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V = collection of jobs    Jj

with processing times w(Jj)    (weights)

E = pairwise incompatibilities

(e.g.: non-simultaneity

or inclusion in different batches)

batch = collection S of compatible jobs

w(S) = f(w(Jj) : Jj _ S)

= total completion time of jobs in batch S

Problem: Find a partition C of jobs of V

into batches S1,�,Sk and a schedule

such that the total completion time

Cmax(C) = g(w(S1),�,w(Sk)) = min !



Model: graph    G = (V,E)

job Jj _ node Jj

Jr, Js incompatible _ edge [Jr, Js]

batch _ stable set

?
?

batcheskoint

partition _
− coloringk

node

processing time w(Jj) _ weight w(Jj)

�weighted coloring�

Cmax(C) ≡ K� (C) = weight or cost

          of coloring C

C



Example 1:

compatible jobs = jobs which may be processed on

  same machine

batch Si = jobs assigned to machine   i

w(Si) = ∑ (w(Jj) : Jj _ Si)

sequential processing of jobs of each batch

partition C into batches S1,�Sk

Cmax(C) = max ( ) ( ){ }k1 Sw,...,Sw

parallel processing of batches

Problem: Find a partition C = (S1,�,Sk)

   of jobs of   V   into batches Si

   (each Si is a compatible set)

   with Cmax(C) minimum



NB:    k is fixed in this example!

(else take k =  V and  Si = 1   ∀  i)

k ≥ )G(χ  = chromatic number of G

Special case: w(Jj) = 1   ∀  node Jj

w(Si) = ( )( ) iijj SSJ:Jw =

Cmax(C) = max { }k1 S,...,S

Problem: For   k  fixed

find a k-coloring C = (S1,�Sk)

such that

K� (C) = max { }k1 S,...,S  is min

!

! ! !

!

k = 2    S1 = {a,b,c,d}, S2 = {e}  K� (C) =  S1 = 4

k = 3    S1 = {a,b}, S2 = {c,d}, S3 = {e} K� (C) =  S1 = 2

a

be

c

d



(Bodlaender, Jansen, Woeginger, 1994)

Example 2:

compatible jobs = jobs which may be in same batch

w(Si) = max ( ){ }ijj SJ:Jw 

parallel processing of jobs in same batch

partition C into batches S1,�Sk

Cmax(C) = = ( )( )= k,...,1i:Sw i

sequential processing of the batches

Problem: Find an integer   k   and

a partition C = (S1,�,Sk) of jobs

of V into   k   batches Si (each Si is

a compatible set) with

Cmax (C) minimum



NB:   k   has to be found !   k ≥ )G(χ

   3    1     1     3

S1 = {a,d}, S2 = {b}, S3 = {c}     k = 3 > )G(χ

Cmax (C) = 3 + 1 + 1 = min !

Special case: w(Jj) = 1   ∀    Jj

w(Si) = max ( ){ }ijj SJ:Jw   = 1

Cmax(C = (S1,�,Sk)) =   ( )( )= k,...,1i:Sw i = k

Problem: Find a k-coloring of   G

with   k   minimum

complexity and approximability of

weighted case: see

(Demange, de Werra, Monnot, Paschos, 2001

 

a b c d 2)G( =χ



Time Slot Scheduling of compatible Jobs)

A �classical� application: satellite telecommunication

decomposition of traffic matrix

T = (tij) into permutation matrices P1,�,Pn

�switching modes�

such that { }= n,...,1spmax s
ijj,i   = min!

6 2 2 6 2 2

2 1 4 = 4 + 2 + 1

2 5 3 5 3 2

Cmax(C) =       6     +   3          +   2   = 11

G =

Here : :



NB: NP-complete (F. Rendl, 1985)

Generalization of previous model

stable set (compatible) S in G

•  S� ⊆  S is also stable

•  subgraph G(S) of G generated by

nodes of S = isolated nodes

= collection of node disjoint cliques of

size 1

Idea: replace S by S� ⊆   V such that

subgraph G�(S�) of   G   generated by S�

= collection of node disjoint cliques



Extension of basic model

def:  In   G = (V,E), set S ⊆  V hypostable

if   S   induces a collection of disjoint

cliques (without links)

_ _ _ _

    _

_ _ _ _ _

    hypostable not hypostable

Hypochromatic )G(hχ    = min   k   such that   ∃
number partition of   V   into

k   hypostable sets

NB: Determine whether 2)G(h ≤χ    : NP-complete

Also called �subcoloring�

easy for complements of planar graphs

( )2)G(h ≤χ   (Broersma, Fomin, Nesetril,



     Woeginger, 2002)

