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Multi-Objective Optimization and Multi-Armed Bandits

Overview
• Background  

• Multi-armed bandits 
• Multi-objective optimization 
• Adaptive operator selection 

• Multi-objective optimisation in multi-armed bandits  
• Multi-objective Multi-armed bandits (MO-MAB)  

• Multi-armed bandits in multi-objective optimisation 
• Adaptive operator selection using multi-armed bandits 

• Related fields: multi-objective optimization under uncertainty 

• Conclusions 

• References
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Multi-armed bandits (MAB)
• Popular mathematical formalism used to study the convergence properties of 

Reinforcement Learning with a single state 
• A machine learning paradigm used to study and analyse resource allocation 

in stochastic and noisy environments. 
• An example: a gambler faces a row of slot machines and decides 

• which machines to play,  
• how many times to play each machine 
• in which order to play them 

• When played, each machine provides a reward generated from an unknown 
distribution specific to a machine.  

• The goal of the gambler is to maximise the sum of rewards earned through a 
sequence of lever pulls.
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Multi-armed bandits (MAB) algorithms

• Intuition on the MAB algorithms 
• An agent must choose between N-arms (= actions) such that the 

expected reward over time is maximised.  
• The algorithm starts by fairly exploring the N-arms, gradually focusing 

on the arm with the best performance.  
• The distribution of the stochastic payoff of the different arms is assumed 

to be unknown to the agent.  

• Exploration / exploitation trade-off   
• Explore the sub-optimal arms that might have been unlucky 
• Exploit the optimal arm as much as possible 

• Performance measures  
• Cumulative regret is a measure of how much reward a strategy loses by 

playing the suboptimal arms
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Multi-armed bandits: type of algorithms

• Continuous or discrete sets of arms  

• Adversarial sets of arms 

• Stochastic multi-armed bandits 
• Online selection of the arm with the maximum expected mean (i.e., the 

arm with higher expected reward) 
• The best arm can change over time 
• UCB1 [Auer et al, 2002] 

• Best arm identification algorithms  
• Fixed confidence vs fixed budget 
• Multiple best arm identification  

• Contextual multi-armed bandits 
• uses the context to adapt the multi-armed bandit long term behaviour, 

or regret 
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Multi-objective optimization problem

• Simultaneous optimization of two or more objectives 
• Pareto front —> a set of Pareto optimal solutions 

• Dominance relations 
• Pareto dominance is a partial order relation where one solution can 

be better in one objective and worse in another objective compared 
to a second solution 

• Scalarizarion dominance transforms the value vector into a scalar 
value using a scalarization function  

• Related with the field of multiple-criteria decision making where a user 
expresses his / her preference for an objective or a search region 

• Real world applications: economics, optimal control, resource 
allocation, etc.
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Pareto dominance relation
• A reward vector can be better than another reward vector in one objective 

and worse in another objective 
• The natural order relationship for multi-objective search spaces 
• Examples of relationships between reward vectors  

• The Pareto front is the set of expected reward vectors that are non-
dominated by the other expected reward vectors 

• All the solutions in the Pareto front are considered equally important
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Lp scalarization function

• Goal: Lp transforms the multi-objective search space into a 
single objective space using a scalarization function  

• Weighted power p sums of reward values, where a set of 
predefined weights is considered 

•   function can find all solutions of any shape, i.e. non-convex 
• The reference point                            is an extra parameter 

•    function is a linear scalarization function 
•    function is a Chebyshev scalarization function 
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Multi-objective multi-armed bandits (MOMABs)
• Multi-armed bandits use reward vectors 
• Evolutionary Computation (EC) techniques are used to design 

computationally efficient MOMABs 

• The exploration / exploitation trade-off is common for both multi-armed 
bandits (MABs) and EC for multi-objective optimisation 

• In EC, exploration means evaluation of new solutions in a very large 
search space where states cannot be enumerated  

• In MAB, exploration means to pull arms that have suboptimal mean 
reward values 

• In EC, exploitation means to focus the search in promising regions where 
the global optimum could be located 

• In MAB, exploitation means to pull the currently identified best arm(s) 

• MOMABs with a finite set of arms and reward vectors generated from 
stochastic distributions
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Multi-objective multi-armed bandits (MOMABs)
• The goal of MOMABs is either  

• to maximise the returned reward; or to minimise the regret of pulling 
suboptimal arms 

• identify the set of Pareto optimal arms 
• We assume that all Pareto optimal arms are equally important and need to be 

identified 
• Performance measures 

• Pareto regret → sum of the distances between each suboptimal arm and 
the Pareto front 

• Variance regret → variance in using the Pareto optimal arms  
• Theoretical analysis 

• Upper and lower bounds on expected cumulative regret 
• Challenges  

• Large and complex stochastic multi-objective search spaces 
• Non-convex Pareto fronts 
• Non-contiguous mapping of attractors from the solution to the objective 

space  
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The bi-objective transmission problem of wet clutch
• An application from control theory  
• Goal: optimise the functionality of the clutch: 

• the optimal current profile of the electro- 
hydraulic valve that controls the pressure of  
the oil to the clutch  
• the engagement time.  

• Stochastic output data  —> some external factors, such as the surrounding 
temperature, cannot be exactly controlled.  

