high-dimensional case. Specifically we
demonstrate results up to d = 1000 and n = 106 and show that that we have a
10× speed-up.
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1. Addressed issue. Given an integer q ≥ 2, a Constraint Satisfaction
Problem (CSP in short) over Zq considers a set {x1, . . . , xn} of Zq-valued vari-
ables and a set {C1, . . . , Cm} of constraints, where a constraint Ci consists of
the application of a (non constant) predicate Pi : Zki

q → {0, 1} to a tuple
xJi = (xi1 , . . . , xiki

) of variables. In the most general case, a weight wi ∈ Q
is associated with each constraint Ci and functions Pi may be Q-valued. The
goal then is to assign values to the variables so as to optimize objective func-
tion

∑m
i=1 wiPi(xJi) over Zn

q . Given a universal constant integer k, we denote by
k CSP−q the restriction of the corresponding unconstrained optimization prob-
lem to the case where each constraint Ci acts on at most k of the variables.

This work concerns the differential approximability [3] of k CSP−q. Given an
instance I of k CSP−q, we denote by v(I, .) its objective function, by opt(I) and
wor(I) respectively the optimum and the worst solution values on I. A solution
x of I is ρ-differential approximate for some ρ ∈]0, 1] if it performs a differential
ratio (v(I, x) − wor(I))/(opt(I) − wor(I)) at least ρ. k CSP−q is approximable
within differential factor ρ if it is possible to compute within polynomial time
on each of its instances a solution with differential ratio at least ρ.

A natural question as regards differential approximability of CSPs is: what
are the greatest integers q, k ≥ 2 for which k CSP−q is approximable within a
constant factor? 2 CSP−2 and 3 CSP−2 are approximable within factor respec-
tively 2 − π/2 > 0.429 [4] and 1 − π/4 [2]. When q ≥ 3 or k ≥ 4, the question
whether k CSP−q is approximable within any constant differential factor is open.

A common way to exhibit approximability bounds for a given optimization
problem consists in reducing to or from another optimization problem for which
approximability bounds are known. We here analyse a specific reduction from
k CSP−q to k CSP−p given three constant integers q, p, k with q > p ≥ k ≥ 2.

2. Our approach. Let Pp(Zq) refer to the set of the p-cardinality subsets of
Zq. As observed in [1], given an instance I of k CSP−q, restriction I(S) of I to
any S ∈ Pp(Zq)

n can be assimilated to an instance of k CSP−p. A natural way to
derive from a hypothetical approximation algorithm for k CSP−p approximate
solutions on I therefore consists in solving subinstances I(S), S ∈ Pp(Zq)

n. This
is precisely what we do, but restricting to a constant number of subsets S.
Namely, we restrict to the

(
q
p

)
= O(qp) subsets of the form T n where T ∈ Pp(Zq).

Our goal is to express a sum of solution values on subinstances I(T n) as a
sum of solution values on I that include opt(I). To do so, we model multisubsets
of {T n | T ∈ Pp(Zq)} and Zn

q by two arrays Ψ and Φ with q columns on Zq. Let
x∗ be an optimal solution of I. We identify a row (u0, . . . , uq−1) of these arrays
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with the vector x of Zn
q whose coordinates xj satisfy the following rule: if x∗

j = c,
then xj = uc. We then introduce the following family of combinatorial designs:

Definition 1. Let q, p, k be three integers with q ≥ p ≥ k ≥ 2. Then given
any two integers R ≥ 1, R∗ ∈ {1, . . . , R}, Γ (R, R∗, q, p, k) refers to the (possibly
empty) set of pairs (Ψ, Φ) of arrays with q columns over Zq that satisfy that:

1. the components of each row of Ψ take at most p distinct values;
2. (0, 1, . . . , q − 1) occurs R∗ times as a row in Φ;
3. for all sequences J = (c1, . . . , ck) of column indices, subarrays (Ψ c1 , . . . , Ψ ck)

and (Φc1 , . . . , Φck) coincide up to the ordering of their rows.

Furthermore, γ(q, p, k) refers to the greatest real γ for which there exist two
integers R, R∗ such that R∗/R = γ and Γ (R, R∗, q, p, k) 6= ∅.
Requirements 1., 2. and 3. respectively ensure that array Ψ models vectors of
{T n | T ∈ Pp(Zq)}, x∗ occurs at least R∗ times in the solution family modelled
by Φ, and the sum of solution values over the solution family modelled by Ψ
equals the sum of solution values over the solution family modelled by Φ.

3. Obtained results. We summarize below the results we obtain:

Lemma 2. For all integers q, p, k with q > p ≥ k ≥ 2, on any instance I
of k CSP−q, solutions that perform the best objective value among those whose
coordinates take at most p distinct values are γ(q, p, k)-differential approximate.

Theorem 3. For all constant integers q, p, k with q > p ≥ k ≥ 2, if k CSP−p
is approximable within some differential factor ρ, then k CSP−q is approximable
within differential factor γ(q, p, k) × ρ.

Theorem 4. For all integers q, k with q > k ≥ 2 and all p ∈ N, we have:

γ(q + p, k + p, k) ≥ 2/
∑k

r=0

(
q
r

)(
q−1−r

k−r

)
≥ 1/(q − k/2)k

Corollary 5 (using [4]). For all constant integer q ≥ 2, 2 CSP−q is approx-
imable within differential factor (2 − π/2)/(q − 1)2.

Lemma 2 (and then Theorem 3) follows from Definition 1. Theorem 4 relies
on a recursive construction for families Γ (R, 1, q, k, k) of combinatorial designs.
Corollary 5 is then straightforward. Notice that Theorems 3 and 4 additionally
reduce the question whether k CSP−q is approximable within some constant
differential factor to the consideration of integers q, k with k ≥ q ≥ 2.
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We consider the P2||Cmax scheduling problem, where the goal is to schedule
n jobs on 2 identical parallel machines M1,M2 to minimize the makespan.
P2||Cmax is NP-hard in the ordinary sense. A pioneering approximation al-
gorithm for the problem is the Longest Processing Time (LPT) rule proposed
in [5] for the more general P ||Cmax problem. It requires to sort the jobs in non-
ascending order of their processing times pj (j = 1, . . . , n) and then to assign
one job at a time to the machine whose load is smallest so far. This assignment
of jobs to machines is also known as List Scheduling (LS). Several properties
have been established for LPT in the last decades [1, 2, 4, 5].
We mention other popular approximation algorithms which exploit connections
of P ||Cmax with bin packing: Multifit [3], Combine [8] and Listfit [6]. In [9], a
fully polynomial time approximation scheme (FPTAS) was devised for P2||Cmax
(and for the more general Pm||Cmax if the number of machines is fixed) which

solves the problem with accuracy 1 + ε in time O((n/ε)1/ε
2

). Such algorithms
provide better worst case performance than LPT but at the cost of higher run-
ning times. The current best algorithm running with low polynomial complexity
and providing constant approximation ratio has ratio 12

11 and is due to [7].
We consider the jobs sorted by non-ascending pj (pj ≥ pj+1, j = 1, . . . , n− 1).
We denote by critical the job (the machine) that provides the makespan of the
given schedule. Let C∗ be the optimal makespan. The following proposition and
related corollary (proof omitted, will be presented at the Conference) hold.

Proposition 1 Consider a schedule obtained by assigning jobs 1, ..., 2k to the
machines according to some policy and then apply LS to the remaining jobs
2k + 1, ..., n. If the critical job j is such that j ≥ 2k + 1, then ρ ≤ 1 + 1

2(k+1) .

Corollary 1 Given a problem P1 with n jobs, consider the subproblem Pred with
the first 2k jobs only. If problem Pred is solved by an algorithm with approxima-
tion ratio 1+ 1

2(k+1) , then the same approximation ratio holds for P1 by applying

LS to the remaining subset of jobs.

By exploiting, Corollary 1, we can both improve the time complexity of the fptas
in [9] and the approximation ratio of [7] by means of the following propositions
(proof omitted, will be presented at the Conference).

? federico.dellacroce@polito.it
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Proposition 2 Given a P2||Cmax instance with n jobs, an approximation ratio
(1 + ε) can be reached with complexity O( 1

ε3 + n) for all ε > 1/n.

Consider the following approximation algorithm.

Algorithm 1

1: Input: P2||Cmax instance I with n jobs and 2 machines, parameter k.
2: Select jobs 1...k inducing a k-job instance I ′: apply LPT to I ′ and get schedule S′.
3: Search for the best swap SW 1

i,j (if any) between any job i on machine M1 and any
job j on machine M2 that improves the makespan of S′.

4: Search for the best swap SW 2
i,j,k (if any) between any job i on machine M1 and

any pair of jobs j, k on machine M2 that improves the makespan of S′.
5: Search for the best swap SW 3

i,j,k (if any) between any job i on machine M2 and
any pair of jobs j, k on machine M1 that improves the makespan of S′.

6: Apply the best swap (among SW 1
i,j , SW

2
i,j,k, SW 3

i,j,k) to S′ reaching schedule S
′′

.

7: Given S
′′

, apply LS to the remaining n− k jobs and return the final schedule S∗.

In practice, Algorithm 1 applies first LPT to the reduced instance I ′ composed
by the largest k jobs yelding subschedule S′. Then, a single step of local search
between pairs or triples of jobs is applied to I ′ yelding subschedule S

′′
. Finally,

starting from S
′′
, List Scheduling is applied to the remaining (n− k) jobs.

Proposition 3 Algorithm 1 applied with k = 10 reaches a tight 13
12 approxima-

tion ratio.

Remark 1 We employ linear programming to show that Algorithm 1 applied to
the reduced instance I ′ cannot have approximation ratio superior to 13/12 (a tight
example in this case occurs with 8 jobs with processing times 7, 5, 2, 2, 2, 2, 2, 2).
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Orthogonal Frequency-Division Multiple Access (OFDMA) is a popular mul-
tiplexing scheme in modern mobile wireless communications systems [1]. In
OFDMA, we have a set I of subcarriers and a set J of users. Each subcar-
rier can be assigned to at most one user, but a user may be assigned to more
than one subcarrier. For each i ∈ I, we are given a bandwidth Bi (in megahertz),
and a noise power Ni (in watts). If we allocate pi watts of power to subcarrier
i, the data rate of that subcarrier (in megabits per second) is

fi(pi) = Bi log2 (1 + pi/Ni) .

Several different optimisation problems have been defined in connection with
OFDMA systems (e.g., [2–8]). In [3], we considered the following specific prob-
lem. In addition to the above data, we are given a total power limit P (in watts),
a system power σ and, for each j ∈ J , a demand dj (in megabits per second).
The task is to simultaneously allocate power to subcarriers, and subcarriers to
users, so that energy efficiency is maximised, the total power limit is not exceed,
and the demand of each user is satisfied. The user demand constraints are one
specific way of ensuring quality of service (QoS).

This problem was formulated as a mixed 0-1 fractional program in [3]. For all
i ∈ I and j ∈ J , let the binary variable xij indicate whether user j is assigned
to subcarrier i, let the non-negative variable pij represent the amount of power
supplied to subcarrier i to serve user j, and let rij denote the associated data
rate. The formulation was:

max


i∈I


j∈J

rij

σ+


i∈I


j∈J

pij
(1)


i∈I


j∈J pij ≤ P − σ


j∈J xij ≤ 1 (∀i ∈ I)


i∈I rij ≥ dj (∀j ∈ J)

rij ≤ fi(pij) (∀j ∈ J) (2)

pij ≤ (P − σ)xij (∀i ∈ I, j ∈ J)

xij ∈ {0, 1} (∀i ∈ I, j ∈ J)

pij , rij ∈ R+ (∀i ∈ I, j ∈ J).
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 Unfortunately, the fractional objective function (1) and the nonlinear con-

straints (2) make this problem especially challenging. An exact algorithm was 

developed in [3], but it is rather slow, taking several minutes in some cases. This 

makes it of little use in a highly dynamic environment, when users may arrive 

and depart every few seconds.

 This led us to devise a fast heuristic for the problem. An overview of the

heuristic is as follows.

 1. Let D be the sum of the user demands.

 2. Solve a relaxation of the problem, in which, instead of |J | users, we have just 

 one user whose demand is D + , where  is a small positive parameter. (The

 relaxation can be formulated as a convex program with only |I| variables.)

 3. Let p∗ ∈ R+
|I| be the optimal power allocation for the above relaxation.

 4. “Freeze” the power allocation p∗ and attempt to find a feasible solution to 

 the real problem that uses that allocation. (This can be done by solving a

 0-1 linear program with |I||J | variables, or with a constructive heuristic.)

 5. If a feasible solution is found, try to improve its energy efficiency. (This can 

 be done by solving another convex program with only |I| variables.)

 6. If no feasible solution is found, repeat steps to 2 to 5 several times, using 

 binary search to find a promising value for .

 This heuristic turns out to be remarkably effective, being able to solve real-

istic instances (following the IEEE 802.16 standard) to within 1% of optimality 

within a couple of seconds. This is fast enough to be useful in practice.
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Abstract. A recently European Commission regulation requires insurance companies to deter-
mine the maximum value of insured fire risk policies of all buildings that are partly or fully
located within circle of a radius of 200 meters. This work proposes a multi-start local search
meta-heuristics developed to solve the real case of an insurance company having more than 400
thousand insured buildings in mainland Portugal. A random sample of the data set was used
and the meta-heuristics solutions were compared with the optimal solution of a MILP model
based on the Maximal Covering Location Problem. The results show the proposed approach to
be very efficient and effective in solving the problem.

Keywords: Meta-heuristics, Local Search, Solvency II, Continuous Location Problem

Recently the European Union (EU) has published a new legistative programme - Solvency II -
aiming at the harmonization of insurance industry across the European market and defining a pol-
icyholders protection framework that is risk-sensitive. Among other aspects Solvency II comprises
risk-based capital requirements that need to be allocate in order to ensure the financial stability of
insurance companies with assets and liabilities valued on a market consistent basis (the Solvency Cap-
ital Requirement, SRC) This work focus on the man-made catastrophe risk which comprises extreme
events directly accountable to men. Specifically it addresses the capital requirement for fire risk as-
suming 100% damage on the total sum of the capital insured for each building located partly or fully
within a 200 meters radius [1]. Until now and to best of the authors knowledge, the choice of 200
meters as the radius for the concentration was based on statistics and expert judgement.

The problem can be stated as “find the centre coordinates of a circle with a fixed radius that
maximizes the coverage of total fire risk assured”. This can be viewed as a particular instance of
the Maximal Covering Location Problem (MCLP) with fixed radius [2]. Under the assumption that
demand point is either covered or not by the facility, it has been proven that a discrete and finite set
contains an optimal coverage solution [3].

This work has been motivated by the real case of an insurance company that, having more than 400
thousand buildings in Portugal covered by a fire insurance policy, needs to determine the maximum
accumulated risk within a circle with 200 meters radius. The number of points makes impossible to
use a 01 linear programming model since only “super” computers might be able to cope with such an
amount of data. An algorithm has to be designed so that the insurance company could use it at least
once a year. Therefore, we have developed a meta-heuristic - the Fire Risk Meta-heuristic (FRM) -
inspired by the pattern search method proposed by Custódio and Vicente [4] that can be run in an
ordinary desktop computer.

The FRM is a multi-start local search procedure where intensification and exploration strategies
have been defined. In a nutshell, this procedure can be stated as: given an initial coordinate point
(randomly selected) for the circle centre, determine the total fire risk within a k meters radius; generate
and evaluate four neighbourhood points by increasing/decreasing each coordinate by a ∆ value; make

  WEC3 - Metaheuristics 82



the best neighbourhood point as the new center. The step size ∆i varies according to the quality of
the neighbour solutions. Two stopping rules have been defined: one for the local search procedure and
one for the multi-start algorithm. For the local search procedure one assumes as stopping criteria a
small value for ∆i, ∆min. The meta-heuristic stopping criteria has two components: minimum number
of iterations, imin, and maximum fire risk of a single building, Best. The imin is set empirically so
that an adequate exploration of the search space is performed. The second component assures that
the optimal circle must have a total fire risk (the objective function value) greater than the largest
fire risk associated to a single building.

Given the volume of data for a national study and being this work a first step towards the devel-
opment of an optimization approach, we confined the study to Lisbon area. The Insurance Company
provided a data set which encompasses the chosen geographical area and has 46 843 buildings (points).
Each points is defined by the two geographical coordinates (longitude and latitude) and the fire cap-
ital insured. The maximal covering location problem (MCLP), as proposed in Farahani et al. [5],
was applied and proved to be unable to solve real instance since 46 thousand points leads to out of
memory issues. A random sample of tractable size (1000 points) was then use to validate the FRM.
The meta-heuristic parameters were set to ∆0 = 200 · 27 = 25 600 m, ∆min = 50 m and imin = 50 000
iterations and 40 runs were performed. The starting point coordinates were randomly chosen while
assuring an adequate covering the search space. The results showed that only two different values for
fire risk were found, with the best one coming out in 39 of the 40 runs. All 39 solutions have different
centre coordinates, which is a consequence of the assumption that the centre coordinates could be any
point in the chosen area. This highest fire risk value improves in 15% the optimal value found by the
MCLP model (33 323, 56 vs. 28 857, 46). The MCLP solution was also found by the meta-heuristic at
run 19 and is the lowest reported value.

The meta-heuristic has been applied to a data set of more than 46 thousand points [6] and is
being currently used by the insurance company. As future work, two main directions will be persued.
Firstly, the computational experiments will be extended and the meta-heuristic solution quality will
be acces with regard to the 01 integer formulation proposed by Mehrez, in 1983, [7]. Secondly, the
meta-heuristic will be apploed to the 400 thousand points of mainland Portugal.
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Abstract. 

 

Oil products are essential to meet society’s everyday needs. The downstream oil 

sector plays a pivotal role in powering countries economic engine by supplying the 

transportation fuels and the crucial feedstocks for other industry sectors and processes 

which greatly contribute to the nation’s economic growth. Thus, petroleum products 

such as gasoline, kerosene, diesel and heating fuel are nowadays essential strategic 

products, they must be permanently available to satisfy the growing and immediate 

needs of professionals and particulars consumers. However, in the face of market lib-

eralization, unpredictable oil prices fluctuations and the risk of stocks depreciation, 

distribution companies are forced to reduce their stocks levels as much as possible, 

some even tend to work just in time. This new approach to managing oil distribution 

requires some specific adaptation of the decision support systems used by dispatchers 

to prepare delivery programs. This problem of fuel distribution and replenishment of 

service stations has aroused the interest of several researchers and has been the subject 

of many research and publication works in recent decades, generally geared towards 

the optimization of the vehicles routes in order to minimize the global cost. The pur-

pose of this work is the study of a problem of selective and dynamic transport, it is the 

case where the available resources are not sufficient to satisfy all the needs of the cus-

tomers and where urgent requests may arise during the execution of the initial pro-

gram, this is the most common case in the business environment. Our goal is to de-

termine the optimal set of customers to serve, the vehicles to use and the routes to be 

done, respecting all the constraints of safety, capacity and time, in order to improve 

the quality of service of the company, to avoid or minimize stockouts at customers, 

and maximize their satisfaction. 