Such extensions of colorings

have been studied (generally unweighted)

M.O. Albertson, R.E. Jamison, S.T. Hedetniemi,

S.C. Locke (1989)

J.L. Brown, D.G. Corneil (1987)

J. Fiali, K. Jansen, V.B. Le, E. Seidel (2001)

R. Dillon (1998)

•  •  •



Solvable cases :

cactus: connected graph where any two

cycles have ≤ 1 common node

If G = L(H) (line graph of cactus)

then 3)G(h ≤χ

Block graph: every 2-connected component

 is a clique

If G =  block graph, then 2)G(h ≤χ



Weighted case: weight w(v) ∀  v in G

clique K   w(K) = ( ) Kv)v(w

S   hypostable set w(S) = max{ }SK)K(w 

C = (S1,�,Sk)   Cmax(C) = ( )= k,...,1i)S(w i

hypocoloring



Interpretation:

Ji, Jj compatible _ Ji, Jj  can be processed
simultaneously
(assigned to different
processors)

clique K _ collection of jobs to be
processed consecutively
(on same processor)
w(K) = ( ) Kv)v(w

hypostable set S _ set of jobs (or of
collections of incompatible
jobs)
w(S) = max{ }SK)K(w 

Problem: Find partition C of set V of jobs

into batches (hypostable sets):

Cmax(C) =min !



Property: In weighted graph G

 ∃  k-hypocoloring S with min cost K
)

(S)

which has k   ≤   ∆ (G) + 1 colors

color l  > ∆ + 1

{ }vSS s
'
s U= vSS −= l

'
l

NB: w(S1) ≥ � ≥ w(Ss)

w(v) ≤  w( lS ) ≤ w(Ss)

  ↑   ↑
   v   lS s < l

⇒ )S(w)S(w l
'
l ≤ )S(w)S(w s

'
s =

no increase of cost

Repeat until    S� = ( )'
k

'
1 S,...,S

     with    k ≤ ∆ + 1

∃    s   ≤ ∆ + 1
missing in N(v)



Brooks theorem: h)G( ≤χ  if

  G   has ∆ (G) = h   and G ≠ clique (or odd cycle h = 2)

Improvement:

∃  k-hypocoloring  S  with min cost K
)

(S)

and      k ≤ ∆ (G)

Sketch of proof:  S = (S1,�,Sk) opt k-hypocoloring

with    k ≤ ∆ (G) + 1   and    Sk  minimum.

If k ≤ ∆(G):        OK

k = ∆(G) + 1   let   v   Sk



If    ∃    color   s ≤ ∆(G) missing in N(v)

recolor  v  with  s ⇒  better coloring. Impossible

Hence colors 1, 2,�, ∆(G)     occur in N(v)

∃  color   s ≤ ∆ missing in N( )∆u

If   s < ∆    recolor ∆u  with s

and   v with ∆  ⇒  Better coloring. Impossible

•  •  •



Hence    s = ∆ missing in N( )∆u

Repeat for all nodes in Sk ← ∆ + 1

→ ∆-coloring   S�   = ( )'
k

'
1 S,...,S

w( ) ( ) ( )1
' SwSwS +∆∆∆ +≤

Better coloring. Impossible

Bound   ∆   best possible:

∀  p > 0   ∃    tree G with ∆(G) = p

and with optimum k-hypocoloring

with   k = p colors

Recolor  v
with ∆ !   •      •

•          •

•
•

43421
∆_



Complexity of weighted hypocoloring

NP-complete for graphs   G   with

∆(G) = 3 and w(v)   {a, b}

∃  polynomial algorithm for

trees with bounded degree

�special case�: graphs with ∆(G) = 2



A special case: ∆∆∆∆(G) = 2

G = cycles and chains

w(v) ≥ 0   ∀    node v

Proposition: If   G   = collection of chains, then

∃    G� = single cycle such that ∀  r

G� has 2-hypocoloring C� with K
)

(C�) ≤ r

iff G has 2-hypocoloring C with K
)

(C�) ≤ r.

