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Speed scaling

e 5(t): speed at time t (units of work per unit of time)
e P(s(t)) = s(t)*: power consumed by a CMOS device

» CMOS: dominant technology for integrated circuits

» « > 1 is a machine-dependent constant

» Intel PXA 270: 1.11, Intel Pentium M 770: 1.62
[WIERMAN, ANDREW, TANG; INFOCOM 2009]
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Work: w = s(t)dt Energy: E = P(s(t))dt
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The problem

Instance:
o A set of n jobs:
» the job J; has a work wj;, a release date r; and a deadline d;.
e Machine environment:
» a single processor or a set of m parallel processors or a set of
m heterogeneous processors or shop environments or ...
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e Linear programming and randomized rounding
[Bampis, KoNoNOV, LETSIOS, L., SVIRIDENKO; FSTTCS 2013]

» Heterogeneous multiprocessors without migrations

e Convex primal-dual
[Bampis, CHAU, LETSIOS, L., MiLis; SEA 2013]

» Open-shop with preemptions



Linear programming
and
Randomized rounding
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on each processor P;.

e Each processor P; has a different constant «;.



e Each job J; has

» a different work wy;
» a different release date r;
» a different deadline dj;

on each processor P;.

e Each processor P; has a different constant «;.

o Case study: we allow preemption but no migration of jobs
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Integer programming formulation
Configuration: the schedule of a job
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Configuration: the set of slots of
a job on a specific processor

Given a configuration for the job J;
e s;;c: speed of J; in configuration c on processor P;
e E; ;. energy consumption if J; runs according to c on P;

. 1, if job J; is executed on P; according to ¢
e 0, otherwise



min E EiJ,c *Xij,c
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min Z EiJ,c *Xij,c
ij,c
D Xije=1 VYijobJ
i,c
Z Xije <1 Vslots
Se(’-7j7c)
Xij,e >0

e Fvariables: exponential

e Fconstraints: polynomial



Integer programming formulation

ming Eijc-Xije maxE Aj— E Lbs
J s

ij,c
2zl Viebh A= D pssEie Vo)
ire s:s€(iyj,c)
Z Xije <1 Vslots Ajs fts > 0
s€(ij,c)
Xjjc >0
e Ftvariables: exponential e Ftvariables: polynomial

e Fconstraints: polynomial e F#constraints: exponential



Separation oracle:

maxZ)\j - Z“s ¢ Given a solution
J s (assignment to the variables)
A — Z s < Eije V(i) c) > eithe‘r deFides t.hat the
= solution is feasible
s:s€(iLj,c)

» or returns a violated
Aj, s = 0 constraint



Dual program

Separation oracle:

maxz Aj— Z Hs e Given a solution
J s (assignment to the variables)
A — Z s < Eije V(i) c) » either decides that the

solution is feasible
» or returns a violated
constraint

s:s€(ij,c)
Aja Hs 2 O

» For each pair J; and P; find the configuration ¢ that minimizes

Ei,j,c + Z Us

s:ise(ij,c)



Dual program

Separation oracle:

maxz Aj— Z Hs e Given a solution
J s (assignment to the variables)
A — Z s < Eije V(i) c) > either de.cides t_hat the
= solution is feasible
s:s€(iy,c) .
» or returns a violated
Ajs s 20 constraint

» For each pair J; and P; find the configuration ¢ that minimizes

Ei,j,c + Z Us
s:s€(ij,c)
» E;;c: the same for configurations with equal number of slots

» For x =1,2,... #slots, find the x variables ps with the
minimum value



The dual specifies a polynomial number of violated constraints.

» Solve the primal considering only the variables that
correspond to violated constraints



The dual specifies a polynomial number of violated constraints.

» Solve the primal considering only the variables that
correspond to violated constraints

We can find an optimal solution for the primal linear program in
polynomial time.



Randomized rounding

1 Solve the configuration LP relaxation.

2 For each job J;, choose a configuration at random with
probability x; ; ..

3 during each slot such that to have a feasible
schedule.
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Randomized rounding

1 Solve the configuration LP relaxation.

2 For each job J;, choose a configuration at random with
probability x; ; ..

3 during each slot such that to have a feasible
schedule.
351 :
speed 359
=

V]

" slot s ' time

Theorem

The expectation of the energy consumption is no more than B,,
times the energy of the relaxed linear program.
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kamax
o = D ekl
k=0
> amax-th (fractional) moment of
Poisson’s distribution

» Intel PXA 270 : 1.067
» Intel Pentium M 770 : 1.49
» CMOS («=3) : 5

Eﬂmax

40

20




Discussion

Preemptive Non-preemptive Routing
« without migrations single processor uniform demands
Homogeneous [1] [ Heterogeneous [4] 2] ] [4] Bl [ [
1.11 2 1.07(1+¢) 2.93 1.15(1+¢) 375 1.07
1.62 2 1.49(1+¢) 17.15 | 2.30(1+¢) 2196 1.49
1.66 2 1.54(1+¢) 19.70 | 2.43(1+¢) 2522 1.54
2 2 2(1+4¢) 64 4(1+4-¢) 8193 2
2.5 5 3.08(1+¢) 362 8.72(1+¢) 46342 3.08
3 5 5(1+4¢) 2048 20(1+e¢) 262145 5

[1. GREINER, NONNER, S0UzZA; SPAA 2009]

[2. ANTONIADIS, HUANG; SWAT 2012]
[3. ANDREWS, ANTA, ZHANG, ZHAO; IEEE/ACM TRANS. ON

NETWORKING 2012]

[4. Bampis, KoNONOV, LETsIOs, L., SVIRIDENKO; FSTTCS 2013

» Heterogeneous multiprocessors with migrations

» Heterogeneous job-shop



Convex primal-dual



Preemptive Open-shop

Instance:
o A set of m parallel processors.
e A set of n jobs.
e Each job J; has an operation O;; with work wj; > 0 to execute
on the processor P;.
¢ An available interval [0, d].