Keywords: VRP, TOP, Petrol Secondary Distribution  

1 Problematic  

Our problem is to define a distribution policy that is:   

 Selective: we have to select from among all the customers who have expressed 

a need, a limited set of customers to serve, and adjust their orders, taking into 

account logistic capacities, available stocks and some others criteria  
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 Dynamic: that is, designing an adaptable and modifiable delivery program, 

which should be able, to take into consideration new urgent orders received 

during its execution 

1.1 Constraints  

The set of constraints to consider:  

 Homogeneous fleet of m compartmented tank trucks,  

 Each vehicle contains a set of compartments of different volume,  

 Each compartment must contain a single product,  

 Each vehicle in service must start its tour and finish it at the logistics center, 

 All trucks that visit a customer or depot must leave it,  

 The truck must respect a succession of customers,  

 Each truck must pass through one and only one loading depot,  

 The sum of the volumes delivered on the same tour must not exceed the total ca-

pacity of the vehicle,  

 For security reasons an open compartment must be totally emptied at the same 

customer, 

 A customer can be delivered partially, quantity delivered can be less than the re-

quested quantity.  

1.2 Objective  

As objective we intend to seek a compromise between maximizing the company's profile and 

maximizing the quality of service customers given all the parameters and variables defined 

above,  

2 Conclusion  

Our problem is NP-hard, we will adopt the Ant Colony Optimization algorithm 

(ACO), which have proved to be very effective and efficient in problems of high 

complexity (NP-hard) in combinatorial optimization and then compare the experi-

mental results with those of the literature. We will present a dynamic resolution that 

will be able to take into account real-time data changes and provide optimal results in 

a short adequate time. The numerical results will be published in a future article. 
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Abstract. We study here the application of the “descent with muta-
tions” metaheuristic to the linear ordering problem. We compare this
local search metaheuristic with another very efficient metaheuristic, ob-
tained by the hybridization of a classic simulated annealing with some
ingredients coming from the noising methods. The computational ex-
periments on the linear ordering problem show that the descent with
mutations provides results which are comparable to the ones given by
this improved simulated annealing, or even better, while the descent with
mutations is much easier to design and to tune, since there is no para-
meter to tune (except the CPU time that the user wants to spend to
solve his or her problem).

Keywords: Combinatorial optimization, metaheuristics, simulated an-
nealing, noising methods, linear ordering problem, median order, Slater’s
problem, Condorcet-Kemeny’s problem

1 Introduction

We deal here with a metaheuristic called “descent with mutations” (DWM). This
method looks like the usual descent, but with random elementary transforma-
tions which are performed, from time to time, in a blind way, in the sense that
they are accepted whatever their effects on the function f to optimize (such an
elementary transformation performed without respect to its effect on f will be
called a mutation in the sequel). The density of performed mutations decreases
during the process, so that the method at its end is the same as a classic descent.

We study the application of DWM to two problems arising from the field of
the aggregation and the approximation of binary relations: the approximation
of a tournament (i.e. an oriented complete graph) by a linear order (i.e. a tran-
sitive tournament) at minimum distance (this problem is also known as Slater’s
problem) and the aggregation of linear orders into a median linear order (this
problem is sometimes called Condorcet-Kemeny’s problem). Both can be repre-
sented by the linear ordering problem (LOP in the following). In LOP, we are
given a weighted tournament T = (V, A) and we look for a subset of A with a
minimum weight such that reversing the elements of A in T makes T become
transitive, i.e. become a linear order. These problems are NP-hard.
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2 Principle of DWM

As the other metaheuristics, DWM is not designed to be applicable to only one 

combinatorial problem, but to many of them. Such a problem can be stated as 

follows:

 Minimize f (s) for s ∈ S,

where S is assumed to be a finite set and f is a function defined on S; the 

elements s of S will be called solutions.

 As many other metaheuristics, DWM is based on elementary transformations.

A transformation is any operation changing a solution into another solution. A 

transformation will be considered as elementary (or local) if, when applied to 

a solution s, it changes one feature of s without modifying its global structure 

much. For instance, if s is a binary string, a possible elementary transformation 

would be to change one bit of s into its complement.

 DWM can be described as follows:

 – Repeat:

 • with a certain probability, apply an arbitrary elementary transformation

 (irrespective improvement or worsening: this is a mutation)

 • otherwise, apply an elementary transformation which brings an improve-

 ment

 – until a given condition is fulfilled.

 During the process, we apply less and less mutations. Observe that removing
the first instruction of the loop (i.e. the possibility to perform a mutation), we 

recover the basic scheme of a descent.

3 Application of DWM to LOP

The application of DWM to LOP requires the definition of an elementary trans-
formation. Let O be the current linear order to which we want to apply the
elementary transformation. This one consists in considering another linear order
O′ obtained from O by moving a vertex v from its current place in O to another
place: if v is ranked i in O, its rank will be j 6= i in O′, and the remaining of O′

is the same as in O.
The experimental results of DWM applied to LOP are compared with those

provided by repeated descents and by a method based on simulated annealing.
They show that DWM provide very good results, with about the same quality
(usually even better) as the ones obtained by an improved version of simulated
annealing, which proved to be already very efficient, within the same CPU time.
But, beyond this efficiency, the main advantage of DWM is that this meta-
heuristic is much easier to design and to apply since there is no parameter to
tune (except the CPU time, which in its turn defines the number of iterations
performed by the method)!
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Given an undirected simple graph G = (V,E) and integer values fv, v ∈ V ,
a node subset D ⊆ V is called an f -tuple dominating set if, for each node
v ∈ V , its closed neighborhood intersects D in at least fv nodes. The natural
complementary notion to f -tuple domination is that of f -limited packing: a node
subset D ⊆ V is called an f -limited packing if the closed neighborhood of each
node v ∈ V , intersects D in at most fv nodes. The concepts of domination and
limited packing naturally arise in location problems for the strategic placement
of facilities in a network.

The minimum weight f-tuple dominating set problem in G can be stated as

follows: Given a vector of node weights w ∈ R|V |
+ and f ∈ F̂G with F̂G = {f ∈

Z|V |
+ : 0 ≤ fv ≤ dv + 1,∀v ∈ V }, where dv stands for the degree of node v, find

a minimum weight f -tuple dominating set of G, i.e. find a node subset D ⊆ V
such that D is an f -tuple dominating set and the weight of D:

∑
v∈D wv, is

minimum. This problem may be formulated as the following integer program.

(IP )





min
∑

v∈V wvxv

s.t. ∑
u∈N [v] xu ≥ fv,∀v ∈ V,

x ∈ {0, 1}|V |,

where N [v] represents the closed neighborhood of node v. We investigate the
polyhedral structure of the convex hull of the feasible region of the formulation
(IP ) , i.e. the polytope that is defined as the convex hull of the incidence vectors
in R|V | of the f -tuple dominating sets in G.

Some specific families of facet-defining inequalities are presented. In partic-
ular, we provide a complete formulation for the case of trees. Two corollaries of
this result are a proof of a conjecture present in the literature on the formulation
of the 2-tuple dominating set polytope (i.e. the f -tuple dominating set polytope
for the case when fv = 2,∀v ∈ V ) of trees, and a new family of (generally ex-
ponentially many) inequalities which are valid for the f -tuple dominating set
polytope of any graph and that can be separated in linear time. We also prove
that, for the case of trees, the integrality gap of the linear relaxation of the for-
mulation (IP ) is upper bounded by 4

3 , and that this bound is asymptotically
tight.
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1 Problem Definition

We investigate the Module Map problem which has applications in computa-
tional biology [1, 3] and is defined on edge-colored graphs G = (V,Eb, Er) with
a set Eb of blue edges and a set Er of red edges. We say that G fulfills the cluster
property if the graph Gb := (V,Eb) is a cluster graph, that is, a disjoint union
of cliques called clusters. Further, G fulfills the link property if for distinct clus-
ters A and B of Gb, the graph Gr[A ∪B], with Gr := (V,Er), is either edgeless
or complete bipartite with partite sets A and B. In our computational problem,
we aim to establish both properties.

Definition 1. A graph G = (V,Eb, Er) is a module graph if G satisfies the
cluster property and the link property.

A module graph is shown in Fig. 1. Our aim is to find a module graph which can
be obtained from the input graph G by as few edge transformations as possible.
This leads to the following problem, here formulated in its decision version.

Module Map
Input: A graph G = (V,Eb, Er) and a non-negative integer k.
Question: Can we transform the graph G = (V,Eb, Er) into a module
graph by deleting or adding at most k red and blue edges?

In practice, it is useful to consider edge-weighted versions of the problem,
where the input includes a weight function g : V 2 → N+ on vertex pairs. The
higher the weight, the more confidence we have in the observed edge type. This
gives the following problem:

Weighted Module Map
Input: A graph G = (V,Eb, Er) with edge weights g : V 2 → N+ and a
non-negative integer k.
Question: Can we transform the graph G into a module graph by edge
transformations of cost at most k?
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Fig. 1: A module graph with the clusters {a, b, c}, {d}, and {e, f}.

Fig. 2: The forbidden induced subgraphs for module graphs. From left to right:
a blue P3, consisting of two (dark) blue edges, a two-colored K3, consisting of
two blue and one (light) red edge and a two-colored P3, consisting of one blue
and one red edge.

2 Our Results

We first provide a characterization of module graphs in terms of forbidden in-
duced subgraphs, see Fig. 2.

Theorem 1. A graph G is a module graph if and only if G has no blue P3, no
two-colored K3, and no two-colored P3 as induced subgraph.

Using this characterization, we obtain a simple linear-time algorithm for ev-
ery fixed value of k.

Proposition 1. Module Map can be solved in O(3k · (|V |+ |E|)) time.

To obtain a better running time dependency on k, we adapt a branching
algorithm for Cluster Editing [2] which is a special case of Module Map.

Theorem 2. Weighted Module Map can be solved in O(2k · |V |3) time.

Finally, we show that in polynomial time we can obtain an equivalent instance
whose number of vertices is bounded by a polynomial function in k.

Theorem 3. Weighted Module Map admits a problem kernel of O(k2) ver-
tices which can be found in O(|V |3 + k · |V |2) time.
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The minimum rooted-cycle cover problem
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Abstract

Given an undirected rooted graph, a cycle containing the root vertex is called a rooted
cycle. We study the combinatorial duality between vertex-covers of rooted-cycles, which
generalize classical vertex-covers, and packing of disjoint rooted cycles, where two rooted
cycles are vertex-disjoint if their only common vertex is the root node. We use Menger’s
theorem to provide a characterization of all rooted graphs such that the maximum number
of vertex-disjoint rooted cycles equals the minimum size of a subset of non-root vertices
intersecting all rooted cycles, for all subgraphs.

Keywords: Kőnig’s theorem, Menger’s theorem.

1 Introduction

Throughout G = (V, E) is a simple undirected graph. The minimum vertex-cover problem is to
find a vertex-cover (that is, a set T ⊆ V so that every edge of G has at least one vertex in T) min-
imizing |T|. This is a very well studied NP-hard problem, equivalent to finding a maximum
stable set (equivalently, the complement of a vertex-cover, or a clique in the complementary
graph) [6]. In this paper, we introduce the minimum rooted-cycle cover problem which contains
the vertex-cover problem, and which is, given a root vertex r of G, to remove a minimum
size subset of V \ {r} so that r is contained in no cycle anymore. The minimum vertex-cover
problem is the particular case where r is adjacent with all other vertices.

If we are given a set of terminal vertices of G, with at least two vertices, the minimum
multi-terminal vertex-cut problem is to remove a minimum number of vertices, so that no path
connects two terminal vertices anymore, see [1, 2]. The weighted version of the minimum
rooted-cycle cover problem contains the minimum multi-terminal vertex-cut problem which is
the particular case where the neighborhood N(r) of r is the set of terminal vertices with infinite
weight. In turn, if we replace r by |N(r)| terminal vertices t1, . . . , tk where N(r) = {v1, . . . , vk}
and link ti to vi, then we obtain an instance of the minimum multi-terminal vertex-cut problem
the solution of which is a solution for the original instance of the minimum rooted cycle cover
problem.

∗LAMSADE, University Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75016 Paris, France.
{denis.cornaz,youcef.magnouche}@dauphine.fr
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Our main motivation to introduce the minimum rooted cycle cover problem is that it al-
lows us to give short proofs of some min-max theorems, such results being fundamental in
combinatorial optimization and linear programming [5]. Jost and Naves gave such results for
the minimum multi-terminal vertex-cut problem in an unpublished manuscript [2] (actually
we found independently this result).

The paper is organized as follows. In Section 2, we recall two classical theorems and give
formal definitions. In Section 3, we give a characterization of all rooted graphs (G, r) so that
the minimum number of non-root vertices intersecting all rooted cycles equals the maximum
number of rooted cycles having only the root as common node, for all partial subgraphs. In
Section 4, we revisit a result by Jost and Naves [2] in terms of rooted cycles. This is a structural
characterization in terms of excluded minors of pseudo-bipartite rooted graphs, that is, rooted
graphs satisfying the min-max equality for all rooted minors.
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[3] D. Kőnig, Graphok és alkalmazásuk a determinánsok és a halmazok elméletére [Hungar-
ian], Mathematikai és Természettudományi Értesitő 34 (1916) 104–119.
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MIP Formulations for Just-in-Time Scheduling
with Common Due-Date
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We consider a set of tasks J that have to be processed non-preemptively on
a single machine around a common due-date d. The processing time of a task
j ∈ J is denoted by pj . A schedule will be given by the task completion times
(Cj)j∈J . A task j∈J is early (resp. tardy) if Cj≤d (resp. Cj>d). The earliness
(resp. tardiness) of any task j∈J is given by max(0, d−Cj) (resp. max(0, Cj−d)).
Given unitary earliness penalties (αj)j∈J (resp. tardiness penalties (βj)j∈J), the
problem aims at finding a schedule that minimizes the sum of earliness-tardiness
penalties.

This problem falls into common due-date just-in-time scheduling literature [1,
2]. To the best of our knowledge, no polyhedral approach has been considered
for this class of problems. In this work, we propose MIP formulations based on
some polyhedral properties.

When d≥∑ pj , the problem is said unrestrictive. In this case, using the so-
called V-shaped dominance property [1], we ensure that there exists an optimal
solution such that early tasks are scheduled by increasing αj/pj ratio while tardy
tasks are scheduled by decreasing βj/pj ratio. We can also restrict to schedules
without idle time and with a task ending exactly at d (called an on-time task).
This unrestrictive problem is NP-hard even if αj =βj for all j∈J [1].

In the general case, a small due-date can lead to the occurrence of a straddling
task in every optimal schedule. The problem is still NP-hard, even if αj =βj = 1
for all j∈J [2].

1 Polyhedral Approach for the Unrestrictive Case

Queyranne [3] consider the classical scheduling problem where the objective is to
minimize the weighted sum of completion times. His goal is to describe the convex
hull of vectors (Cj)j∈J encoding valid schedules using linear inequalities and
then, in the resulting polyhedron, all extreme points describe solutions. A natural
way to express the non-overlapping of tasks is to use the disjunctive constraint :
∀(i, j)∈J2, i 6= j, Cj ≥ Ci+pj or Ci ≥ Cj +pi. However Queyranne succeeds in
avoiding the introduction of binary variables and provides an exponential number
of inequalities that can be separated in polynomial time. Note that some points
within the interior of the polyhedron encode non-valid schedules.

In a similar way, our goal is to provide a polyhedron whose extreme points
encode dominant schedule for our just-in-time problem. However, due to the
earliness-tardiness partition of tasks, most of Queyranne’s arguments are no
longer valid.
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To encode the earliness-tardiness partition, we introduce binary variables
(δj)j∈J . They allow to replace Cj variables by (ej)j∈J and (tj)j∈J which re-
spectively represents earliness and tardiness of tasks, thus inducing a linear ob-
jective function. Thanks to some dominance properties, the solution space can
be restricted to non-idle time schedules with one on-time task. Adding some
linearization variables, we provide a familiy of linear inequalities, derived from
Queyranne’s ones, that express the non-overlapping of tasks before d and another
family for the tasks after d.

Here again, the resulting formulation is not a classical MIP formulation, since
some points within the interior of the polyhedron, even if they are integer, encode
non-valid schedules. The number of inequalities is exponential, but we reduce
the associate separation problem to the min-cut problem.

It is important to remark that, knowing the earliness-tardiness partition given
by (δj)j∈J , an optimal solution can be easily derived by sorting the tasks on
either side of d according to their ratios. Once an ordering has been set for
either side, we provide a linear function based on variables δj (without ej and
tj) corresponding to the cost of a non-idle and V-shaped schedule. This leads to
a compact formulation. Our first experimental results with Cplex show that this
second formulation outperforms the first one.

2 Polyhedral Approach for the General Case

To extend the previous formulation to the general case, we should be able to find
a dominant solution set for which (δj)j∈J is a sufficient encoding. Unfortunately
it can happen that straddling tasks occur in all optimal schedules. Hence, even if
we know which are the early tasks of an optimal schedule, we cannot say which
task is the first among the tardy ones.

Alternatively, we extend the first formulation. We add a continuous variable
a corresponding to the earliness of the last early task. We replace ej by e′j (resp.
tj by t′j) which express the earliness (resp. tardiness) of task j regarding d−a
(which becomes the reference point). In the same way as for the unrestrictive
case, we provide inequalities (similar to Queyranne’s ones) to express the non-
overlapping of tasks on each side of d−a.

We devise a Branch-and-Cut algorithm in which the non-overlapping inequal-
ities are separated and we compare our three formulations.
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This paper considers the Minimum Completion Time of 3-PSDDP (MCTP),
a non-standard scheduling optimization problem arising from the design of ef-
ficient embedded vision systems [3]. It can be also seen as a generalized Tool
Switching Problem (ToSP), which is a NP-hard combinatorial optimization
problem arising from computer and manufacturing systems [4].

We are given a set of output tiles Y = {1, . . . , Y } (also called tasks) to be
computed sequentially without preemption on one machine, and a set of input
tiles X = {1, . . . , X} (also called prerequisites). Each task y requires a subset
of prerequisites Ry, where Ry ⊆ X , to be loaded on a second machine with an
unlimited (infinite number) buffers capacity Z. Also, the duration of a prefetch
step α, and that of a computation step β, have to be given as inputs.

The MCTP consists of simultaneously determining the processing schedule
of tasks (a permutation of the tasks) and a corresponding schedule of prefetches
(a permutation of the prerequisites) in order to minimize the total completion
time Cmax.

Despite the existence of several trivial variants which can be solved in poly-
nomial time, we have proved that MCTP is NP-Hard, by giving a polynomial
reduction from the k-weak visit problem described in [1].

An example of an instance of the MCTP is shown in Fig. 1. Each column
in the incidence matrix refers to a particular task in the considered set Y =
{a, b, c, d, e} and each row refers to a particular prerequisite in the considered
set X = {1, 2, 3, 4}.




a b c d e

1 1 1 0 1 0
2 0 1 1 1 1
3 0 0 1 1 0
4 1 0 1 0 0




Fig. 1. Incidence matrix

a

d

b

2

3

1 4

e

c

Fig. 2. Hyper-graph diagram Fig. 3. An optimal solution

As shown in Fig. 2, it is then easy to see that this can be represented as a
hyper-graph, where the set of vertices V = X and the set of hyper-edges E = Y.

An optimal solution φ is given in Fig. 3, in which φ requires N = 4 prefetches
and Cmax = 6 units of time.
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We developed two approaches for solving the MCTP. The first one is a MILP
model, in which some variables are binary and the others are continuous. In this
model, the objective function minimizes the total completion time Cmax, while
respecting the following constraints.