_���_���_���_- - - _- - - _- - - _���_���_
2 1  3    4       0   0      5  1  6

Consequence: We may assume   G = disjoint cycles

NB: S   hypostable = nodes, edges, triangles

for   e = [x,y] w(e) = w(x) + w(y)

∃    optimal   2-hypocoloring

w(S1) ≥ w(S2) S2 contains no triangle

Basic idea: for fixed p ≥ q    use algorithm

A(p, q) which determines if   ∃   C = (S1, S2)

with      w(S1) = p, w(S2) = q



Properties used in   ∆∆∆∆ (p,q):

A) If    w(v) > q, then   v   S1

B) If    x, y, z consecutive on a   P3 (_��_��_)
with x, y   Si, then z   S3-i

C) If   for   e = [x,y], w(e) > p, then x, y not both
in S1 (�color 1 forbidden for e�)

D) If   w(e) > q, then   x, y not both in S2 (�color 2
forbidden for e�)

E) If   a1, a2, �, as = chain with a1, as   Si (s odd)
     or a1  Si, as   S3-i (s   even), then
∃    2-hypocoloring such that colors alternate on
chain

F) If   a1, a2, �, as = chain with a1, as   Si (s   even)
     or a1   Si, as   S3-i (s   odd) then
∃    2-hypocoloring such that [a1, a2] gets a feasible
color

Apply properties until a

2-hypocoloring is obtained

or a contradiction.

Record solution if best so far



a1 a2 as-1 as

_ ! ! ! _
 1  1

            alternate colors 1 & 2

a1 as

_ ! ! !
 1  2

a1 a2 as-1 as

_ ! ! ! !
 1  2

   [a1, a2]  →  color 1

w(a1) + w(a2) ≤ p (else   a2 5  S2)

a1 a2 as

_ ! ! _
 1  1

Apply properties A) − F) until

a 2-hypocoloring is obtained

(or a contradiction).

Record solution if best so far



Property: max {w(v) : v 5 V)  ″  w(S1) ″

   ″ max { max {w(e) : e 5 Ε} , max{w(K3) : K3 5 G}}

where K3 is a triangle in G

Algorithm: Start with smallest   p

(and smallest q ≤ p) and apply   A(p, q)

to get smallest   q   for which C = (S1, S2) exists.

Increase   p   to next possible value and

repeat   A(p, q) with minimum   q.

Stop when   p   is at maximum possible value.

Complexity:   O(n2)

Examples:



8 1 5 5 _

_ ! _ _ _ _

w(S1) = 11      w(S2) = 1

8 1 5 5 !

_ ! _ _ _ _

w(S1) = 10      w(S2) = 1

10 1 5 5 _ !

_ ! _ _
! _

w(S1) = 10  w(S1) = 8
w(S2) = 1 w(S2) = 3
optimum optimum

_ _

_ ! _ _
! !

w( '
1S ) = 11   ↑

w( '
2S )  =  1              not optimum

optimum

4 3

4

5 5

1

8

1

3

0



A special case:

2-restricted hypostable sets:

collection of cliques of cardinality ≤ 2

�nodes and edges�

Property: ∃    optimal k-hypocoloring

with k  ≤  Α(G)

For graphs without triangles



∃    enumeration algorithm   COCA

(contract or connect algorithm)

�Light� version: usual colorings

stop ••••  ••••  •••• ••••  ••••  ••••      ••••  ••••  ••••

x, y not
adjacent

x, y
different
colors

x, y :
same
color

clique



G   triangle-free: hypostable sets

�nodes and edges�

For   G   with x, y not linked:    partition of 
     colorings

a) x, y    in same Si: G ← GX≡Y

  x, y condensed into xy
 w(xy) = max {w(x), w(y)}

b) x, y   not in same Si: G ← G + [x, y]

For   G   with edge [x, y] :    partition of 
     hypocolorings

a) x, y    in same Si: G ← GX≡Y

  [x, y] condensed into xy
 w(xy) = w(x) + w(y)
 edges adjacent to   x y   are blocked

b) x, y   not in same Si:
 G ← G   with [x, y] blocked

Initialization: G   without triangles



weights   w(v);    L = {G} : list of graphs

          to examine

while L ≠ Ø choose G* in L

If G* has a free edge [x, y]

then apply separation   H   (introduce 2

          modified '
sG  into   L

          and remove G*)

else (all edges blocked)

if G* ≠ clique, then apply separation   C

   (introduce 2 modified '
sG

     into   L   and remove G*)

   else (G* = clique with all

edges blocked)

   w(G*) = ( ) )G(Vv)v(w *

   update best solution

   if necessary; remove G*



COCA finds optimum (weighted)

hypocoloring in any graph G

if hypostable sets are defined

as �nodes and edges�

(node disjoint cliques of size ≤ 2)

Some extensions:



Hypostable set S: every connected component

is a clique

S� ⊆  S   is also hypostable

      (hypostability = hereditary property)

More generally: let   P   be hereditary property

S   is a P-constrained set if every

connected component Cs of    S satisfies   P.