Objective:
e Find a feasible preemptive schedule with the minimum energy
consumption such that operations of the same job are not
executed in parallel.



e each operation Oj runs at constant speed s;j = <2
if

L) — e — -1
. E(O,J)—t,J-sg‘—W,-j-sg‘

s,-j-

< Li  time

speed T power T




1 Determine the speeds such that the total energy consumed is
minimized
2 Transform works to processing times

3 Run the polynomial algorithm for the classical problem to
determine the schedule



The algorithm

1 Determine the speeds such that the total energy consumed is
minimized
2 Transform works to processing times

3 Run the polynomial algorithm for the to
determine the schedule

The classical preemptive openshop problem

e Each operation Oj; has a processing time p;; instead of work

e Polynomial-time algorithm that creates a feasible schedule
[GonNzALEZ; IEEE TRANSACTIONS ON COMPUTERS 1979]



The algorithm

1 Determine the speeds such that the total energy consumed is
minimized
2 Transform works to processing times

3 Run the polynomial algorithm for the to
determine the schedule

Determine the speeds

e Convex cost flows [Bampis, LETsios, L.; ISAAC 2012]
e Convex program

e Convex primal-dual w.r.t. KKT conditions



min g E W,-J-s,-?‘_:l

O;ieJ; O;€eP;

Wi
—4 <d  foreach P;
o

OUEP,' u
Wi
— <d foreach J;
.
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sj >0  for each Oj



KKT conditions
o Necessary and sufficient conditions
Stationarity condition:

o _ Pit7 ? for each Oj

5..
ij o —
Complementary slackness conditions:

Bi - E Yi_d]=o0 for each P;
Sij
O,'J'GP,'

v - Zw—d =0 for each J;




Primal-dual method

Stationarity condition:

o_ Bit

Sj = for each Oj

Complementary slackness conditions:

Bi - Z @—d =0 for each P;
O,'J'EP,' SU

v - Z%—d =0 for each J;
O;icJ; u

e Stationarity condition directly relates primal and dual variables

¢ Main idea: change the dual variables until complementary
slackness conditions are satisfied



e Deadlined =5

o Work
E -
Pl 3 - 1
P2 2 1



Increase 3;

Non-feasible



The primal-dual algorithm (an example)
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The primal-dual algorithm (an example)

Tight Non-tight Tight Tight
Q d = 5 0 d = 5 0 d = 5 0 d = 5
3 =0 n=0 |
»» [ORTT . | - t . T
: Increase 3; Decrease v; :
: L o o ;=0 ‘ 5 :
23] . Y —

Non-feasible Feasible Non-feasible Feasible



The primal-dual algorithm

1 Initialize:
Sore i\
> ﬂ;:Oand’yj:(afl) (C)U;JJJ)

2 While the complementary slackness conditions are not
satisfied do
1 Increase (3; to make processors feasible
2 Decrease v; to make jobs tight or v; =0



e The algorithm converges, since at least one +; is decreased at
each step

o Complexity?



Experimental results

A: an array of size m x n with the work of operations
a=2or2b50r3
d = 1000

Wmax = 10 or 50 or 100

density: probability of an operation to exist
p=050r0.750r1

30 different instances for each combination of parameters



a =2, Wnax =10, p=1

Number of modifications

n m=5 | m=10 | m=15 | m=20 | m=25 | m=30 | m=40 | m=50
5 40101 1 2 2 2 2 2 2
10 151 | 279611 3 4 3 4 4 4
20 255 295 384 - 34 7 7 10
30 355 410 443 500 5903 - 12 15
40 455 510 565 572 640 756 - 32
50 555 610 665 720 768 755 947 -
60 655 710 765 820 872 864 1040 1294
70 755 810 865 920 975 1030 1034 1250
100 1055 1110 1165 1220 1275 1330 1440 1495
150 1555 1610 1665 1720 1775 1830 1940 2050
200 2055 2110 2165 2220 2275 2330 2440 2550




Modifications

a =2, Wnax =10, p=1
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Parameters Modifications
p=05 344

‘;‘Vn; 2: Lo | P=075 23915
x p=1 179611
W = 10 oa=2 279611
1 a=25 59785
P a=3 10716
N Wmax = 10 279611
p—1 Wmax = 50 406608
Wmax = 100 -




a =2, Wnax =10, p=1




Methodology
e Linear programming + Randomized rounding

e Convex programming + Primal dual



Methodology
e Linear programming + Randomized rounding

e Convex programming + Primal dual

Questions
e New models

o Tradeoffs between performance and energy



Thank you!