∑

y∈Y
cyj = 1 ∀ j ∈ Y (1)

∑

j∈Y
cyj = 1 ∀ y ∈ Y (2)

∑

x∈X
dxi = 1 ∀ i ∈ X (3)

∑

i∈X
dxi = 1 ∀ x ∈ X (4)

uj − ti ≥ α− Λ ∗ (3− rxy − cyj − dxi) ∀ y, j ∈ Y, x, i ∈ X (5)

ti−1 + α ≤ ti ∀ i ∈ X\{1} (6)

uj−1 + β ≤ uj ∀ j ∈ Y\{1} (7)

Cmax ≥ max
j∈Y

uj + β (8)

cyj , dxi ∈ {0, 1} ∀ y, j ∈ Y, x, i ∈ X (9)

uj , ti ≥ 1 ∀ j ∈ Y, i ∈ X (10)

Computational experiments, using a data-sets possessing different charac-
teristics available at http://www.unet.edu.ve//~jedgar/ToSP/ToSP.htm, in-
dicate that instances involving up to 20 tasks and 20 prerequisites can be solved
optimally using the MILP approach (using Gurobi optimizer version 7.5.1).

For solving large-sized problems, we have develop a Simulated Annealing
(SA), a meta-heuristic that has been widely used in optimization and present in
most of the textbooks [2]. SA algorithms can be seen as iterated local searches,
where moves decreasing the solution quality are allowed with some probability.
This mechanism helps a escaping for local optima.

We compared the numerical results obtained by the SA, the MILP using
Local Solver 7.5 and the heuristics described by [3]. The results show that the
SA performance is promising.
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Abstract

Optimizing the schedule of the scientific program of a large conference such

as the International Symposium in Mathematical Programming (ISMP) is quite

challenging given the multitude of objectives, the lack of data, and the scale of the

instance : there are about 520 sessions (with 3 or 4 talks in each) to schedule over a

dozen time slots with 40 parallel tracks. Starting with sessions that have defined by

the scientific committee, our scheduler outputs time slot and room assignment for

each session. Its main goal is to spread the program evenly over the time horizon to

maximize the offer that our public can attend. In this aim, the first objective is to

minimize the number of parallel tracks in each thematic area. The second issue is to

avoid to schedule in parallel sessions that are destined to a same public. Although

the latter can not be measured precisely, we record referees’ and attendees’ inputs to

define both hard and soft conflict constraints between sessions. The third measure

of the quality of the program is the extend to which the scientific interest is evenly

spread so as to avoid having all the hight profile talks into some time slots and none

in other time slots. This goal is modeled as a min max of the interest measure for

each time slot. All these goals are driving the optimization in the same direction of

a well balance program. We develop a hierarchical optimization approach based on

solving a sequence of mixed integer programs, that do scale up to our typical input

size.

keywords: Planning, Coloring, Bin packing, Conflict Graph.
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Design of Multi-Echelon, Collaborative and Sustainable Supply Chain 

Networks 

 

Hanan Ouhader1 , Malika El kyal
1 

 

1 National School of Applied Sciences Ibn Zohr University, Agadir  

Morocco 
ouhader@gmail.com 

Abstract. In this paper, we study the impact of network structure in the economic and environmental benefits 

to assess the opportunities offered by the horizontal collaboration. We analyse three network configurations 

which differ in the location of satellites (intermediate depots) within the distribution area. The goal is to 

present to decision makers a preliminary mechanism to gain general insights into beneficial network structure 

for the coalition. we exploit a bi-objective mathematical model for a two echelon location routing problem 

(2E-LRP) to test if partners fit for the collaboration or not and if opportunity for each partner to make 

economic and environmental benefits exists. Extended known instances reflecting the real distribution in 

urban area are regenerated to evaluate several goods' delivery strategies. Shapley value method, belonging to 

the field of cooperative game theory, is used to allocate cost and CO2 emissions to partners of the coalition. 

This approach proposes a coalition formation mechanism allowing the decision makers to measure the 

sustainability performance of partners during the design phase of the network.. 

Keywords. Horizontal collaboration, network design, Sustainable urban road transport, Two-echelon 

Location Routing problem, Multi-objective optimization 

1   Introduction 

According to the Accenture and World Economic Forum Report 2016 , logistics and transportation activities 

contribute approximately to 13% of total greenhouse gas (GHG) emissions and 57% of the transport emissions 

came from road freight. Experts estimate that urban goods movements account for 20 % to 30% of total vehicle 

kilometers driven. Accordingly, the urban road transport sector can play a considerable role in reducing 

emissions. To ensure that environmental, social, and economic considerations are factored into decisions 

affecting urban transportation activity is the goal of sustainable urban transportation [1].  
 

Several strategies with the aim of improving efficiency and sustainability from urban road transport have been 
suggested both in practice and in the academic literature. Logistics collaboration is gaining traction as a one of the 
key policies to assure this mission.  

We talk about collaborative supply chain when two players (or more) of the "Supply Chain" seek to optimize 
together the logistics of the distribution circuit in which they are linked [2]. 

Logistics collaboration was studied in three main areas: Vertical, horizontal and lateral collaboration. The 
vertical  collaboration  occurs between  members  of  the  same  chain  value  (industrial  and distributor). 
Horizontal collaboration occurs  between  companies (may be competitors or not)  that can  provide  goods  or  
complementary  services [3]. Nevertheless, less attention has given to research on horizontal logistics 
collaboration ( [4], [5], [6] ,[7] ,[8]). 

 There are various areas of research and opportunities in the collaborative supply chain field. From the 
transportation  management’s point of view  , the most recent literature review articles on horizontal collaboration 
among supply chain partners ([9] ,[6],[10]) and  recent studies proposing quantitative models for establishing 
horizontal collaboration, reveal the majorities of papers on the subject are based on vehicle routing problem by 
proposing models only for the operational level of the supply chain and assuming that strategic facility location 
decisions have met in a prior step and cannot be modified. Also the optimization of horizontal collaborative 
supply chain was mainly based in single objective mathematical modeling approach dealing with economic 
concern and the integration of sustainability is accordingly in his infancy. 

To overcome this drawback, we quantified in our previous work [11]  the aggregated economic benefit of 

horizontal collaboration basing on a single-objective two echelons Location Routing problem (2E-LRP) model 

and we performed a posterior evaluation of the impact of collaboration in CO2 emissions based on travelled 
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The Proactive Countermeasure Selection Problem (PCSP) is defined as fol-
lows. Given 1) a directed graph G = (V,A) called the Risk Assessment Graph [2],
[1], where V = S∪T , S∩T = ∅, and with each arc (i, j) ∈ A is associated a weight
wij ∈ R+. 2) A set of available countermeasures K = {(t, k) : k ∈ Kt, t ∈ T} such
that Kt is the set of countermeasures associated with t. The placement of k on t
has a positive cost ckt ∈ R+, and yields an increase of the weight of the ongoing
arcs of t by a positive effect αk

t ∈ R∗+. 3) A positive vector D = (dts)s∈S,t∈TR+.
The PCSP consists in selecting a set of countermeasures, at minimal cost, such
that for each s ∈ S and t ∈ T the length of the s− t shortest path is at least dts.
A bilevel model was introduced in [3] to solve the PCSP. The goal of this paper
is to investigate the PCSP polytope in order to improve the algorithmic aspect.

ILP single-level reformulation and Associated Polytope A vector x in-
duced by a solution of the set of feasible solutions of the PCSP, denoted by
S(G,K,D), satisfies the following constraints:

∑

u∈P,u6=s

∑

k∈Ku

αk
ux

k
u ≥ dts −

∑

ij∈P
wij ∀s ∈ S, t ∈ T, P ∈ Ps,t,

0 ≤ xkt ∀(t, k) ∈ K,
xkt ≤ 1 ∀(t, k) ∈ K.

(1)

(2)

(3)

Inequalities (1) are called security inequalities. They ensure for each access
point s ∈ S for each asset-vulnerability node t ∈ T that the length of the s − t
shortest path is at least dts. Inequalities (2) and (3) are the trivial inequalities.
The PCSP problem is equivalent to the following integer program min{cTx|x ∈
{0, 1}|K| : x satisfies (1)−(3)}. We will denote by PCSP (G,K,D), the polytope
associated with the PCSP. A countermeasure (t, k) ∈ K is said to be essential for
PCSP (G,K,D) if and only if the set S(G,K\{(t, k)}, D) = ∅. We will denote
by K∗ the set of all essential countermeasures of PCSP (G,K,D). We have the
following result.

Theorem 1. dim(PCSP (G,K,D)) = |K|−|K∗|, and PCSP is full dimensional
if and only if K∗ = ∅.
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Facial Aspect and Valid Inequalities

Theorem 2. Let (t, k) ∈ K. 1) Inequality (2) defines a facet of PCSP (G,K,D)
if and only if (t, k) ∈ K\K∗ and (K\{(t, k)})∗ = ∅. 2) Inequality (3) defines a
facet of PCSP (G,K,D) if and only if (t, k) ∈ K\K∗.
Theorem 3. Let s ∈ S, t ∈ T and P ∈ Ps,t. Inequality (1) defines a facet of
PCSP (G,K,D) if

1) For all (u, l) ∈ K(P ) αl
u = α,

2) ∃ρ ∈ R+ such that 1 ≤ ρ ≤ |K(P )| and ρα = dts − V (P ),
3) For all (u, l) ∈ K\{K∗∪K(P )}, for all J ⊂ K(P ) such that |J | = |K(P )|−ρ

we have S(G,K\{J ∪ {(u, l)}}, D) 6= ∅.
Theorem 4. Let s ∈ S, t ∈ T and P ∈ Ps,t. Inequality (1) defines a facet of
PCSP (G,K,D) only if

1) ∃(u, l) ∈ K(P ) such that αl
u ≤ dts − V (P ),

2) ∃(u, l) ∈ K∗ ∩K(P ) such that αl
u 6= 1

|K(P )| (d
t
s − V (P )),

3) For all J ⊂ K∗ ∩K(P )
∑

(u,l)∈T
αl
u ≤ dts − V (P ).

Theorem 5. Let (ti, ki) ∈ K\K∗, i = 1, . . . , n, 1 ≤ n ≤ |K| − |K∗| such that
(ti+1, ki+1) ∈ (K\{(ti, ki)})∗ i = 1, . . . , n − 1. The following inequality is valid
for PCSP (G,K,D):
n∑

i=1

xki
ti ≥ dn−12 e.

Theorem 6. Let (ti, ki) ∈ K\K∗, i = 1, . . . , n, 1 ≤ n ≤ |K| − |K∗| such that

(ti+1, ki+1) ∈ (K\{(ti, ki)})∗ i = 1, . . . , n−1. Inequality
n∑

i=1

xki
ti ≥ dn−12 e is facet

defining if ∃J ⊂
n⋃

i=1

{(ti, ki)} such that |J | = n− dn−12 e and S(G,K\J,D) 6= ∅,
and for all J ⊂ K such that |J | ≥ n− dn−12 e we have S(G,K\J,D) 6= ∅.
Theorem 7. Let (ti, ki) ∈ K\K∗, i = 1, . . . , n, 1 ≤ n ≤ |K| − |K∗| such that

(ti+1, ki+1) ∈ (K\{(ti, ki)})∗ i = 1, . . . , n−1. Inequality
n∑

i=1

xki
ti ≥ dn−12 e is facet

defining only if n is even, and ∃J ⊂
n⋃

i=1

{(ti, ki)} such that |J | ≥ n− dn−12 e and

S(G,K\J,D) 6= ∅.
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Introduction
In future 5G networks, mobile User Equipment (UEs) will be able to host func-
tions that give them new abilities such as sharing connectivity, capacity, or CPU
resources with other UEs, regardless of the ongoing traditional communications.
In particular, the arrival of 5G wireless technology along with the evolution of
mobile users behavior and needs, make the current schema of communication
(UE to Base Station) no longer optimal in terms of radio resource utilization.
The Device-to-Device (D2D) communication mode is one of the new approaches
presented as a promising alternative to traditional communication in cellular
networks. A D2D communication is defined as a direct communication between
two mobile or fix user devices, without traversing the Base Station (BS) [1].
This technology allows to reuse radio resources and to decrease end-to-end la-
tency of local communications. Then, D2D would allow a set of UEs, interested
in a given service (like video streaming, gaming, etc.) and geographically close
to each other, to establish direct or multi-hop D2D communications, while en-
suring the quality required by the service. In this context, a D2D service domain
is defined as the set of UEs that are used to establish mobile communications
(D2D or traditional) related to this specific service. The communication is either
direct or spans multiple links (D2D or via the BS). In both cases, one or several
radio resources should be allocated to every active link and the SINR (Signal-
to-Interference-plus-Noise Ratio) level required by the service should be ensured.

Problem definition
We consider a set of devices in a cellular network and a traffic matrix containing
a volume of data for a specific service to be sent, possibly using D2D communi-
cations (e.g. exchange of content among a subset of devices). Each pair of devices
can be connected either by one or more D2D radio links (as many as the number
of available radio resources), or by conventional cellular communication, through
the BS. Each link is associated with a non-negative weight which is the SINR be-
tween both end devices. Each service requires a certain minimum level of quality
(in terms of technical capabilities of links and devices) for the communication.
The Domain Creation Problem (DCP) consists then in finding a partition of the
device pairs into k subsets, and the radio resource assignment to the D2D links
so that: (i) every pair (link, resource) is assigned to a unique domain (ii) the
SINR of each pair is above the quality threshold required by the domain (iii)
every demand is routed from its origin to its destination within a domain (iv)

  THA3 - Network Design 110



all the types of device capacities (CPU, RAM, battery) are respected and (v)
the total cost is minimum. This problem is a variant of the so-called Routing
and Wavelength Assignment (RWA) problem [2], [3] which arises in Optical Net-
works. The specificities of the (DCP) are that flows are unsplittable (each flow
has to be sent along a unique path using D2D or cellular links), several types
of capacities on the devices are considered, and a radio resource assigned to an
active link can be reallocated only to a distant link to avoid communication in-
terference.

Our contribution
In this work, we formally define the (DCP) and we propose two ILP formulations
to model it: an arc variable (compact) and a path variable (non-compact) for-
mulations. The linear relaxation of the non compact formulation is solved with a
column generation procedure. We further propose an efficient heuristic based on
a decomposition of the problem in two problems, namely routing problem and
resource allocation problem, that are solved successively. The routing problem
is solved with a column generation procedure while the allocation problem is
transformed into a vertex coloring problem that is solved heuristically by an
improved greedy algorithm, and computing a dual bound by solving exactly the
Max Clique Problem. Numerical experiments are made on instances generated
thanks to realistic parameters of Orange mobile networks. Cplex 12 is used to
solve the linear relaxations to optimality. Our experiments show that the heuris-
tic approach performs well, even on large instances with up to 2100 devices and
1500 service requests on a 6 cells network. Table 1 shows the empirical quality
and the efficiency of our heuristic compared to a branch-and-bound over the
compact formulation. For all instances tested, the heuristic gives the optimal
solution, in a very short time.

Instance heuristic exact formulation

#users # links # requests # active links # resources CPU (s) # active links # resources CPU (s)

140 L334 D35 83 70 0.19 83 70 7816.55
U140 L346 D35 85 68 0.18 85 68 7822.87
U210 L518 D52 125 100 0.46 125 100 38292.83
U210 L501 D52 135 100 0.43 135 100 37808.41

Table 1. Comparing heuristic and non-compact formulation

This algorithm offers to the network architects a way to evaluate the efficiency
of D2D technology compared to classical cellular communication, and allow to
simulate scenarios of new and flexible service deployment in future 5G networks.
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The distance between optimal IP solutions and
optimal solutions of MIP relaxations

Joseph Paat, Robert Weismantel, and Stefan Weltge

Institute for Operations Research, ETH Zürich

Let A ∈ Zm×n, b ∈ Zm, and c ∈ Rn. For ` ∈ {0, . . . , n}, we consider the
mixed-integer linear program with ` variables

max{cᵀx : Ax ≤ b, xi ∈ Z ∀i ∈ {1, . . . , `}}. (`-MIP)

Observe that (0-MIP) is a linear program, while (n-MIP) is an integer linear
program.

A common technique for solving (`-MIP) is to first solve a relaxed program
(k-MIP) with fewer integer variables, i.e. k < `, and then use a rounding scheme
to find a nearby optimal solution for (`-MIP). This leads to our main question.

Question 1. Let k, ` ∈ {0, . . . , n}. Does there exist a β ∈ R+ such that, given any
optimal solution w of (k-MIP), there exists some optimal solution z of (`-MIP)
with ‖k − `‖∞ ≤ β?

We assume that (`-MIP) has an optimal solution for every ` ∈ {0, . . . , n}.
Under this assumption, a proximity bound β answering Question 1 can quickly
be found using the values A, b,m, and n. In [1], Blair and Jeroslow proved that,
provided k = 0 or ` = 0, there exists a proximity bound β dependent on A,n,m
and the number of integer variables k and `. In [2], Cook et al. improve upon
this by providing an explicit bound that depends on only A and n. The result of
Cook et al., which is stated below, parametrizes the matrix A using the following
determinant-based value

∆ := max{|det(B)| : B is a square submatrix of A}.

Theorem 1 (Cook et al. [2]). Let k, ` ∈ {0, . . . , n} and assume that k = 0 or
` = 0. Let w be an optimal solution to (k-MIP). Then there exists an optimal
solution z to (`-MIP) such that ‖w − z‖∞ ≤ n∆.

In order to complement the upper bound provided in Theorem 1, we provide
the following example, which gives a lower bound on β in terms of ∆.

Example 1. Let δ ∈ Z+ and consider the (0-MIP)

max

{
−x2 :

[
−δ 0
δ −1

]
x ≤

[
−1

0

]}

with solution (1/δ, 1). The solution to (2-MIP) is (1, δ), and for this example,
∆ = δ. Thus, for k = 0 and ` = 2, the proximity bound is β = ∆− 1. ut
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Theorem 1 and Example 1 seem to indicate that the parameter ∆ may be
important in determining proximity bounds. With this in mind, our main result
strengthens Theorem 1 by providing a proximity bound in terms of A (through
∆) and the number of integer variables k and `.

Theorem 2. Let k, ` ∈ {0, . . . , n}. Let w be an optimal solution to (k-MIP).
Then there exists an optimal solution z to (`-MIP) such that ‖w − z‖∞ ≤
max{k, `}∆.

Theorem 2 strengthens Theorem 1 in two ways. First, Theorem 2 no longer
requires k = 0 or ` = 0. While Theorem 1 can be applied twice (in addition
with the triangle inequality) to derive proximity bounds when neither k nor
` is 0, Theorem 2 provides a tighter upper bound in this setting and a more
direct comparison between (k-MIP) and (`-MIP). Second, Theorem 2 shows that
proximity does not depend on the ambient dimension n, but rather the number
of integer variables k and `.

In the proof of Theorem 2, we address the question of integer feasibility in
zonotopes generated by (not necessarily integer) rational vectors. This result is
stated as follows.

Lemma 1. Let d ∈ Z+, α1, . . . , αt ∈ R+ and u1, . . . , ut ∈ Zd. If
∑t

i=1 αi > d,
then {

x ∈ Rd : x =

t∑

i=1

βiu
i, 0 ≤ β ≤ α, β 6= 0

}
∩ Zd 6= ∅.

The zonotope defined in Lemma 1 always contains 0, and thus, is always inte-
ger feasible. However, when 0 is a vertex of the zonotope, then Lemma 1 provides
a sufficient condition for the zonotope to contain a non-zero integer point. The
proof of Lemma 1 uses results from group theory and additive combinatorics, and
in particular, results on the Davenport Constant (see, for example, [3]). While
the main result presented here is Theorem 2 on proximity of MIP solutions, we
believe that this non-zero integer feasibility result along with the connection to
group theory may be of independent interest in future research.
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We consider an Integer Linear Program (ILP) of the form

min

{
c(x) | x ∈ X

}
, with X ⊆ P(m,n) and c : P(m,n)→ R (1)

where P(m,n) is the set of m× n binary matrices. A symmetry is defined as a
permutation π of the columns {1, ..., n} such that for any solution matrix x ∈ X ,
matrix π(x) is also solution and has same cost, i.e., π(x) ∈ X and c(x) = c(π(x)).
The symmetry group G of ILP (1) is the set of all such permutations. Symmetry
group G partitions the solution set X into orbits, i.e., two matrices are in the
same orbit if there exists a permutation in G sending one to the other.