Examples: P = �Cs is a clique�

P = �Cs is planar� (cf VLSI)

C(S)    =   {C1,�,Cr}

connected components of   S

V(Cs)   =   nodes of Cs

f(Cs)    =   f(w(v) : v 5 Cs)

w(S)    =   max {f(Cs) : Cs 5 C(S)}

Hypothesis:   for   Cs = {v}, f(Cs) = w(v)



def: A   P-constrained k-coloring

C = (S1,�,Sk) of   G = (V, E) is a partition

of   V   into   k   P-constrained sets

def: cost of C   ( )== k,...,1i:)S(w)(K iC
)

with    w(Si) = max{f(Cs) : Cs 5 C(Si)}

Examples :

A) weighted hypocolorings

P = Cs is a clique

f(Cs) = ( ) )C(Vv:)v(w s

w(Si) = max {f(Cs) : Cs 5 C(Si) }

B) P = Ø w(v) = 1 − v 5 V

f(Cs) =  V(CS)

w(Si) = largest # nodes in 
connected component of Si

C = partition of   V  into arbitrary    S1,�,Sk



Remark: C = (S1,�,Sk)

partition into arbitrary subsets

{ }=≤χ =
k

1i iss )S(CC:)C(Vmax)(K)G( C
)

In fact

{ }=χ =
k

1i iss )S(CC:)C(Vmaxmin)G(

(S1,�,Sk)
partition of V(G)

 a  b  c  d

_ _ ! _

! ! _
 e     f  g

C(S1) = {a b, d g} w(S1) = 2

C(S2) = {  c,  e f } w(S2) = 2

4)G( ≤χ

S1 = a b d g
S2 = c e f



Property: G = (V, E)   weighted graph

 C = (S1,�,Sk) partition of   V

into arbitrary S1,�,Sk

wmax(U) = max{w(v) : v 5 U}   − U ⊆  V

 then

min  { }≤ =
k

1i issimax )S(CC:)C(Vmax)S(w)(K C
)

C = P-constrained coloring

********

Alternate definition of weighted chromatic number:

( Si = stable set; w(Si) = max {w(v) : v 5 Si})

=)(Kmin C
) { }=

k
1i issimax )S(CC:)C(Vmax)S(wmin

C : coloring    S1,�,Sk

         arbitrary
         partition

¿ coloring algorithm for the unweighted case ?



A �special� case:

P-constrained chromatic number )G(pχ

= min ( )= i ii S:)S(w)(K CC
)

C = (S1,�,Sk) partition into P-constrained subsets

w(v) = 1    ∀  v 5 V   ;   f(Cs) = max {w(v) : v 5 Cs} = 1

w(Si) = max {f(Cs) : Cs 5 C(Si) } = 1

Property: For G = (V, E)   weighted

with w(v) > 0 ∀  v w(v) { }r21 t,...,t,t

every optimal P-constrained coloring *
k

*
1 S,...,S

with f(Cs) = max {w(v) : v 5 Cs}

satisfies

( )1)G(r1k p −χ+≤



Sketch of proof:

Assume w(S1*) ≥ � ≥ ( )*
kSw ; let q = )G(pχ

To be shown   ( ) ( )*
1qi

*
i SwSw −+>    ∀  i ≤ k � q

Take smallest i with ( ) ( ) ( )*
k

*
1qi

*
i SwSw...Sw ?== −+  .

Then ( ) ( ) s
*

1qi
*
i tSw...Sw === −+  = max {w(v) : v 5 G�}

where G� = subgraph generated by *
k

*
i S...S UU  .

But q)G()G( p
'

p =χ≤χ , so   ∃    P-constrained

coloring '
1qi

'
i S...,,S −+ of G� with    i + q � 1 < k .

Assume ( ) ( )'
k

'
i Sw...Sw ??  ; then ( ) ( )*

i
'
i SwSw =

and ( ) ( )*
si

'
si SwSw ++ ≤  for s = 1,�,q-1.

Setting *
j

'
j SS =  for j = 1,�, i-1,

we get a P-constrained coloring C�

with i + q � 1 < k colors;  since ( ) ( )==> '
k

*
k Sw0Sw  ,

we have )(K)(K *' CC <
)

.

Contradiction !

Ø