Symmetries arising in ILP can impair the solution process, in particular when
symmetric solutions lead to an excessively large branch and bound (B&B) search
tree. Various techniques, so called symmetry-breaking techniques, are available
to handle symmetries in ILP of the form (1). The general idea is, in each orbit,
to pick one solution, defined as the representative, and then restrict the solution
set to the set of all representatives.

A technique is said to be full-symmetry-breaking (resp. partial-symmetry-
breaking) if the solution set is exactly (resp. partially) restricted to the repre-
sentative set. Moreover, such a technique may introduce some specific branch-
ing rules that interfere with the B&B search. This can forbid exploiting a
user-defined branching rule or, even, the default solver branching settings. A
symmetry-breaking technique is said to be flexible if at any node of the B&B
tree, the branching rule can be derived from any linear inequality on the vari-
ables.

We focus on a particular symmetry group, the symmetric group Sn, which is
the group of all column permutations. The most common choice of representative
is based on the lexicographical order. The convex hull of all m×n binary matrices
with lexicographically non-increasing columns is called a full orbitope [1] and is
denoted by P0(m,n). No linear description in natural variables is known for the
full orbitope.

Special cases of full orbitopes are packing and partitioning orbitopes, which
are restrictions to matrices with at most (resp. exactly) one 1-entry in each row.
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For a given face of the (m,n)-dimensional 0/1-cube, an algorithm is proposed
in [2] to determine all variables whose values are 0 (resp. 1) in each matrix con-
tained in the intersection of the hypercube face with the partitioning (or packing)
orbitope. A symmetry-breaking algorithm, called orbitopal fixing, is derived in
[2] in order to enumerate only the solutions included in the partitioning (resp.
packing) orbitope during the B&B search. The idea is to consider, at each node
a, the hypercube face defined by variables fixed to 0 and to 1 as a result of pre-
vious branching decisions, and then determine all variables which have constant
value 0 (resp. 1) in the intersection of this face with the partitioning (or packing)
orbitope. Orbitopal fixing is to fix these variables to 0 (resp. 1) at node a. It is
worth noting that orbitopal fixing is flexible, full-symmetry-breaking and does
not introduce any additional inequalities. These key features make orbitopal fix-
ing for packing and partitioning orbitopes particularly efficient.

There are many problems whose symmetry group is the symmetric group
acting on the columns, or on a subset of the columns, but whose solution space
cannot be restricted to a partitioning or a packing orbitope. Examples range from
line planning problems in public transports [3] to scheduling problems with a
discrete time horizon, like the Unit Commitment Problem (UCP) or its variant,
the Min-up/min-down UCP (MUCP) [4].

We propose an orbitopal fixing algorithm for the full orbitope, which handles
the symmetries related to the symmetric group arising in the aforementioned
problems. This algorithm, which is in linear time, finds all variables whose values
are 0 (resp. 1) in each matrix contained in the intersection of any hypercube
face with the full orbitope. This is a flexible full-symmetry-breaking method
which is computationally efficient. Note that it does not increase the size of the
LP solved at each node of the B&B tree. We present numerical experiments
on MUCP instances featuring production units with identical characteristics. A
comparison with state of the art symmetry-breaking techniques is presented in
order to show the effectiveness of our approach.
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In real life, MILP has countless applications in different fields like logistics, Finance and 

transportation... A very common solution technique is Branch-and-Bound. It continues 

to prove its relevance nowadays. 

 

Branch-and-Bound algorithm that is an iterative algorithm, and at each iteration, we 

eventually get a feasible or optimal solution of an initial problem. Concretely, the algo-

rithm constructs little by little a tree of nodes, where each node represents an modified 

version of the original problem. The construction of child nodes is conducted by a var-

iable branching strategy. Another fundamental element in Branch-and-Bound algo-

rithm is Node Selection Strategy that aims to choose among a nodes queue, the one that 

will speed up the search.  

 

Recently, some works has been trying to identify an analytic approach that decide 

about strategies described above, given a set of problem features. Authors use likely 

machine learning techniques. The main remark is that few authors who deal with node 

selection strategy, and if so, they did not use machine learning framework. 

Our contribution is oriented towards learning efficient branch-and-bound strategies. 

This is the result of a consistent methodology beginning with the collection of the data 

set, and ending with the test of the final hypothesis. More explicitly, we: 

 

 Define features. 

 Collect data set  

 Pick the optimal learning model 

 Learn the final hypothesis with the chosen model 

 Test the final hypothesis  

 

Our methodology allows firstly exploiting information from previous executions of 

Branch-and-Bound algorithm on other instances. Secondly, it created information chan-

nel between node selection strategy and variable branching strategy. And thirdly, it 

gave good results in term of solving time comparing to standard Branch-and-Bound 

algorithm. Moreover, it increases machine learning algorithm performance by using 

cross validation coupled with model selection. 
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Dual feasible functions (DFFs) have been used in several combinatorial min-
imization problems to generate lower bounds efficiently. DFFs are in the scope
of superadditive duality theory, and superadditive and nondecreasing DFFs
can provide valid inequalities for general integer linear programs. A function
φ : [0, 1] → [0, 1] is called a classical DFF, if for any finite list of real numbers
xi ∈ [0, 1], i ∈ I, it holds that,

∑
i∈I xi ≤ 1 ⇒ ∑

i∈I φ(xi) ≤ 1. A function
φ : R→ R is called a general DFF, if the same inequality holds for xi ∈ R.

1 Characterizations

A hierarchy on the set of DFFs can be defined to indicate the strength of the cor-
responding valid inequalities and lower bounds. The point-wise non-dominated
DFFs are called maximal, and a maximal DFF is said to be extreme if it can-
not be written as a convex combination of two distinct maximal DFFs. We give
a full characterization of maximal general DFFs in terms of the “generalized
symmetry condition”.

Theorem 1. A function φ : R→ R is a maximal general DFF if and only if the
following conditions hold: (i) φ(0) = 0. (ii) φ is superadditive. (iii) φ(x) ≥ 0 for
all x ∈ R+. (iv) φ satisfies the generalized symmetry condition φ(x) = infk{ 1k (1−
φ(1− kx)) : k ∈ Z++} for all x ∈ R.

Parallel to the restricted minimal and strongly minimal functions in the
Yıldız–Cornuéjols model [4], “restricted” and “strongly” maximal general DFFs
can be defined by strengthening the notion of maximality. We also give the char-
acterizations of restricted and strongly maximal general DFFs, which replace
the “generalized symmetry condition” by a simpler condition.

Definition 1. We say that a general DFF φ is implied via scaling by a general
DFF φ1, if βφ1 ≥ φ for some 0 ≤ β ≤ 1. We call a general DFF φ : R → R
restricted maximal if φ is not implied via scaling by a distinct general DFF
φ1. We say that a general DFF φ is implied by a general DFF φ1, if φ(x) ≤
βφ1(x) + αx for some 0 ≤ α, β ≤ 1 and α + β ≤ 1. We call a general DFF
φ : R→ R strongly maximal if φ is not implied by a distinct general DFF φ1.

Theorem 2. A function φ : R→ R is a restricted maximal general DFF if and
only if the following conditions hold: (i) φ(0) = 0. (ii) φ is superadditive. (iii)
φ(x) ≥ 0 for all x ∈ R+. (iv) φ(x) + φ(1− x) = 1 for all x ∈ R.

A function φ : R→ R is a strongly maximal general DFF if and only if φ is

a restricted maximal general DFF and limε→0+
φ(ε)
ε = 0.
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2 Relation to cut-generating functions

Cut-generating functions (CGFs) play an essential role in generating valid in-
equalities which cut off the fractional basic solution in a simplex-based cutting
plane procedure. We study the relation between general DFFs and certain CGFs.
Köppe–Wang [3] presented a conversion from minimal Gomory–Johnson CGFs
to maximal DFFs. In the single-row Gomory–Johnson model, the basic vari-
ables are in Z. Yıldız–Cornuéjols introduced a model generalizing the Gomory–
Johnson setting, and considered the basic variables to be in any set S ⊂ R.
General DFFs generate valid inequalities for the Yıldız–Cornuéjols model with
S = (−∞, 0]. Jeroslow [2] studied the valid inequalities for a classic model which
fits in the Yıldız–Cornuéjols setting where S = {0}. We introduce a conversion
between general DFFs and a family of CGFs which generate valid inequalities
for the model where S = {0}, which lifts valid inequalities generated by CGFs
for S = {0} to valid inequalities generated by general DFFs for the relaxation
S = (−∞, 0].

3 Two-slope theorem and approximation theorem

Inspired by the famous Gomory–Johnson’s 2-slope theorem, we prove a 2-slope
theorem for general DFFs. We show that continuous extreme (2-slope) general
DFFs are dense in the set of continuous restricted maximal general DFFs. The
proof follows a parallel construction by Basu et al. [1], but the details are more
complicated since general DFFs are not necessarily bounded and quasiperiodic.

Theorem 3 (Two-Slope Theorem). Let φ be a continuous piecewise linear
strongly maximal general DFF with only 2 slope values, then φ is extreme.

Theorem 4 (Approximation Theorem). Let φ be a continuous restricted
maximal general DFF, then for any ε > 0, there exists an extreme general DFF
φext such that ‖φ− φext‖∞ < ε.
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Maximum concurrent flow with incomplete data

Pierre-Olivier Bauguion1, Claudia D’Ambrosio2, and Leo Liberti2

1 IRT SystemX, 8 Avenue de la Vauve, 91120 Palaiseau, France
pierre-olivier.bauguion@irt-systemx.fr

2 CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France
{dambrosio,liberti}@lix.polytechnique.fr

Abstract. The Maximum Concurrent Flow Problem (MCFP) is often
used in the planning of transportation and communication networks. We
discuss here the MCFP with incomplete data. We call this new prob-
lem the Incomplete Maximum Concurrent Flow Problem (IMCFP). The
main objective of IMCFP is to complete the missing information assum-
ing the known and unknown data form a MCFP and one of its optimal
solutions. We propose a new solution technique to solve the IMCFP
which is based on a linear programming formulation involving both pri-
mal and dual variables, which optimally decides values for the missing
data so that they are compatible with a set of scenarios of different in-
complete data sets. We prove the correctness of our formulation and
benchmark it on many different instances.

Keywords: Maximum concurrent flow, multi-commodity flow problems,
incomplete data, unknown data, uncertainty, inverse optimization, trans-
portation systems.

1 Introduction

In real-world applications, the available data are often uncertain or incomplete,
and their actual values may only be revealed at a time when the overall decision
strategy has already been chosen. This is often the case in transportation sys-
tems where the parameters are time-dependent and event-sensitive. Statistical
inference and data mining represent convenient ways to deal with this uncer-
tainty. One of the best known inference models in transportation systems is the
Four Step Model [8], which is an algorithm that iterates over time according
to an equilibrium criterion. More recently, a lot of attention has been devoted
to machine learning approaches, which generally performs better on large scale
datasets. In this context, [10] proposes bayesian networks and [7] uses a deep
learning approach to forecast flow in transportation systems.

Optimization methods can also be used to optimally fit experimental mea-
surements. In [6], multi-commodity flow optimization is used to model a gas
transportation network while retrieving missing data. The problem discussed in
[6] consists in recomposing the flow on each arc, knowing only the global amount
of incoming and outgoing flows for each node. The problem of finding a minimal

  THB2 - Routing Problems 124



adjustment of the cost function to ensure the optimality of a given solution gen-
erated a particular interest with [4] under the label of inverse optimization. For
example [1, 11] apply this concept to multi-commodity flow problem (especially
min cost flow problem). The survey [5] on this subject includes situations where
the inverse problem seeks parameters other than objective function coefficients.

The Maximum Concurrent Flow Problem (MCFP) has been extensively stud-
ied over time [9, 3, 2], but in this paper we present a new approach for finding
optimal maximum concurrent flows using incomplete data. Our method seeks
optimal solutions and completes the partial input. This problem typically arises
when we have insights about the global behavior of a system while data are
partially unknown [6]. Symmetrically it can validate/invalidate a hypothetical
behavior by comparing it with the observed data. This is particularly relevant
in transportation when the routing strategy of passengers is known while data
are incomplete. We call this problem Incomplete Maximum Concurrent Flow
Problem (IMCFP).
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Abstract. A Content Distribution Network includes dedicated servers
creating an architecture that moves the content to servers that are closer
to the user, reducing delays and tra�c. In this structure several prob-
lems are studied, including the Problem of Allocation of Storage Capacity
(SCAP) and the Replica Placement and Request Distribution Problem
(RPRDP). This work analyzes these problems in an integrated way and
proposes the creation of a new problem named Capacities, Replicas and
Requests Distribution Problem (CRRDP), which enables the dynamic
allocation of disk space on the servers and distribution of replicas and
requests. As main contributions of this work are the creation of a new
problem and a new formulation which associates variables and restric-
tions presents in mathematical formulations for this problems. The Math-
ematical formulation was analyzed and computational results shows that
operational costs can be reduced and that it is possible to disable unused
servers over the network.

1 Introduction

In the CDNs context, there are several optimization problems that have already
been addressed in multiple ways [2], [1], [3], [4], [5]. This work proposes a new
optimization problem, called the Capacities, Replicas and Requests Distribution
Problem (CRRDP). This new problem involves the simultaneous optimization
of servers disk capacities, replica positioning and the distribution of requests
through CDN servers, solving two related optimization problems in a jointly way,
the Storage Capacity Allocation Problem (SCAP) and the Replication Replica
Placement and Request Distribution Problem (RPRDP). With data volume in-
creasing and content popularity, CloudCDN [6] structures bring new insights
that utilize network virtualization to facilitate its operations. Such insights are
also used in the this paper and will be better explored latter.

2 Problem de�nition

The main haracteristics of the CRRDP are: 1) Requests are treated individually
and can be handled by multiple servers simultaneously; 2) Storage capacity of
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servers can be changed according to demand �uctuation; 3) New requests and
contents may come up and contents can be removed; 4) Network delays can
change over the time horizon; 5) Bandwidth constraints are considered for clients
and servers; 6) Clients' QoS requirements are ful�lled whenever possible; 7) The
problem is O�ine, meaning that all changes are known in advance.

3 Formulation Analysis Troughout Computational Tests

� CRRDP Dynamic
� Instances that do not Consider all the Servers as source
� CRRDP with Allocation Cost

4 Conclusions and Future Work

The model used was able to solve two optimization problems jointly (SCAP and
RPRDP), obtaining success for most of the instances used. The model was able
to prove that the dynamic allocation of servers' disk space was able to indeed
reduce the operational cost of a CDN without violating the required quality
standards.
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The TSP is one of the most complex combinatorial optimization problems
[1–3]. Many heuristics and meta-heuristics have been proposed to find near op-
timal solution to it. The Ant Colony System (ACS) is one of the most inter-
esting variants of Ant Colony Optimization (ACO) meta-heuristic for solving
the TSP [4]. However, The performance of ACO algorithms depends strongly
on the given values to parameters. Several strategies have been proposed in the
literature for adapting parameters while solving a problem. For example, in [5–9]
authors have chosen machine learning algorithms to adapt parameters of meta-
heuristics at runtime.
In this paper, we propose a learning approach to control the convergence of ants
through the dynamic adaptation of the exponent of pheromone level α param-
eter to two performance measures: Variance and Error while solving some TSP
problems. The Ant Colony System (ACS) algorithm was chosen to be the basis
of the proposed approach. A Hidden Markov Model (HMM) was built as a clas-
sifier method to avoid premature convergence. The implementation was tested
on several Travelling Salesman Problem (TSP) instances with different number
of cities. The proposed method was compared with the classical ACS and fuzzy
logic and has shown encouraging results.
In the proposed method, the hidden states correspond to the state of parameter
α, and the observation symbols are the concatenation between the performance
measures, such as each measure represented by three symbols L, M, H. In fact,
after building a complete solution by ants, the variance and the error calculated
and converted into symbols according to some determined intervals. The symbols
then combined to build an observation, then the observation sent to the Viterbi
algorithm to determine which state is the most likely responsible for producing
this observation. The sequence of observation is incremented after each iteration,
so the number of elements of a sequence equal to the number of iterations, and
the adaptation of the parameter α is done according to the last state in the found
sequence. In addition to the Viterbi, we have used the well known Baum-Welch
training method to adjust the HMM parameters λ = (A,B, π) during the run
time.
To test the efficiency of the proposed algorithm, we compared it with the stan-
dard ACS algorithm and Fuzzy Logic results from [10]. Also, the CPUtime was
calculated to determine the convergence speed, and the Wilcoxon statistical test
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was used to compare between the algorithms.
We can conclude that the proposed algorithm ACSHMM gives better results in
the convergence speed and the solution accuracy compared with both the stan-
dard ACS and the proposed one in the literature by fuzzy logic when applied to
some TSP instances.

Keywords: exploration and exploitation, parameter adapting, Hidden Markov
Model, Travelling Salesman Problems

References
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We call a perfect matching in a bipartite graph k-robust, if the graph admits
a perfect matching after removing at most k of the matching edges. We consider
two optimization problems related to k-robust matchings. The first one asks for
the maximal number k, such that a given matching in a bipartite graph is k-
robust. We show that this problem is W[1]-hard when parameterized by k. The
above notion of k-robustness corresponds to weakly k-robust ∞-recoverable as
studied by Dourado et al. in [1], however, no complexity results for k-robustness
were known. The second problem asks for the minimal number ` of edges we
have to add to the graph, in order to make a given matching k-robust. Clearly,
this problem is also hard. It turns out however, that even the problem 1-Robust
Matching Augmentation, i.e., the task of making a matching 1-robust with
the minimal number of additional edges, is in general as hard as Set Cover.
To the best of our knowledge, augmentation of robustness has not been con-
sidered explicitly before, although it can be interpreted as a special case of
bulk-robustness [2, 3].

The task of augmenting a minimal number of edges such that a graph has
a certain property has been widely studied, in particular in the context of con-
nectivity augmentation [4]. Given a digraph D = (V,A), the problem Strong
Connectivity Augmentation asks for a minimum-cardinality arc-set A′ such
that the digraph (V,A ∪ A′) has precisely one strong component. Interestingly,
1-robustness is a generalization of strong connectivity in the following sense.
Given a simple bipartite graph G = (V,E) and a perfect matching M , we may
construct a digraph D by adding an arc uw whenever there is an edge uv ∈ M
and an edge vw ∈ E \M . Now, a matching is 1-robust, if and only if each strong
component of D contains at least two vertices. So we have that if D has at least
two vertices, then strong connectivity of D implies 1-robustness of M . Note also,
that from any digraph D we may construct a corresponding undirected graph G
and a perfect matching M of G.

Using the insights described above, we show that the Eswaran-Tarjan al-
gorithm, a polynomial-time algorithm for Strong Connectivity Augmen-
tation from [4], is also useful for 1-robustness augmentation. For instance, it
directly leads to a polynomial-time algorithm for 1-Robust Matching Aug-
mentation on trees. With some more work we obtain polynomial-time algo-
rithms for the same problem on graphs with bounded treewidth and convex
graphs that again rely on the Eswaran-Tarjan algorithm. On the negative side,
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we show that the weighted version of 1-Robust Matching Augmentation is
NP-hard on trees, even if the weight of each edge is either one or two.
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Matemática. La Plata, Argentina. / CONICET, pia@mate.unlp.edu.ar
3 University of Fribourg, Fribourg, Switzerland, bernard.ries@unifr.ch

Golumbic et al. introduced in [2] the concept of vertex intersection graphs of
paths on a grid (referred to as VPG graphs). An undirected graph G = (V,E) is
called a VPG graph if one can associate a path in a rectangular grid with each
vertex such that two vertices are adjacent if and only if the corresponding paths
intersect on at least one grid-point. It is not difficult to see that VPG graphs
are equivalent to the well known class of string graphs, i.e. intersection graphs
of curves in the plane (see [2]).
A particular attention was paid to the case where the paths have a limited
number of bends (a bend is a 90 degrees turn of a path at a grid-point). An
undirected graph G is then called a Bk-VPG graph, for some integer k ≥ 0, if
one can associate a path with at most k bends on a rectangular grid with each
vertex such that two vertices are adjacent if and only if the corresponding paths
intersect on at least one grid-point. Since their introduction in 2012, Bk-VPG
graphs, k ≥ 0, have been studied by many researchers and the community of
people working on these graph classes is still growing (see [1–6, 8, 9]).
These classes are shown to have many connections to other, more traditional,
graphs classes such as interval graphs (which are clearly B0-VPG graphs), planar
graphs (recently shown to be B1-VPG graphs (see [9])), string graphs (as men-
tioned above equivalent to VPG graphs), circle graphs (shown to be B1-VPG
graphs (see [2])) and grid intersection graphs (GIG) (equivalent to bipartite
B0-VPG graphs (see [2])). Unfortunately, due to these connections, many nat-
ural problems are hard for Bk-VPG graphs. For instance, colouring is NP-hard
even for B0-VPG graphs and recognition is NP-hard for both VPG and B0-
VPG graphs [2]. However, there exists a polynomial-time algorithm for deciding
whether a given chordal graph is B0-VPG (see [3]).
A related notion to intersection graphs are contact graphs. Such graphs can be
seen as a special type of intersection graphs of geometrical objects in which
objects are not allowed to cross but only to touch each other. In the context of
VPG graphs, we obtain the following definition. A graph G is called a contact
VPG graph if the vertices can be represented by interiorly disjoint paths on a
grid and two vertices are adjacent if and only if the corresponding paths touch.
If we limit again the number of bends per path, we obtain contact Bk-VPG
graphs. These graphs have also been considered in the literature (see [4, 7, 10]).
It is known that every planar bipartite graph is a contact B0-VPG graph [7], and
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that every K3-free planar graph is a contact B1-VPG graph [4]. The authors in
[10] consider the case in which whenever two paths touch on a grid point, this
grid point has to be the endpoint of one of the paths and belong to the interior
of the other path. In this case, the considered graphs must all be planar.
In this paper, we consider contact B0-VPG graphs, ie. intersection graphs in
which each vertex is corresponding to a horizontal or vertical path on a grid
and the corresponding paths do not cross each other and do not share an edge
of the grid. We present a minimal forbidden induced subgraph characterisation
of contact B0-VPG graphs restricted to chordal graphs. This characterisation
allows us to derive a polynomial time recognition algorithm for the class of
chordal contact B0-VPG graphs. The algorithm takes a chordal graph as input
and returns YES if the graph is contact B0-VPG and, if not, it returns NO
as well as a forbidden induced subgraph. Recall that chordal B0-VPG graphs
can also be recognised in polynomial time (see [3]), even though no structural
characterisation of them is known so far.
Our results can be considered as a first step to better understand contact B0-
VPG graphs and their structure. In order to know more about how contact
B0-VPG graphs look like, the study of contact B0-VPG graphs within other
graph classes is needed. It would be interesting to investigate contact B0-VPG
graph from an algorithmic point of view and analyse for instance the complexity
of the colouring problem or the stable set problem in that graph class.
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9. Gonçalves, D., L. Insenmann, and C. Pennarum, Planar Graphs as L-intersection
or L-contact graphs, arXiv:1707.08833v2 (2017).

10. Nieke, A., and S. Felsner, Vertex Contact Representations of Paths on a Grid,
Journal of Graph Algorithms and Applications 19(3) (2015), 817–849.

  THB3 - Graph Structures 135



Cluster Editing with Vertex Splitting
(Short Paper)

Faisal N. Abu-Khzam1,2, Judith Egan1, Serge Gaspers3,4, Alexis Shaw5, and
Peter Shaw6

1 Charles Darwin University, Darwin, Australia
2 Lebanese American University, Beirut, Lebanon

3 The University of New South Wales, Sydney, Australia
4 Data61, CSIRO, Sydney, Australia

5 The University of Technology Sydney, Sydney, Australia
6 Massey University, Manawatu, New Zealand

Abstract. We introduce a new variant of the Cluster Editing problem
whereby a vertex can be divided into two or more vertices to allow a
single vertex to belong to multiple cliques or clusters. This problem has
applications in finding correlation clusters in discrete data, including
graphs obtained from clinical data. We initiate the study of this new
problem and show that it has a quadratic-order kernel.

1 Introduction

Given a graph G and a non-negative integer k, the Cluster Editing problem
asks whether G can be turned into a disjoint union of cliques by a sequence of at
most k edge-editing operations. The problem is known to be NP-Complete [4],
but it becomes fixed-parameter tractable when parameterized by the number of
edge edit operations [1, 2].

In general, clustering results in a partition of the input graph, thus forcing
each data element to be in exactly one cluster. This can be a limitation when
a data element plays a role in multiple clusters. In fact, the existence of hubs
can effectively hide clique-like structures and greatly increase the computational
time required to obtain optimum correlation clustering solutions [6, 7].

2 Cluster editing with vertex splitting

We define that an inclusive vertex split of a vertex v replaces v with vertices v1

and v2 with edges such that N(v1) ∪ N(v2) = N(v).
The Cluster Editing with Vertex Splitting problem allows an edit

operation to be an inclusive vertex split. Formally, given a graph G = (V, E) and
an integer k, can a cluster graph G′ be obtained from G by a k-edit-sequence,
S = e1 . . . ek, where each ei, i ∈ {1, . . . k}, either (i) adds an edge to E; (ii) deletes
an edge from E; or (iii) is an inclusive vertex split of some v ∈ V ?
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We define the splitting-tree for vertex v, denoted T (v), as follows: (i) v is the
root of T (v); (ii) if an operation ei for some i ∈ {1, . . . k} inclusively splits a
vertex u in T (v), then the two vertices resulting from ei become children of u.

Our analysis of edit-sequences proves the following:

Theorem 1. There is an O((|V ′| − |V |)∆(G) + |V | + |E| + |V ′| + |E′|) time
procedure to determine an optimal edit-sequence S which transforms a graph
G = (V, E) to a given cluster graph G′ = (V ′, E′) and a vertex relation f : V →
2V ′

giving the leaves of the splitting-tree T (v) for each vertex v ∈ V .

3 A 4k(k + 1) vertex kernel

A critical clique of a graph G = (V, E) is a maximal induced subgraph C of G
such that (i) C is a complete graph, and (ii) there is some subset U ⊆ V such
that for every v ∈ V (C), N [v] = U . We prove an analog of the Critical Clique
Theorem given by Lin et al. [5]. Using an approach similar to that given in [3]
we prove the following.

Theorem 2. There exists a polynomial-time reduction procedure that takes an
arbitrary instance of the Cluster Editing with Vertex Splitting problem
and produces an equivalent instance whose order is bounded above by 4k(k + 1).
In other words, the problem admits a quadratic-order kernel.
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clustering high-dimensional data. In: Pacific-Asia Conference on Knowledge Discov-
ery and Data Mining. pp. 183–195. Springer (2011)

  THB3 - Graph Structures 137



A PPA Episode of Exchange Graphs

Kathie Cameron1 and Jack Edmonds2

1 Department of Mathematics, Wilfrid Laurier University, Waterloo, Canada
kcameron@wlu.ca ⋆

2 jack.n2m2m6@gmail.com

A good parity theorem asserts that, for any instance of the theorem, there
exists an even number of easily recognizable (i.e., NP) desired structures. Of
great computational-complexity interest is the like-item search problem: given
any instance of a good parity theorem and a desired structure P , find a desired
structure different from P .

A good parity theorem is called a PPA parity theorem if it can be proved by
showing that the desired structures are the odd-degree vertices in some large ex-
change graph, X. Exchange graph proofs are important because Papadimitriou
introduced the question of determining the complexity of a like-item search prob-
lem which has a polynomial-time algorithm for determining the neighbors of any
vertex of X. A natural algorithm for like-item search is to walk in X from an
odd-degree vertex to another odd-degree vertex.

We present here a new PPA parity theorem which generalizes attractive
known PPA parity theorems. Because the theorem is about the vertices and edges
of a given bipartite graph G, we try to avoid some of the inevitable confusion
by speaking of vertices and edges of X and nodes and lines of G.

The main interest of our presentation is probably not so much the parity
result itself but rather its more intricate than usual exchange-graph technique.
Hopefully there are many more PPA parity theorems to be discovered with even
more intricate exchange graphs.

Let G be a finite bipartite graph with boy nodes and girl nodes such that
each line (edge) of G joins a boy to a girl, and each boy is of even degree in G.
Let T ∗ be a given tree in G which contains all the girls, each girl is met by an
odd number of lines of G not in T ∗, and each boy of T ∗ is met by exactly two
lines of T ∗. A tree T in G is said to be girlish (or, more precisely, T ∗-girlish)
when each girl has the same degree in T as in T ∗ and each boy of T has degree
2 in T . (Note that T and T ∗ are not necessarily spanning trees of G. There may
be different boy nodes in T and T ∗.)

Theorem 1. G has an even number of girlish trees.

We enable a proof of this theorem by describing an exchange graph X where
the odd-degree vertices of X can be shown to be precisely the girlish trees. Hence
this good parity theorem is a PPA parity theorem.

It is natural to think of X in terms of an algorithm which enters an edge
from one of its vertices and then leaves the edge at its other vertex. Entering

⋆ Research supported by the Natural Sciences and Engineering Research Council of
Canada (grant RGPIN-2016-06517).
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the edge from the vertex is simply the reverse of leaving the edge at that vertex,
and we describe the latter. We do the reverse to prove the parity of the degrees
of the vertices of X.

Specify any girl node w of G. The exchange graph X depends on the choice
of w. A skew tree T differs from a girlish tree only in that node w has degree one
higher than its degree in T ∗ and some other girl node has degree one lower than
its degree in T ∗. The vertices of the exchange graph X are the girlish trees and
the skew trees. The edges of X are of two types: pink and blue. Each edge e of
X is a connected subgraph of G with exactly one cycle, say C. Subgraph e has
degrees the same as T ∗ except at two nodes, w and some other node u, which
have degree one higher in e than in T ∗. The difference between a pink and blue
edge of X is that in a pink edge e the node u is a girl and in the blue edge e the
node u is a boy (in fact a boy of degree 3 in e). A blue e meets the two vertices
of X which are obtained from e by deleting one or the other of the two edges of
C which meet boy node u. A pink e (where u is a girl) meets the two vertices of
X which are obtained from e by deleting one or the other of the two boy nodes
which are adjacent to u in C (deleting a boy node b of C of course means also
deleting from e the two edges of C which meet b).

It is a matter of careful book-keeping of all the edges which can be entered
from a vertex of X to confirm the Exchange Graph Lemma: The vertices of
X corresponding to girlish trees are its odd-degree vertices and the vertices of
X corresponding to skew trees are its even-degree vertices. Hence the parity
theorem.
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1 Introduction

Introduced by B. Hartnell in 1995 [1], the firefighting problem started as a very
simple model for fire spread and containment problems for wildfires. It can also
represent any kind of threat able to spread sequentially in a network (diseases,
viruses, rumours, flood . . . ).

The Firefighter problem is a deterministic discrete-time one-player game
defined on a graph. In the beginning, a fire breaks out on a vertex and at each
step, if not blocked, the fire spreads to all adjacent vertices. In order to contain
the fire, the player is given a number fi of firefighters at each turn i and can use
them to protect vertices which are neither burning nor already protected. The
game terminates when the fire cannot spread any further. In the case of finite
graphs the aim is to save as many vertices as possible, while in the infinite case,
the player wins if the game finishes, which means that the fire is contained.

In a natural variant of the problem, the amount of firefighters available at
each turn is any non-negative number and the amount allocated to vertices lies
between 0 and 1. A vertex with a protection less than 1 is partially protected and
its unprotected part can burn partially and transmit only its fraction of fire to
the adjacent vertices. Thus, the fi may take any non-negative value. This defines
a variant game called Fractional Firefighter which was introduced in [2].

In this paper, we introduce an online version of both firefighter problems
and consider first results on trees. In our model, the graph is known and the
sequence of available firefighters is revealed online. We then refer to the usual
case where (fi)i≥1 is known in advance as offline. To our knowledge, this is the
first attempt at analysing online firefighter problems. Even though our motiva-
tion is mainly theoretical, this paradigm is particularly natural in emergency
management where one has to make quick decisions despite lack of information.

An instance of the Fractional Firefighter on trees is defined by a triple
(T, r, (fi)), where T = (V (T ), E(T )) is a tree, r ∈ V (T ) is the root where the
fire breaks out and (fi)i≥1 is the non-negative firefighter sequence. Turn i = 0 is
the initial state where r is burning and all other vertices are unprotected, and
i ≥ 1 corresponds to the different rounds of the game. At each turn i ≥ 1 and

? corresponding author.
?? We acknowledge the support of GEO-SAFE, H2020-MSCA-RISE-2015 project #

691161.
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for every vertex v, the player decides which amount p(v) of protection to add
to v. Throughout the game, for every vertex v, the part of v which is burning
is denoted by b(v). Let us note that if T is finite, the game will end in at most
h(T ) turns .

2 Competitive analysis of a Greedy algorithm

On a tree, we define the weight of a vertex as the number of its descendants. A
greedy algorithm, defined on trees for both firefighter problems and denoted by
Gr, maximises at each turn the weight of the vertices protected.

It was shown by Hartnell and Li that the greedy algorithm on trees gives a
1
2 -approximation of the restriction of Firefighter when a single firefighter is
available at each turn. They claim that this approximation ratio remains valid
for a fixed number D ∈ N of firefighters at each turn. We extend this result to
any firefighter sequence (fi)i≥1, integral or not. Since Gr is an online algorithm,
the performance can also be seen as a competitive ratio for the online version.

Theorem 1. The greedy algorithm Gr is 1
2 -competitive for both online Fire-

fighter and Fractional Firefighter on finite trees.

Corollary 1. In Fractional Firefighter, the amount of vertices saved is
at most twice the maximum number of vertices saved in Firefighter.

3 Firefighting on Trees with Linear Growth

In this section, we consider an infinite tree T . The i-th level of T , denoted by
Ti, is the set of vertices at distance i from the root. a We say that a rooted tree
(T, r) has linear growth if the number of vertices per level increases linearly, i.e.
|Ti| = O(i). Note that the linear growth property of T remains if we choose a
different root r′. Indeed, if d is the distance between r and r′, the set of vertices
at distance i from r′ is included in

⋃i+d
j=i−d Tj , the cardinality of which is a O(i).

Given two firefighter sequences (fi) and (f
′
i ), we say that (fi) is stronger

than (f
′
i ) if for all k,

∑k
i=1 fi ≥

∑k
i=1 f

′
i .

Lemma 1. If the fire can be contained in an instance (G, r, (f
′
i )) and if (fi) is

stronger than (f
′
i ), then the fire can also be contained in (G, r, (fi)) by an online

algorithm that knows (f ′i) in advance.

Theorem 2. There is an online algorithm for instances (T, r, (fi)) of Frac-
tional Firefighter where T has linear growth, such that if (fi) is stronger
than some non-zero periodic sequence, the fire will be contained.
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1 Introduction

This work describes a problem with origins in sea exploration, though similar
problems arise in other contexts. The identification of the contents of the seafloor
is important in view of a possible exploitation of some of these resources. The
aim of this problem is to schedule the journey of a ship for collecting information
about the composition of the seafloor. We consider a bounded surface S ⊂ R2,
and, for the sake of simplicity, we consider that the actual resource level at any
point (x, y) ∈ S can be conveyed by a real number v(x, y). This true value is
initially unknown, except for a limited number N of points in (x̄i, ȳi) ∈ S for
which there is previous empirical information D = {(z̄i, x̄i, ȳi)}Ni=1.

Optimal expedition planning involves three subproblems, each corresponding
to a different phase in the process: assessment, planning and estimation [1].

Assessment consists of estimating the amount of information that would be
conveyed by probing the surface at each point (x, y) ∈ S. This is done by means
of an indicator function h : S → R, given a set of N points for which the true
contents v(x, y) were known. Previous work assumed that actual information
obtained by probing is not usable at the time of planning; here, we assume that
after committing to probing at a certain place, the information obtained can
immediately be used to change the course of the following decisions (in particular,
set D used for building the indicator function is dynamically expanded).

Planning, the next phase in the solution process, consists of deciding on the
position of points to probe until the end of the expedition; the point to probe
next is the only one to which we commit. The objective is to maximize the overall
informational reward obtained, taking into account that the total duration of the
trip is limited to a known bound. Hence, online planning involves using the N
previously available points together with the points newly probed in this trip, in
order to decide the location of the next point to probe — though an estimation
of the whole remaining trip is necessary for correctly taking this decision.

The third subproblem is estimation, which is related to the final aim of the
problem: an estimation w(x, y) of the resource level available at any point on
the surface S, based on all the information available at the end of the trip.

Acknowledgments. This work was partially supported by project "Coral - Sustainable Ocean
Exploitation: Tools and Sensors/NORTE-01- 0145-FEDER-000036", financed by the North
Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Part-
nership Agreement, and through the European Regional Development Fund (ERDF).
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2 Tackling the problem

Assessment and estimation. Assessment evaluates how much some arbitrary
point, if probed, is expected to improve the quality of solution obtained at the
final estimation phase. The final estimation is a regression problem, assigning a
real value to any point in S based on the discrete set of points for which such
values are known. We propose to use Gaussian processes [2] for assessment and
estimation. The measure of the “atractiveness” for probing at a given point is
assumed to be given by the standard deviation of a Gaussian process set up with
the D available data points. In other words, the assessment model attempts to
describe the variance of the conditional distribution p(z|(x, y)) based on a set
of empirical observations of z on input (x, y), conveyed by the set of triplets
D = {(z̄i, x̄i, ȳi)}mi=1 observed so far, where m is the current number of samples
(including N previous). Similarly, we use the posteriors inferred thought the
Gaussian process model with the enlarged data set available at the end of the
expedition as a regression for the resource level at any point in S.

Planning. Planning concerns the selection of the next point in S for probing, in a
trip whose maximum duration is known beforehand, so as to allow a subsequent
estimation as accurate as possible. We are thus in the presence of an orienteering
problem [3]. A standard orienteering problem consists of the following: given
a graph with edge lengths and a prize that may be collected at each vertex,
determine a path of length at most T , starting and ending at given vertices,
that maximizes the total prize value for the vertices visited. The problem here
is slightly different. Firstly, at any moment we are only committed to the next
point to be visited; the following points are planned, but may be changed after
the next probing, if it reveals unexpected information, changing the shape of
the Gaussian process’s regression. Secondly, the graph in our case may consist
of any discrete subset of points V ⊂ S, as long as the duration of the expedition
does not exceed T . We must take into account the time spend in probing at each
vertex for determining a trip’s duration. Finally, the correlation between the
“prizes” obtained in visited vertices must be taken into account: after probing
at a given location, probing other locations in this neighborhood is expected
to provide less information than probing at distant points, other factors being
equal.
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1 Introduction

Online algorithms process their inputs item by item in a linear fashion. They
are characterized by the fact that the algorithm’s decision as to how to process
the current input item is irrevocable. A key difficulty in the design of online
algorithms is that they are typically unaware of the length of the input request
sequence. Indeed, for many online problems (e.g. problems with a rent or buy
flavor such as the ski rental problem), knowing the input length would allow the
algorithm to solve the problem optimally. Without knowing the input length,
online algorithms are unable to determine the relative position of the current
element within the request sequence.

Guessing the Center. In this paper, we ask whether we can nevertheless obtain
some sort of orientation within the request sequence. We study the natural task
of guessing the central position n/2 within a request sequence of unknown length
n in an online fashion. In this problem, the online algorithm maintains a guess of
the central position while processing the input request sequence. The algorithm
is only allowed to update its guess to the position of the current element under
investigation. It may thus potentially update the guess many times, however,
each update bears the risk that the input sequence may end very soon and the
guess is thus far from the center. Such an algorithm follows the following scheme:

Algorithm 1 Scheme for Preemptively Guessing the Center

p← 0 {initialization of our guess}
for each request j = 1, 2, . . . , n do {n is unknown}

if TODO: add condition here then {update guess}
p← j

return p

We also study a generalization of this problem to weighted requests. This
is best modeled as follows. The online algorithm processes a sequence X =
w1, w2, . . . , wn of positive integers. Let W =

∑n
i=1 wi be the total weight of

? C. Konrad is supported by the Centre for Discrete Mathematics and its Applications
(DIMAP) at Warwick University and by EPSRC award EP/N011163/1.
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the sequence. We assume that there exists an index m such that
∑m
i=1 wi =∑n

i=m+1 wi, i.e., the sequence can be split into two parts of equal weight. While
processing X, an online algorithm A maintains a guess p for the position m as in
the unweighted case. The objective is to minimize the weight between the guess
p and the position m of the central weight, that is, the deviation

∆X
A :=

max{p,m}∑

i=min{p,m}+1

wi ,

is to be minimized, where A refers to the employed algorithm and X is the
input sequence. Note that the unweighted version of this problem is obtained by
setting wi = 1, for every 1 ≤ i ≤ n.

2 Results and Techniques

For unweighted request sequences, we give an optimal randomized preemptive
online algorithm for guessing the center. Our algorithm has expected deviation
0.172n from the central position n/2. Our main result is a lower bound, which
shows that this is best possible. We further give a barely random algorithm that
uses only a single random bit and reports a position with expected deviation
0.25n, which is also best possible for the class of algorithms that use a single
random bit. For weighted sequences, we give a randomized preemptive online
algorithm that reports a position with expected deviation 0.313W , where W is
the total weight of the input sequence. This is complemented by a lower bound
of 0.25W . Closing this gap proves challenging and is left as an open problem.

Techniques. Both our algorithms for unweighted and weighted sequences em-
ploy the doubling method with a random seed. In the unweighted case, our
algorithm updates its guess to the current position j if j ∈ {dxiδe | i ∈ N} (this
condition is slightly different in the weighted case), where x > 2 is an optimized
parameter that determines the step size between the guesses (this parameter is
different for weighted and unweighted sequences), and δ ∈ (0, 1) is a seed that
is chosen uniformly at random. This technique is well known and has previously
been applied for various problems. While our algorithms are extremely simple,
their analyses require careful case distinctions.

Our main result is a lower bound for unweighted sequences, which proves
that the doubling method is optimal. The argument relies on Yao’s Minimax
principle. We define a hard input distribution where the probability of a specific
input length is inversely proportional to its length. We then argue that a deter-
ministic guessing algorithm, which can be identified by a sequence of increasing
positions at which it updates its guess, will in expectation (over the hard in-
put distribution) have a deviation of 0.172n from the central position. By Yao’s
Minimax principle, this implies that our algorithm for unweighted sequences is
best possible. This argument is the most technical contribution of the paper.
The lower bound for weighted sequences follows the same line, however uses a
sequence of exponentially increasing weights.
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On the probabilistic traveling salesman problem
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Abstract. We consider the probabilistic traveling salesman problem,
where the clients are present with a certain probability and the tour has
to be adapted to skip the absent clients. We present some numerical
results for this two-stage stochastic optimization problem for different
constraint generation strategies.

Let’s consider a complete graph on n nodes representing the clients. For any
two nodes i and j there is a distance lij . Each client i may be present with a
probability pi, but we know which clients are present or absent only after we have
chosen a tour. after a tour is chosen and we discover which clients are present,
the tour is adapted by skipping the absent clients. The probabilistic traveling
salesman problem, introduced in [1], consists in finding an hamiltonian circuit
of minimal length expectation.

Fig. 1. This shows how the TSP tours (a) are affected by absent client nodes (b)

Finding the best a priori tour is a two-stage stochastic optimization problem.
It can be formulated as an integer linear program with binary variables yij for
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the nominal tour (on the n nodes) and xk
ij for the adapted tour in any scenario

k (1 ≤ k ≤ K). Vk denotes the set of present nodes in scenario k. A denotes
the set of arcs in the complete graph on the n nodes, and Ak the set of arcs in
scenario k, once the absent client nodes have been deleted.





min 1
K

∑

1≤k≤K

∑

ij∈A
lijx

k
ij

Subject to∑

j 6=i

yij = 1 ∀i ∈ {1, ..., n} (1)

∑

i 6=j

yij = 1 ∀j ∈ {1, ..., n} (2)

∑

j 6=j

xk
ij = 1 ∀i ∈ Vk ∀k ∈ {1, ...,K} (3)

∑

i 6=j

xk
ij = 1 ∀j ∈ Vk ∀k ∈ {1, ...,K} (4)

∑

i,j∈S
yij ≤ |S| − 1 ∀S ∈ {1, ..., n}, 2 ≤ |S| ≤ n− 2 (5)

∑

i,j∈S
xk
ij ≤ |S| − 1 ∀S ∈ Vk, 2 ≤ |S| ≤ n− 2 ∀k ∈ {1, ...,K} (6)

xk
ij ≥ yij ∀ij ∈ Ak ∀k ∈ {1, ...,K} (7)

yij ∈ {0, 1} ∀ij ∈ A (8)
xk
ij ∈ {0, 1} ∀ij ∈ Ak ∀k ∈ {1, ...,K} (9)

This formulation is based on the classical formulation for the TSP (with (7)
being the coupling constraints) and asks for constraint generation. We discuss
several strategies and give numerical results.
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Abstract. In this article we present a variant of the multicommodity
flow problem, where the flow is 1 for each commodity, and two paths
carrying flow can share the same arc and then reduce their costs. The
considered variant has applications in freight transport where pooling
several demands in one truck is possible. Given costs, the problem we
consider here is to find a multicommodity flow with min cost. We pro-
pose an integer programming formulation for this problem and describe
valid inequalities. We also devise heuristics for solving this problem. We
present a comparison of the results obtained by Cplex and those obtained
by the heuristics.

Keywords: multi-commodity path · integer linear program · heuristic.

The problem we consider is a restricted case of the well known multicommodity
flow problem[1]. Let D = (V,A) be a directed graph, where V is the set of
vertices and A is the set of arcs. Each arc a ∈ A has a capacity ca and a weight
wa. Suppose, there are k commodities S = {(s1, t1), ..., (sk, tk)} where si and ti
are the source and destination of commodity i, respectively.

The multicommodity flow where the flow is 1 for each commodity problem
consists in finding k paths of minimum weight between all commodities. It is
equivalent to the following integer linear program[1].

xiuv =

{
1 if the arc (u, v) is used by the path i
0 otherwise,

∀(u, v) ∈ A, i ∈ {1, ..., k}

xuv =

{
1 if the arc (u, v) is used by at least one path,
0 otherwise,

∀(u, v) ∈ A.

min
∑

(u,v)∈A
wuvxuv (1)

xiuv ≤ xuv, ∀(u, v) ∈ A, i ∈ {1, ..., k} (2)

(P )
∑

i∈{1,...,k}
xiuv ≤ cuv, ∀(u, v) ∈ A (3)

∑

(u,v)∈δ+(u)

xiuv =
∑

(u,v)∈δ−(u)

xiuv,∀i ∈ {1, ..., k}∀u ∈ V \ {si, ti} (4)

∑

(u,v)∈δ+(si)

xiuv = 1, ∀i ∈ {1, ..., k} (5)
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∑

(u,v)∈δ−(ti)

xiuv = 1,∀i ∈ {1, ..., k} (6)

xuv ∈ {0, 1}, ∀(u, v) ∈ A, (7)

xiuv ∈ {0, 1}, ∀(u, v) ∈ A,∀i ∈ {1, ..., k}, (8)

where inequalities (2) ensure that if an arc is used by at least one path then the
arc is considered by the objective function. Inequalities (3) guarantee that the
number of paths which use an arc (u, v) cannot exceed the capacity cuv of this
arc. Inequalities (4-6) are the flow equations.

If we consider the freight problem where trucks are used to deliver some
commodities from one point to another, then the multicommodity flow problem
with sharing cost consists in finding k paths minimizing the total cost of the
used trucks.

Let pi be the size of the load associated with the path i. For each arc (u, v) ∈
A we associate a size of a truck. We consider the variable zuv, for each (u, v) ∈ A,
corresponding to the number of trucks on the arc (u, v).

Replace inequalities (3) by the following inequalities
∑

i∈{1,...,k}
pix

i
uv ≤ zuvcuv,∀uv ∈ A, (9)

and replace the objective function (1) by min
∑

(u,v)∈A puvzuv, where puv is the

price of one truck on the arc (u, v) and pi the size of the commodity.
Considering a set of paths Iuv using the arc (u, v) such that

∑
i∈Iuv

xiuv > cuv
we can deduce the following inequality

∑

i∈Iuv

xiuv ≤ |Iuv| − 2 + 2zuv + zuv. (10)

Now we can extend these inequalities by considering a set Iuv of paths using
arc (u, v), such that

∑
i∈Iuv

pi > ξcuv where ξ is the number of trucks needed to
transport the demands associated with the paths of Iuv and deduce the following
valid inequality

∑

i∈Iuv

xiuv ≤ |Iuv| − (ξ + 1) + ξzuv, (11)

if pi ≤ cuv for all i ∈ Iuv.
We propose other valid inequalities and discuss the efficiency of each class of

them.
We also present a greedy algorithm, a local search algorithm and a genetic

algorithm for this problem.
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Bounds calculation for the Close Enough
Traveling Salesman Problem

F. Carrabs, C. Cerrone, R. Cerulli, B. Golden

Abstract The close-enough traveling salesman problem (CETSP) is a variant of
the Euclidean traveling salesman problem in which the traveler visits a node if it
passes through the neighborhood set of that node. We compute a lower bound of
the optimal solution by discretizing the neighborhoods and by solving the gener-
alized traveling salesman problem on the discretized graph. In order to reduce the
impact on the lower bound value of the discretization error, that occurs for each
discretized neighborhood, we adaptively select the neighborhoods to discretize by
using a Carousel Greedy approach. It is worth noting that the computation of the
lower bound is carried out by selecting only a subset of neighborhoods and, above
all, this computation defines a visiting sequence of these neighborhoods. When the
visiting sequence is fixed, it is possible to solve the CETSP in polynomial time by
using a second order cone programming model. If the solution found by this model
touches all the neighborhoods then we obtained a feasible solution for the starting
problem and then we got an upper bound, otherwise one of uncovered neighbor-
hoods is added to the sequence. The process is repeated until a feasible solution is
found. The preliminary results, carried out on benchmark instances, show that our
approach often overcomes the other approached proposed in literature in terms of
both computational time and quality of the bounds.

Key words: Close-enough,Traveling salesman problem, Discretization scheme
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Robust Queue Constrained Packing 
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We consider the problem of loading vehicles onto a ferry, where the arrival order of 

vehicles is stochastic and vehicles join one of a fixed number of queues on the dockside 

prior to loading. Vehicles vary in size from small motorbikes to large freight vehicles, 

but as tickets are bought in advance, the ferry operator knows how many of each vehicle 

type to expect. There is a penalty for each vehicle that has booked but will not fit onto 

the ferry and is left behind on the dockside. The objective of the optimisation is to 

minimize the total penalties. 

The contributions of this work are as follows: an efficient and easy to implement 

packing methodology which addresses the queue constraints; a sample-based approxi-

mation algorithm for deriving terminal queueing policies under random vehicle arrival 

orders; and a new approach to obtain efficient lower bounds on the wasted space that is 

generated in the ferry.  

The vehicle ferry loading process is divided into two stages: 

Stage 1: On departure day customers who have purchased tickets in the selling sea-

son arrive at the ferry terminal at random times, close to the departure time. Upon arri-

val vehicles are allocated to one of a set of parallel lanes in the terminal, where they 

wait to embark the ferry through a single ramp entrance. The terminal queueing policies 

allow vehicles to be pre-sorted according to their size and any special loading require-

ments (for example some passengers need unrestricted access to the lifts).  

Stage 2: Vehicles are loaded onto the ferry, where the order is dictated by the vehi-

cles’ positions in the queue as only vehicles currently at the front of a queue are avail-

able for loading. Where the number of queues is less than the number of vehicle types, 

the queue constraint usually results in more wasted space on board and hence higher 

penalties. 

The packing methodology used is a Sequential Guillotine Cut Knapsack (SGCKS) 

approach, which addresses the structural constraints of the problem. In SGCKS queue-

ing policies and packing solutions are encoded as integer strings: queueing policy 

strings define the target vehicle dimensions for each terminal lane, whilst packing so-

lutions define a sequence of horizontal or vertical cuts that are then packed as rows or 

columns of vehicles using vehicles from the fronts of the terminal queues.  

With full knowledge of the set of vehicles that will arrive and a random sample of 

arrival orders for these vehicles as input (the uncertainty set S), we formulate the prob-

lem as a two-stage stochastic optimisation, where the two stages of the problem mimic 
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those of the process. The first stage finds the terminal queueing policy that maximises 

the total revenue of the vehicles that can successfully be packed in each scenario in S. 

In the second stage the yard queueing policy is fixed and new random arrival orders are 

realised. The packing problem can then be re-optimised with a fixed set of terminal 

queues as the input and an objective of minimising penalty payments for any vehicles 

that cannot be loaded. 

We propose an iterative metaheuristic approach to solve the first stage problem. The 

iterative metaheuristic alternates between packing iterations and terminal queueing pol-

icy iterations. In packing iterations the incumbent queueing policy is held fixed and the 

metaheuristic searches the space of packing solutions for each of the arrival scenarios 

in S. In queueing policy iterations the packing solutions are held fixed and the metaheu-

ristic searches the space of terminal queueing policies.  

In the first stage problem the decision maker is provided with two main levers: the 

uncertainty set size S and a subset size w. Setting w<|S| corresponds to maximising the 

revenue of vehicles that can be loaded in w out of the arrival scenarios in S. Based on 

this we consider two objective functions for the first stage: 1) (EXP) maximise the ex-

pected revenue of the vehicles that can be loaded in w out |S| scenarios; and 2) 

(MAXIMIN) maximise the revenue of a set of vehicles that can be loaded in each of w 

out of the scenarios in S. For MAXIMIN we also have to define a “vehicle mix inter-

section” operation which tells us how many of each type of vehicle can be loaded in 

each and every scenario. The most basic definition of a vehicle mix intersection is the 

minimum number of vehicles of each type that could be packed in each scenario, hence 

the name MAXIMIN. 

In experiments we show that the best choices for w relative to |S| depend upon the 

nested vehicle size relation structure of the particular vehicle demand scenario under 

consideration. In particular, little or no nested vehicle sizes require |B|≈ 0.5|S|, whilst 

“Russian Doll” instances require |B|≈|S|. We also demonstrate how the proposed 

MAXIMIN formulation leads to more robust yard policies which work better in the 

unseen second stage scenarios than those derived from the EXP objective function. 

To illustrate the quality of the packing solutions obtained from the SGCKS packing 

methodology a lower bound waste formulation is proposed. This formulation is based 

on calculating the most efficient horizontal and vertical patterns of vehicles that fit 

within the ferry, and packing these on the ferry in a manner that relaxes the non-over-

lapping constraints. An efficient width pattern is a set of vehicles whose widths sum as 

close to, but not greater than, the width of the ferry. An efficient length pattern has a 

similar definition. An estimate of the lower bound of the wasted space can be computed 

from the wasted lengths associated with the most efficient width and length patterns. 

Such an approach can be applied iteratively to generate the efficient patterns and sub-

tracting the vehicles in the patterns from those considered in the next iteration. An upper 

bound ferry utilisation can then be computed from the lower bound on the waste. Using 

this approach a variant of the proposed SGCKS methodology achieved an average op-

timality gap of 2.71% compared with the calculated upper bound, based on 300 gener-

ated 2-d rectangle packing problems. 
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Introduction. Matching problems, which generally involve the assignment of a
set of agents to another set of agents based on preferences, have wide applications
in many real-world settings; for example, in an educational setting where univer-
sity departments seek to allocate students to projects [1,3]. Here, we study the
Student-Project Allocation problem with preferences over Projects (SPA-P), which
involves sets of students, projects and lecturers; lecturer preferences over their
proposed projects; student preferences over a subset of these projects; and the
capacities of projects and lecturers (i.e., the maximum number of students that
each project and lecturer can accommodate). In this context, we seek a stable
matching of students to projects (and lecturers).

Informally, a matching is a set of acceptable (student, project) pairs such that
each student is assigned at most one project, and the capacities of projects and
lecturers are not exceeded; whilst a stable matching ensures that (i) no student
and lecturer who are not matched together would rather be assigned to each
other than remain with their current assignment, and (ii) no group of students
acting together could undermine the integrity of the matching by swapping their
assigned projects, in order to be better off.

It was shown in [4] that stable matchings in an instance of SPA-P can have
different sizes, and the problem of finding a maximum size stable matching,
denoted MAX-SPA-P, is NP-hard. There are two known approximation algorithms
for MAX-SPA-P in the literature, with performance guarantees of 2 [4] and 3

2 [2].
Moreover, it was shown in [2] that MAX-SPA-P is not approximable within 21

19 − ε,
for any ε > 0, unless P = NP. In this paper, we describe an Integer Programming
(IP) formulation to enable MAX-SPA-P to be solved to optimality.

An IP approach to MAX-SPA-P. Given an instance I of SPA-P, we give a
general construction of an IP model J of I as follows: (i) create binary-valued
variables to represent the assignment of students to projects; (ii) enforce con-
straints to ensure that the assignment is a matching, and that the matching is
? Supported by grant EP/P028306/1 from the Engineering and Physical Sciences Re-

search Council.
?? Supported by a College of Science and Engineering Scholarship, University of Glas-

gow.

  FRA3 - Mixed Integer Programming II 160



stable; finally (iii) describe an objective function to maximize the size of the
stable matching. We present the following result regarding the correctness of J.
Theorem 1. A feasible solution to J is optimal if and only if the corresponding
stable matching in I is of maximum size.

Empirical Analysis, Discussions and Concluding Remarks. We carried
out an empirical analysis that investigates how the matchings produced by the
approximation algorithms compare to optimal solutions obtained from our IP
model, with respect to the size of the stable matchings constructed, on instances
that are both randomly-generated and derived from real datasets. Our main
finding, illustrated in Fig. 1, is that as we increase the number of students,
projects and lecturers, and the length of the students’ preference lists, each of
the approximation algorithms finds stable matchings that are close to having
maximum size, outperforming their approximation factor. Perhaps most inter-
esting is the 3

2 -approximation algorithm, which finds stable matchings that are
very close in size to optimal.

(a) (b)

Fig. 1. Ratio of the average size of a stable matching with respect to the optimal
solution. (a) Each student’s preference list contained a minimum of 2 and a maximum
of 5 projects, and the number of students varied from 100 to 2500, in increments of 100.
(b) The number of students was fixed at 1000, and the length of students’ preference
lists was varied between 2 and 10.
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Consider the following generic combinatorial optimisation problem. We have
a set W of workers and a set T of tasks. Each task must be assigned to a
worker. If worker w ∈ W is assigned the set S ⊆ T of tasks, then a cost cw(S)
is incurred. The cost cw(S) is not given explicitly, but must be computed by
solving a (smaller and simpler) combinatorial optimisation problem. We seek an
assignment of tasks to workers that minimises some non-decreasing function of
the cw(S) values.

Although apparently simple, this general scheme covers a surprisingly wide
variety of important combinatorial optimisation problems, including problems in,
e.g., vehicle routing, network design, facility location and machine scheduling.
In all of these cases, a natural formulation of the problem is:

min
∑

w∈W cw(Sw) (1)

s.t.
⋃

w∈W Sw = T

Sw ∩ Su = ∅
(
{w, u} ⊂W

)
,

where Sw is the set of tasks assigned to worker w.
A drawback of this formulation is that the optimal solution(s) may be unfair,

in the sense that one worker has a significantly higher workload than another.
To alleviate this problem, one can replace the min-sum objective function with
an alternative function (such as min-max) and/or include additional constraints
(such as lower and upper bounds on the workloads). Unfortunately, this may
have unintended consequences, in terms of both computational difficulty and
the quality of the solution obtained.

Of course, the issue of fairness has already been studied, not only by the com-
binatorial optimisation community, but also from the perspective of many other
disciplines, such as computer science [4], economics [6], marketing [8], operational
research [2], psychology [5] and recreational mathematics [3]. Nevertheless, we
make four new contributions in this talk:

1. We show that, for several combinatorial problems of interest, the above
formulation frequently yields very unfair solutions. (We use benchmark in-
stances of the capacitated vehicle routing, capacitated minimum spanning
tree and p-median problems.)
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2. We attempt to explain theoretically why such unfair solutions tend to arise,
with the help of some results in [1, 7].

3. To remedy this situation, we propose to minimise the sum of the squared
workloads instead. That is, we minimise

∑

w∈W

(
cw(Sw)

)2
.

4. We present some theoretical and empirical evidence that this modified ob-
jective function tends to lead to solutions that are significantly fairer than
those obtained with the min-sum approach, yet perform well in terms of the
min-sum and min-max objectives simultaneously.
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1 Introduction

Prototyping over Field Programmable Gate Arrays (FPGA) is commonly used
in order to reduce verification time when designing Systems on Chip (SoC).
Nowadays, the size of the SoC to be verified often exceeds the logical capacity of
a single FPGA. To handle this limitation, it is possible to partition the SoC be-
tween several FPGAs and then route the logic signals using the interconnections
between these FPGA.

The automation of inter-FPGA partitioning presents a significant technical
challenge. The goal is to effectively split the SoC into several parts by reducing
the communications between them and the length of logical paths through dif-
ferent partitions while respecting limited resource capacities over each FPGAs.
In addition, it is suitable to reduce the number of incoming and outgoing signals
of each partition. These objectives are very important and have a great influence
on the performance of the emulation of SoC that we want to prototype.

This problem can be represented as a graph partitioning problem, which is a
well known combinatorial optimization problem, with additional constraints. In
fact, graph partitioning is one of the fundamental NP − complete [1] problems
and is widely studied in this community.

In this work, we present a detailed mathematical modeling of the problem
taking into account all the hardware constraints of the multi-FPGA platform. We
then propose several strategies to effectively solve the problem of partitioning.
Finally, a study of the results obtained on real instances of Integrated Circuits
(IC) will be presented.

2 Mathematical Formulation and Resolution

An IC is represented by a netlist, which is the description of logic cells and their
interconnection by nets. This netlist is represented by a non-oriented hypergraph
(V,E). The set of vertices V = {v1, v2, ..., vN} represents logic cells, and the set of
hyperedges E = {e1, e2, ..., eM} corresponds to nets of the IC. It is a hypergraph
because a wire can connect two or more cells.
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The hypergraph is defined by its incidence matrix H such that each coeffi-
cient hij is equal to 1 if vi is connected to hyperedge ej , and 0 otherwise. Each
hyperedge ej is weighted by a value wj between 0 and 1, which is the maximum
criticality of all registry paths through ej .

The problem is to place each vertex vi on a partition pk while minimizing
a cost that depends on the fragmentation on the different partitions of each
hyperedge. Let xik be a binary decision variable equal to 1 if vertex vi is placed
on partition pk and 0 otherwise and yjk an intermediate variable equal to 1 if
hyperedge ej has at least one of its ends in partition pk and 0 otherwise. The
model has multiple resource capacity constraints; each partition pk has a ckr
capacity for the resource r.

The problem can be formulated as follows:

(P )





min
∑
j

∑
k

∑
k′>k

wjyjkyjk′

s.t.
∑
k

xik = 1 ∀i
hijxik ≤ yjk ∀i, j, k∑
i

qirxik ≤ ckr ∀k, r
xik ∈ {0, 1}, yjk ≥ 0 ∀i, j, k

We can not afford to solve the problem using exact method since our mathe-
matical model (P ) is quadratic and the size of instances can reach several millions
of vertices (currently, IC contain millions of cells).

This problem is a generalization the min-cut problem of hypergraph parti-
toning with cut minimization, as treated by the hMetis tool [3]. It is therefore
possible to obtain a first solution using hMetis with additional treatments to
obtain a feasible solution.

Once an initial solution is obtained, several solution approaches could be
considered. To this end, we used LocalSolver 7.5 [2], developed by Innovation24,
for combinatorial optimization entirely based on local search with an extension
to mixed-variables optimization. It implements a modified local search heuristic,
offering the power of local search through a model-and-run solver for large-
scale 0− 1 nonlinear programming. We also implemented a simulated annealing
heuristic [4]. It is a multilevel method, in which a clustering method is recursively
applied to reduce the size of the problem, then simulated annealing is applied
to each level.

Preliminary numerical results will be presented based on real IC instances.
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We consider N clients {C1, ..., CN} and M potential facility sites {F1, ..., FM}.
Let dij be the distance between Ci and Fj . The objective of the p-center prob-
lem is to open up to p facilities such that the maximal distance (called radius)
between a client and its closest selected site is minimized.

This problem is very popular in combinatorial optimization and has many
applications. We refer the reader to the recent survey [1]. Very recent publications
include [5] which provides heuristic solutions and [2] on an exact solution method.

Let M and N respectively be the sets {1, ...,M} and {1, ..., N}. The most
classical formulation, denoted by (P1), for the p-center problem (see for exam-
ple [3]) considers a variable R equal to the value of a radius, the binary variables
yj equal to 1 if and only if Fj is open and the binary variables xij equal to 1 if
and only if Ci is assigned to Fj .

(P1)





min R

s.t.
M∑

j=1

yj ≤ p

M∑

j=1

xij = 1 i ∈ N

xij ≤ yj i ∈ N , j ∈M
M∑

j=1

dij xij ≤ R i ∈ N

xij , yj ∈ {0, 1} i ∈ N , j ∈M
r ∈ R

(1a)

(1b)

(1c)

(1d)

(1e)

Constraint (1b) ensures that no more than p facilities are opened. Each client
is assigned to exactly one facility through Constraints (1c). Constraints (1d) link
variables xij and yj while (1e) ensure the coherence of the objective.

A more recent formulation of the p-center problem, denoted by (P2), was
proposed in [4]. Let D0 < D1 < ... < DK be the different dij values ∀i ∈ N ∀j ∈
M. Note that, if many distances dij have the same value, K may be significantly
lower than M ×N . Let K be the set {1, ...,K}. Formulation (P2) is based on the
variables yj , previously introduced, and one binary variable zk, for each k ∈ K,
equals to 1 if and only if the optimal radius is greater than or equal to Dk:
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(P2)





min D0 +

K∑

k=1

(Dk −Dk−1) zk

s.t. 1 ≤
M∑

j=1

yj ≤ p

zk +
∑

j : dij<Dk

yj ≥ 1 i ∈ N , k ∈ K

yj , z
k ∈ {0, 1} j ∈M, k ∈ K

(2a)

(2b)

(2c)

Constraints (2c) ensure that if no facility located at less than Dk of client Ci

is selected, then the radius must be greater than or equal to Dk.
This formulation has been proved to be tighter than (P1). However, its size

strongly depends on the value K (i.e., the number of distinct distances dij).
In this work we first prove that a large part of constraints (2c) are redun-

dant and can be removed without affecting the quality of the linear relaxation.
This leads to a formulation (CP1) with O(min(NM,NK)) constraints instead
of O(NK).

Then, we introduce (CP2) which is the most compact formulation currently
known for this problem. It is obtained by replacing the K variables zk of (CP1)
by a unique variable r which represents the index of a radius. We prove that the
linear relaxation of (CP1) is stronger than the one of (CP2).

We besides introduce an iterative algorithm which enables us to reduce the
number of clients and facilities as well as to compute strong bounds which sig-
nificantly reduce the size of formulations (P2), (CP1) and (CP2).

Finally, the efficiency of the iterative algorithm and the proposed formula-
tions are compared in terms of quality of the linear relaxation and computation
time over instances from OR-Library.
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1 Introduction

Let G = (V,E) be an undirected graph with n = |V | and m = |E|. We denote
by ij, the edge between the two nodes i and j of V . A chordless cycle C in G is a
cycle whose induced subgraph is the cycle itself. Let C be the set of the chordless
cycles in G. Let RE be the real space of dimension |E| indexed by the edges in
E. For a vector x ∈ RE , xe with e ∈ E denotes the component of x associated
with the edge e ∈ E and for any subset F ⊆ E, let x(F ) =

∑
e∈E xe.

The (semi)-metric polytope METP(G) associated with G in RE , which can be
defined as follows:

x(F )− x(C \ F ) ≤ |F | − 1,

∀C ∈ C and F ⊆ C with |F | odd, (1)

xe ≥ 0 ∀e ∈ E s.t. e does not belong to any triangle

xe ≤ 1 ∀e ∈ E s.t. e does not belong to any triangle (2)

Note that the inequalities (1) are called cycle inequalities. Inequalities (2) are ap-
plied only for the edges in G which do not belong to any triangle as those for the
other edges can be derived from the cycle inequalities. These inequalities were
introduced in the seminal paper by Barahona et Mahjoub [2] on the cut polytope.

Note that since there is a priori no known polynomial upper bound (in terms
of n and m) on the number of chordless cycles and there may be also an ex-
ponential number of possible choices for the set F given a chordless cycle C,
the above formulation METP(G) have a priori an exponential number of in-
equalities. However, METP(G) has polynomial size extended formulations [1],
[6], called METP(Kn), which consists of O(n2) variables where additional vari-
ables correspond to the additional edges which complete G to Kn. This extended
formulations involve the following so-called triangle inequalities:

xij + xik + xjk ≤ 2 for all i, j, k ∈ T . (3)

xij − xik − xjk ≤ 0, (4)

xik − xij − xjk ≤ 0, (5)

xjk − xij − xik ≤ 0 for all i, j, k ∈ T . (6)
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where T is the set of alll (unordered) triples of distinct nodes i, j, k ∈ V such
that at least ij, ik or jk is an edge in E. The semi-metric polytope are the
core of the linear programming relaxations for many fundamental combinatorial
optimization problems such as MaxCut. Moreover, when G is sparse, it is well
known that the relaxations given by semi-metric polytope is very good. In this
case, for MaxCut problem, branch-and-cut algorithms based on the integer for-
mulation obtained from the cycle inequalities and the 0/1 constraints remain the
best approaches so far. Hence, optimizing over the semi-metric polytope appears
to be of key importance. This is achieved either by cutting-planes algorithm (us-
ing the polynomial time separation algorithm for the cycle inequalities given in
[2]) or by solving the compact extended formulation. However, the latter is very
hard [5]) as the linear program to be solved turn out to be highly degenerate and
its size could be very big even when the above compact extended formulation is
used.
In this paper, we propose a way of bypassing to this difficulty. The idea is that
instead of handling separately the cycle inequalities and the 0/1 constraints over
the variables xij for all ij ∈ E, we try to represent both by means of extra 0/1
variables and a small set of constraints. Precisely, we define the Integer Metric
Polyhedra (IMP) which are the semi-metric polytope (and the metric cone) with
integrality constraints over the variables xijfor all ij ∈ E. In particular, the inte-
ger semi-metric polytope coincides with the MaxCut polytope [2]. In this paper,
we give Mixed Integer Programming (MIP) formulations for IMP which features
only n 0/1 variables and m continuous variables together with O(m) constraints.
As a consequence, it gives a very compact MIP formulation of linear size and
only n 0/1 variables for MaxCut and Graph Partitioning, etc. Computational
results based on this new formulation on a series of MaxCut instances on sparse
graphs involving up to 10000 nodes are discussed and shown to be competitive
as compared with the best existing approaches for MaxCut.
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Abstract. We study some polyhedral aspects of the polytope of the
minimum cost unsplittable flow problem (MCUFP). We first extend the
classical cover and cut inequalities to introduce valid inequalities for the
(MCUFP) polytope. Then we introduce new classes of valid inequalities,
and give separation algorithms for a branch-and-cut framework.

Given a network G = (V,E) defined by a set of nodes V and a set of arcs E,
each arc has a capacity yij . Let D denote the set of commodities. Each commod-
ity has an origin s, a destination t and a flow value to route dst. We would like to
concurrently route every demand on a single path from s to t without violating
the capacities. The unsplittable flow problem has been proven to be NP-hard as
a generalization of the Partition or Bin Packing problems. This combination of
routing and bin packing makes the unsplittable flow problem particularly diffi-
cult.

The (MCUFP) problem can be described using a binary flow variable xstij for
each commodity st and arc ij that takes value of 1 if the commodity uses the
arc ij, 0 otherwise. For each arc of the network there is a capacity constraint

of the form :
∑

st∈D
dst xstij ≤ yij . For each commodity st ∈ D we have a flow

conservation constraint. Let Kst
ij denote a unit flow cost for arc ij routing a

commodity st. Let ℘st be the set of all possible simple paths for commodity st
in the graph G. The minimum cost unsplittable flow problem can be formulated
as the following integer linear program:





min
∑

st∈D

∑

ij∈E
Kst
ij x

st
ij

Subject to∑

st∈D
dst xstij ≤ yij ∀ij ∈ E

∑

j∈V
xstij −

∑

j∈V
xstji =





+1 if i = s
−1 if i = t
0 otherwise

∀i ∈ V,∀st ∈ D

xstij ∈ {0, 1} ∀st ∈ D,∀ij ∈ E

(1)
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Let (S, S̄) define a cut in the network, δ(S) arc set of (S, S̄) , uv an arc of

the cut so uv ∈ δ(S). Let C be a demand cover set such as
∑

st∈C
dst > yuv, and

let CE be an extended cover set : CE = {st : st ∈ C} ∪ {st : dst ≥ dj , dj ∈ C}.
Then the following cover and extended cover inequalities are valid for (MCUFP):

∑

st∈C
xstuv ≤ |C| − 1 and

∑

st∈CE
xstuv ≤ |C| − 1.

Now for all the other arcs ij ∈ δ(S)− {uv} we have the valid inequalities:∑

ij∈δ(S)−{uv}

∑

st∈C
xstij ≥ 1 and

∑

ij∈δ(S)−{uv}

∑

st∈CE
xstij ≥ |CE| − [|C| − 1].

Let δH(S) be the set of all the demands through the cut (S, S̄). Then the 2-

partition inequalities
∑

st∈δH(S)

∑

uv∈δ(S)
xstuv ≥ |δH(S)| as well as the extended cover

inequalities
∑

ij∈δ(S)−{uv}

∑

st∈CE
xstij ≥ 1 + |CE| − |C| are valid for our problem.

We extended those results to introduce new multi-partition inequalities.
Let S = (S1, S2, ..., Sq) be a q-partition in G. The following multi-partition in-

equalities are valid:

q−1∑

t1=1

q∑

t2=t1+1

∑

ij∈δ(St1
,St2

)

yij ≥
q−1∑

t1=1

q∑

t2=t1+1

∑

ij∈δH(St1
,St2

)

αijdij

and

q−1∑

t1=1

q∑

t2=t1+1

∑

ij∈δ(St1
,St2

)

∑

st∈D
xstij ≥

q−1∑

t1=1

q∑

t2=t1+1

∑

ij∈δH(St1
,St2

)

αij

and
∑

ij∈δ(S)−{uv}

∑

st∈CE
xstij ≥ 1 +

∑

st∈CE−C
αst.

Where αst = distanceG(S)(S(s), S(t)).
We will discuss a summary of computational experiments with a branch-an-

cut algorithm to test the effectiveness of our results.

References

1. Alper Atamtürk, Deepak Rajan, On splittable and unsplittable flow capacitated
network design arc–set polyhedra, Mathematical Programming, Volume 92, Issue 2,
315–333, 2002.

2. Cynthia Barhart, Christopher A. Hane, Pamela H. Vance, Using Branch-And-Cut
to Solve Origin Destination Integer Multicommodity Flow Problems. Operations
Research, INFORMS, (vol.48, No 2), 318-326, 2000.

3. Meriema Belaidouni, Walid Ben-Ameur, On the minimum cost multiple-source un-
splittable flow problem, Volume 41, Issue 3 (Journées Polyèdres et Optimisation
Combinatoire), 253-273, 2007.

4. Yefim Dinitz, Naveen Garg, Michel X.Goemans, On the Single-Source Unsplittable
Flow Problem. Combinatorica, 19 (1), 17-41, 1999.

5. Jon M. Kleinberg, Single-source unsplittable flow, FOCS ’96 Proceedings of the 37th
Annual Symposium on Foundations of Computer Science, 14 - 16, 1996.

  FRB1 - Graph Partitionning 173





FRB2 : Polyhedral Approaches III

• Alternating current optimal power flow with generator selection
Esteban Salgado, Andrea Scozzari, Fabio Tardella, Leo Liberti.

• On the split-rank of the facet defining inequalities of mixed-integer bi-
linear covering set
Hamidur Rahman, Ashutosh Mahajan.

• New polyhedral approach for the minimum energy symmetric network
connectivity problem in wireless sensor network
Fatiha Bendali, Jean Mailfert, Mourad Baiou, Salsabil Grouche.



Alternating current optimal power flow with
generator selection?
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Abstract.

The Alternating Current Optimal Power Flow (ACOPF) problem is as follows:
given an electric power network consisting of nodes (called buses) and links
(called lines) one seeks an optimal generation and distribution plan of active
and reactive power under physical constraints (Ohm’s and Kirchhoff’s laws), and
subject to power generation, voltage magnitude and current bounds on each line.

Not every bus can produce power. Those which can are called generators.
There is often a planning issue related to their activation and deactivation.
Modelling this choice implies the addition of binary variables to the model,
which yields a Mixed-Integer Quadratically Constrained Quadratic Program-
ming (MIQCQP) problem.

In this paper we study the ACOPF with selection of generators (ACOPFG).
Based on the ideas in [1, 2, 3], we derive Mixed-Integer Linear Programming
(MILP) formulations using Diagonally Dominant Programming (DDP) for inner
and outer approximations for the ACOPF with binary variables.

The ACOPFG can be modeled as:

min
v∈Rn , z∈{0,1}g

〈C, V 〉+ c>z

∀k ∈ E
〈
Ak, V

〉
= ak

∀` ∈ I
〈
B`, V

〉
≤ b`

∀w ∈ Z 〈Qw, V 〉 − q
max

w zdw/2e ≤ qw

∀w ∈ Z 〈Qw, V 〉 − q
min

w zdw/2e ≥ qw
V = vv>





(ACOPFG)

Given that solving these formulations is NP-hard [7], one common approach
is to relax the last constraint into V � 0 (ACOPFGMISDP).

? This work was partially supported by the PGMO grant “Projet 2016-1751H”, by
a Siebel Energy Institute Seed Grant, and by Università di Roma “La Sapienza”
under a visiting grant for the last author.
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SDP relaxations for the continuous ACOPF have been studied before [4,5,6].
Unfortunately SDPs have scalability issues and for real-life size instances it is
not a suitable approach.

Based on [1, 2] we propose iterative procedures to derive inner and outer
approximations for ACOPFG approximating the SDP cone by the cone of Di-
agonally Dominant matrices Dn = {M ∈ Sn | ∀i Mii ≥

∑
j 6=i

|Mij |} and its dual

D∗n. Given that Dn ( Sn ( D∗n and Dn and D∗n can be described linearly, we
solve

min
v∈Rn , z∈{0,1}g

〈C, V 〉+ c>z

∀k ∈ E
〈
Ak, V

〉
= ak

∀` ∈ I
〈
B`, V

〉
≤ b`

∀w ∈ Z 〈Qw, V 〉 − q
max

w zdw/2e ≤ qw

∀w ∈ Z 〈Qw, V 〉 − q
min

w zdw/2e ≥ qw
V ∈ K





(MI-DDP)

where K is either Dn(U) = {M ∈ Sn | ∃A ∈ Dn s.t. M = U>AU} or D∗n(U)
For the classical formulation we derive the bounds through an approach using

the primal and dual formulations of (ACOPFGMISDP). Given that we cannot
describe a dual for the mixed-integer formulation, we add cuts with respect
to eigenvectors associated to negative eigenvalues of the solutions at each step
of our procedure.

Empirically we observed that these bounds are tight for ACOPFG and give
promising results. We also tested ways to retrieve feasible solutions for ACOPF
from our bounds with positive results on some instances, but we have failed, so
far, to do it consistently.
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We consider the following mixed-integer bilinear covering set

S =

{
(x, y) ∈ Zn

+ × Rn
+ :

n∑

i=1

xiyi ≥ r

}
,

where r > 0. This set appears in real life applications like the trim loss (or cutting
stock) problem [1]. The set S is nonconvex, even its continuous relaxation SC is
nonconvex for n ≥ 2. The linear inequality description of the convex hull of the
set S, denoted as conv(S) is derived by Tawarmalani et al. [2] using orthogonal
disjunctive procedure. The description of conv(S) consists of countably infinite
number of facet defining inequalities, and is therefore not a polyhedron.

In this article we focus mainly on deriving the split-rank of the facet defining
inequalities of conv(S). We derive the disjunctions from which the facet defining
inequalities can be constructed, and consequently, we provide an alternative
proof of the validity of the inequalities derived by Tawarmalani et al. [2].

The continuous relaxation SC of S is not a convex set for n ≥ 2. To ap-
ply the concept of split cut, we need a closed convex relaxation of the original
set. So, we take the convex hull of SC , say SCH , the tightest outer approxi-
mation of SC . The set SCH is closed and it is defined as conv (SC) = SCH ={

(x, y) ∈ Rn
+ × Rn

+ :
∑n

i=1

√
xiyi

r ≥ 1
}

[2]. We study the facet defining inequali-
ties of conv(S) as split or disjunctive cuts with respect to the closed convex set
SCH .

We show that for n = 1, each facet defining inequality of conv(S) has split-
rank one. To prove this result we showed that simple variable disjunctions are
sufficient to establish the claim.

For n ≥ 2, we identify the facet defining inequalities having split-rank one. To
establish our claim, we derive the split disjunctions for which these facet defining
inequalities of conv(S) is valid. For the rest of the facet defining inequalities we
show that there does not exist any split-disjunction for which the ineaualities are
valid, and consequently they have split-rank at least two . We prove this result
mainly for n = 2 and extend for general positive integer n.

For the facet defining inequalities with split-rank at least two, we study them
as disjunctive cuts and derive the disjunctions for which they are valid.

We then study the gap between the set S1 (say) that is constructed con-
sidering only the rank one facet defining inequalities of conv(S), and conv(S).
Since both the sets S1 and conv(S) are unbounded, we can not compare them in
terms of their volumes. We compare them in terms of the difference between the
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minimum values of a given objective function over these two sets. Let cTx+dT y
be a given objective function. Assume that

ZCV = min
(x,y)∈conv(S)

cTx + dT y, and ZC1 = min
(x,y)∈S1

cTx + dT y.

Here, by the gap between S1 and conv(S) we mean the difference between
the values of ZCV and ZC1. Clearly ZC1 ≤ ZCV as conv(S) ⊂ S1.

We provide the necessary and sufficient condition for which the gap between
ZCV and ZC1 is zero. We also show with an example that this gap can be
arbitrary large.

To show the effectiveness of the rank one facet defining inequalities, we did
some computational experiments on some instances of cutting stock problems.
We theoretically show that for a relaxation of the cutting stock problems (with-
out the Knapsack constraints), only rank one inequalities are sufficient to give
the same bound as adding all the facet defining inequalities of each bilinear con-
straint that is present in the cutting stock formulation. To check whether the
result holds with the knapsack constraints also, we performed a computational
experiment on benchmark problems. We compare the bounds obtained using the
above two approaches and the number of steps taken. The results show that the
optimization over S1 gives the same bound as that over the convex hull in much
fewer iterations for all input problems. Below we preset the computational re-
sults for few instances that we used for our experiments to see the effectiveness
of the rank one cuts.

Instances n
Using inequalities for S1 only Using inequalities for conv(S)

Iterations Termination Lower Bound Iterations Termination Lower Bound
Fiber-10-9080 10 6 Yes 3.8505 253 Yes 3.8505
Fiber-14-9080 14 5 Yes 1.9006 470 Yes 1.9006
Fiber-15-5180 15 6 Yes 3.7394 549 Yes 3.7394
Fiber-15-9080 15 6 Yes 2.1147 475 Yes 2.1147
Fiber-16-5180 16 5 Yes 5.1701 633 Yes 5.1701
Fiber-16-9080 16 6 Yes 2.9283 800 No 2.9283
CutGen-01-02 10 5 Yes 0.9744 245 Yes 0.9744
CutGen-01-25 10 5 Yes 0.9984 218 Yes 0.9984
CutGen-02-40 10 5 Yes 10.4068 248 Yes 10.4068
CutGen-02-60 10 5 Yes 10.0957 259 Yes 10.0957

Rand-15 15 5 Yes 650.29 440 Yes 650.29
Rand-20 20 5 Yes 624.92 800 No 624.92

Table 1: Comparison of iterations : Over the inequalities of S1 and conv(S).
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1 Introduction

A wireless sensor network (WSN) is composed by a large number of autonomous units.
These units work together for performing a common task as data recovery or message
delivery. Communications between sensors are made by radio. But as no wired backbone
infrastructure is installed, these devices have to be organized in a coherent network.

In theminimum energy symmetric network connectivity problem (MESNCP for short),
we consider a set of sensors in the plane, and we aim to determine the transmission
power associated with each device such that there exists at least one communication path
between each pair of sensors, and the overall sum of power consumption is minimized. As
the MESNCP is NP-hard [4,5], some authors have proposed approaches based on integer
programming formulations and approximation algorithms for this problem [1,2,6,7].

A Wireless sensor network is modeled by an undirected graph G = (V,E), where each
sensor is associated to a node in V and an edge e = (u, v) in E represents a virtual
wire between sensors u and v. For any edge e = (u, v), a positive real c(e) indicates the
necessary power that u and v must use for a direct radio communication between each
other. In the following, we suppose that all c(e) are distinct positive numbers.
A power assignment in G is any function p : V → R+. Indeed, if the power p(u) assigned
to a sensor u exceeds c(u, v) for some v ∈ V , then the sensor v is able to receive the signal
broadcasted by u. Thus, the function p controls the connectivity of G.

2 Description

For a subset F ⊆ E, its incidence vector xF ∈ R|E| is de�ned by xF (e) = 1 if e ∈ F and
xF (e) = 0 otherwise, for e ∈ E.

Denote by F the set of subsets F of edges of E such that the spanning subgraph (V, F )
is connected. Given F ∈ F , de�ne the power assignment vector pF induced by F , as

pF (u) = max{c(e) : e ∈ F ∩ δ(u)}, for all u ∈ V.

Let Π(G, c) ⊆ R|E|×|V | be the polyhedron

conv{(xF , pF ) : F ∈ F}+ cone{(0E, r1), (0E, r2), . . . , (0E, r|V |)},
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where 0E is the zero vector in R|E| and ri ∈ R|V |, i = 1, . . . , |V |, are the basic unit vectors,
that is ri(j) = 1 if i = j and 0 otherwise.

Then, the minimum energy symmetric network connectivity problem can be formu-
lated as follows:

MESNC(G, c) = min{
∑

u∈V
p(u) : (x, p) ∈ Π(G, c)}.

We will describe a linear relaxation of Π(G, c). Several valid inequalities will be given.
Partition inequalities will express the connectivity of a solution and a new family of valid
inequalities is proposed for the power assignments. Dimension and facets of Π(G, c) are
studied.

A Branch-and-Cut algorithm based on partition and power inequalities is presented.
It is known that the separation problem of partition inequalities has been reduced to |V |
min-cut problems in [3]. We show that the separation of the new power inequalities may
be solved by a procedure based on Bellman shortest path algorithm. Some computational
results will conclude this presentation.
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An SDP approach for minimizing convex
ordered median location problems in finite

dimension and with general `τ -norms

Safae ELHAJ-BEN-ALI

ENSA-Fés

Abstract. The main goal of this work is to design a common approach
to solve the continuous lp minisum location problem and moreover, all
the class of convex ordered location problems, for different distances
and in any finite dimension. We prove that this approach has a polyno-
mial worse case complexity. Thus, providing a unifying new algorithmic
paradigm for this class of location problems. First, it avoids the problems
of limit convergence proven for the Weiszfeld type algorithms. Then, it
can be applied to any convex ordered median problem, even with mixed
norms, in any dimension. Moreover, we show an explicit reformulation
of these problems as SDP problems which enables the usage of standard
free source solvers (SEDUMI, SDPT3,...) to solve them up to any degree
of accuracy. This is essentially the second goal of this work, it was already
known that convex location problems with l1 norm were reducible to lin-
ear programming. This work proves that most convex continuous location
problems with lp norms are reducible to SDP programming showing the
similarities existing between all this class of problems.
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The Generalized Minimum Spanning Tree Problem (GMSTP) is defined in a
connected, undirected and m-partite complete graph G = (V,E). Its vertex set
V is partitioned into m clusters, with V = V1 ∪V2 ∪ ...∪Vm and Vr ∩Vq = ∅, for
all r 6= q with r, q ∈ M = {1, ...,m}. Its edge set E is given by E = {{i, j} | i ∈
Vr, j ∈ Vq}, for all r 6= q with r, q ∈M , for which ce ∈ R+ denotes the edge cost
of e = {i, j} ∈ E. GMSTP consists in finding a minimum cost tree, spanning
a unique vertex in each cluster, with exactly m − 1 edges connecting the m
clusters. GMSTP extends the so-called Minimum Spanning Tree (MST), which
belongs to the NP-hard class of problems [5] and has application in network
design, irrigation agriculture, smart cities, data science, among others.

In regarding mathematical models, Myung, Lee and Tcha [5] presented four
formulations for GMSTP. One formulation has a polynomial number of con-
straints and variables, while the others have an exponential number of con-
straints. In the study of Feremans, Labb and Laporte [2], four formulations have
an exponential number of constraints. In addition, a mathematical formulation
proposed by Pop [7] makes use of a graph G and a support graph G′, built as
follows. Each vertex of G′ represents a cluster of G, and the edges of G′ cor-
respond to connections between two clusters of G. The idea is to address the
spanning tree constraints in G′, while specific GMSTP constraints are handled
using G.

The GMSTP formulation proposed here is inspired on the formulation of
Andrade [1]. We propose a novel mathematical formulation based on multigraph,
which performs very well on known instances from the literature. Given a graph
G, previously defined, the multigraph H(G) = (V ′, E′) is obtained as follow.
Each cluster of G is considered as a vertex of V ′ and each edge e ∈ E corresponds
to exactly an edge e′ ∈ E′ of same cost ce, with |E| = |E′|.
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Experiments were performed with the goal of evaluate the performance of the
proposed model (Pandr) compared to the following GMSTP formulations from
literature: the polynomial multicommodity flow formulation of Myung, Lee and
Tcha [5] and the formulation of Pop [7], refereed respectively here as (Pmyung)
and (Ppop).

A benchmark set of 40 instances is used in the experiments: 20 instances
are original from Öncan, Cordeau and Laporte [6] and the 20 remaining were
created by taking a subset of vertices of instances in [6]. Initially, we apply
the preprocessing procedure of Ferreira et. al. [4] that allowed to fix out of the
solution about 85% of the edges from the original graphs.

Considering the set of 40 instances tested, the proposed formulation (Pandr)
proved optimality for all instances, while (Pmyung) proved optimality for 32
instances and the model (Ppop) proved optimality for 17 instances. The formu-
lation (Pandr) had an average runtime of 668.05 seconds, whereas (Pmyung) had
an average of 1423.65 seconds and (Ppop) of 2323.45 seconds. The formulations
reached an average GAP of 0.00, 45.00 and 9.66 for the (Pandr), (Pmyung), and
(Ppop) models, respectively.

In summary, the proposed formulation presents a competitive performance
with the models of (Pmyung) and (Ppop). In particular, by founding better lower
bounds and by proving optimality for larger instances in the time limit than
the other models. The originality of the proposed formulation by considering
a multigraph opens new research directions in terms of adaptation for related
problems, as well as for its use in cutting plane and decomposition approaches.
We intend to develop a Benders decomposition and a B&C using the proposed
model, and to develop valid inequalities to strengthen the model.
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2. Feremans, C., Labbé, M. and Laporte, G.: A comparative analysis of several formu-
lations for the generalized minimum spanning tree problem. Networks, 39(1), 29-34
(2002)
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Abstract. The k-Minimum Branch Vertices Spanning Tree (k-MBVST)
problem is to �nd a spanning tree of graph with the minimum num-
ber of k-branch vertices. Well-developed applications related to routing
in optical networks are known. We propose Proofs of NP-hardness and
non-inclusion in the APX class as well as an ILP formulation of the k-
MBVST problem. Computational results based on randomly generated
graphs show the e�ciency of your resolution method.

Keywords: Spanning Tree, Minimization of Branch Vertices, Integer
Linear Programming (ILP), MBVST, k-MBVST, Optical Networks.

1 Introduction and motivation
Given a connected graph G = (V, E), a vertex v ∈ V is de�ned to be a branch

vertex in a spanning tree if its degree (denoted dG(v)) is strictly greater than
two, i.e., dG(v) > 2. The MBVST problem is to �nd a spanning tree of graph
G with the minimum number of branch vertices. This NP-hard and non-APX
problem has been well-studied in the literature [Mar15]. The most widespread
application of such MBVST problems arises in multicast routing protocols in
WDM networks. From a computational viewpoint, they are mainly based on
light-trees, which require intermediate nodes to have the ability to split and
direct the input signal to multiple outputs as and when necessary. Such a node
is equipped with a light-splitters which are rather expensive devices. Moreover,
if a light signal is split into k copies, then the signal power of each resultant copy
is reduced by, at least, a factor of 1/k of the original signal power. If k is too
large, then the information cannot be deciphered at the destinations due to the
signal strength dropping below the minimum threshold value, and therefore, k
functions as a limiting (tolerance) parameter. A k-branch vertex is a vertex with
degree strictly greater than k + 2 in the spanning tree. It is useful to look for a
light-tree in the WDM network with the minimum number of k-branch vertices.
This leads to our problem :

De�nition 1. Let G = (V, E) be a graph. The k-MBVST problem consists of

�nding a spanning tree T of G such that the number of k-branch vertices in T
is minimized.
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2 NP-hardness and negative approximability
sk(G) is the smallest number of k-branch vertices in any spanning tree of G.
Theorem 1. Let r be a �xed non-negative integer. It is NP-complete to decide

whether a given graph G satis�es sk(G) ≤ r for any value of k.

The proof is based on a reduction from the Hamiltonian problem to the k-
MBVST problem (see the regular paper).

Theorem 2. The k-MBVST problem is not in APX for any value of k.
Proof. The proof is based on an AP-reduction from the Minimum Set Cover

problem to the k-MBVST problem (see the regular paper).

3 ILP formulation and computational results

The formulation of the k-MBVST problem as an integer linear program (ILP)
derived in this paper is predicated on the single balance commodity �ow formu-
lation proposed in [CGI09]. However, it is worthwhile to exploit the underlying
graph to ascertain which vertices must necessarily be, can never be, or could
possibly be k -branch vertices in the optimal solution [LMSP17]. Computing a
tighter upper bound on the maximum quantity of �ow transiting on the graph
edges and deploying a tight constraint to check if a vertex is k-branch or not,
we propose a signi�cantly improved version and compar it to the classical for-
mulation in the regular paper.
Computational results based on randomly generated graphs show that the num-
ber of k-branch vertices included in the spanning tree increases with the size of
the vertex set V, but decreases with k as well as graph density. We also show
that when k ≥ 4, the number of k-branch vertices in the optimal solution is close
to zero, regardless of the size and the density of the underlying graph.

4 Conclusion
Due to its importance, we propose a generalization of the MBVST problem by
introducing the notion of the k-branch vertex. Our new parametrized problem
(k-MBVST) aims to �nd a spanning tree of G with the minimum number of
k-branch vertices. For any non-negative integer r, we proved that it is NP-
complete to decide whether a graph can be spanned by a tree with at most r
k-branch vertices. Furthermore, we also established that the k-MBVST is hard
to approximate. We also proposed an integer linear programming formulation
based on a single commodity �ow balance constraints. Tests on random graphs
allowed us to evaluate the number of k-branch vertices in the optimal solution.
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Salazar González Juan J. 56 Grouche Salsabil 180
Hamaz Idir 48 Hanan Ouhader 106
Hartinger Tatiana Romina 28 Hommelsheim Felix 132
Houssin Laurent 48 Hudry Olivier 86
Jansson Jesper 24 Jouve Bertrand 142
Jozefowiez Nicolas 4 Almeida Jr. José Carlos 8
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Meier Florian 26 Merabet Massinissa 188
Milanic Martin 28 Millani Marcelo Garlet 12
Milne Duncan 160 Minoux Michel 170
Mir Ahmed 150 Miyano Eiji 24
Molnar Miklos 188 Molter Hendrik 12
Muehlenthaler Moritz 132 Munier Alix 70



Naghmouchi Mohamed Y. 108 Neto Jose 90
Neves Tiago 126 Ngueveu Sandra Ulrich 4
Nguyen Viet Hung 170 Ni Qiang 80
Niedermeier Rolf 12 Nikpey Hesam 24
Olaosebikan Sofiat 160 Ono Hirotaka 24
Ould Mohamed 152 Paat Joseph 114
Pan Stefania 64 Pedroso João Pedro 144
Pereira Felipe De C. 8 Perez Hipolito Hernandez 56
Perrot Nancy 108, 110 Pesneau Pierre 102
Pessoa Artur 66 Piva Breno 8
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