• Goal: optimise the parameters —> that minimise the clutch's profile and the 
engagement time in varying environmental conditions. 
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Stochastic discrete MOMAB problems
• K-armed bandit,  K ≥ 2, with independent arms 
• The reward vectors have D –objectives, where D fixed   

• An arm i is played at time steps   
• The corresponding reward vectors                         are independently and 

identically distributed according to an unknown law with unknown 
expectation vectors     

• The goal of MOMAB:  
•Identify the set of best arms by simultaneously maximising rewards in all 
objectives 

•The arms in the Pareto front are considered equally important and should 
be pulled the same number of times. 

•Minimise the regret (or the loss) of not selecting the arms in the Pareto 
front

t1,i, t2,i, . . .
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Pareto MAB algorithms

• Definition: a multi-objective MAB algorithm that uses the Pareto partial 
order relationship 

• The Pareto regret metric is used to upper bound the performance of the 
designed Pareto MAB algorithms 

• Challenges in designing Pareto MAB algorithms: 
1.Pareto front identification 

1.Identification of a representative Pareto set of arms 
• The exploitation/exploration trade-off:  

• Exploration: pull suboptimal arms that might be unlucky 
• Exploitation: pull as much as possible the optimal arms  

• Optimising the performance of Pareto MABs in terms of upper and 
lower bounds on expected and/or immediate regret  

• Ameliorate the performance of Pareto MABs for large sets of arms 
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Performance metric: Pareto regret

• We denote with                         the empirical distance between an arm i   
and the Pareto front  

• Let     be the virtual reward vector of  the arm   such that      has the 
minimum distance to    , 

•                       is incomparable with all reward vectors in the 
Pareto front and  

• The expected Pareto regret for a learning algorithm after n arm pulls is
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Pareto Upper Confidence Bound (PUCB1) [Drugan & Nowe, 2013]

• Straightforward generalisation of UCB1 
• operator selection [Fialho et al, 2009] 
• learning the utility of swap operations in combinatorial optimisation 

[Puglierin et al, 2013] 
• Maximises the reward index 
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Pareto Upper Confidence Bound (PUCB1)
• Each iteration, a Pareto front is calculated using 

• One of the arms from the Pareto front is selected 

• The upper bound is   

• The worst-case performance of this algorithm is when the number of 
arms K equals the number of optimal arms  

• The algorithm reduces to the standard UCB1 for D = 1.  
• Pareto UCB1 performs similarly with the standard UCB1 for a small 

number of objectives and small Pareto optimal sets
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Annealing Pareto Knowledge gradient [Yahyaa et al, 2014]

• Knowledge gradient policy is a reinforcement learning algorithm where 
the reward vectors are updated using Bayesian rules 

• Annealing like functions that decrease uncertainty around the arms 
• The algorithm 

• At initialisation, all arms are considered 
• Iteratively, extreme arms are identified as either Pareto optimal or 

deleted as suboptimal arms 
• The iteration stops when there are no more arms to classify
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Pareto front identification
• This policy is an extension of the best arm identification algorithm 
[Audibert et al.,2010] for a set of arms of equal quality.  

• The m-best arm identification algorithm [Bubeck et al, 2013] assumes 
that the m-best arms can be totally ordered. 

• The algorithm 
• Let   

•   
• For all rounds   
•    (1) For each arm          , select it for                  rounds   
•    (2) Let                                               the arm to dismiss in this round  
• Let the remaining set of arms be the Pareto optimal set of arms    
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   - Pareto front identification [Drugan & Nowe, 2014a]
• Epsilon dominance relation assumes there exists a set of representative 

vectors that is a good approximation of a large Pareto front. 
• The reward vector       -dominates another reward vector   ,             iff for all 

the objectives j, we have                       and      for which                      . 
•      positive constants defined for each dimension j,  
• If                    , we have the classical definition of dominance  
• A set of reward vectors       is an   -approximate Pareto reward set    , if any 

reward vector            is   -dominated by at least one reward vector            
•   

• The algorithm 
• Assign arms to the hyper-grid boxes,   
• Delete arms that belong to the dominated boxes,  
• Select a single representative arm in each  
non-dominated box,  
• Return the approximative front
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Scalarized multi-objective multi-armed bandits
• Pareto front identification using a set of pre-definited or adaptive scalarization 

functions 

• Convex Pareto fronts 
• Generate the entire Pareto optimal set of arms with a minimum set of 

weights 
• No assumption on the distribution of the Pareto front 
• No guarantee that all Pareto optimal arms were identified for any set of 

scalarization functions 
• Non-convex Pareto fronts 

• Linear scalarization 
• Easy to understand and to use 
• Not all the Pareto optimal reward vectors are reachable 

• Chebyshev scalarization 
• There is no reference how to search for the set of optimal reference points 

that will generate the entire Pareto optimal set of arms 
• The reference point is an extra parameter to optimize
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Performance of scalarized MOMABs
• The scalarized regret metric  

• where the optimum reward value     is the reward for which the function     
attains its maximum value  

• the maximum value for any set of weights is a Pareto optimal arm  
• this regret alone is improper for the MOMAB algorithms because it 

gathers a collection of independent regrets instead of minimizing the 
regret in all objectives 

• The Pareto variance regret metric  

• Measures the variance in pulling the Pareto optimal arms     
•           the number of times that arm i is pulled during n number of pulls
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Scalarized multi-objective UCB1 [Drugan & Nowe, 2013]
• A fixed set of weight vectors 
• Independent scalarized UCB1 algorithms 
• Regret is independently measured for each scalarized UCB1  

• The scalarized multi-objective UCB1 algorithm 
• Initialize the scalarized UCB1 for all the scalarized functions        
•   
• Until some stopping criteria is met do  

• Choose uniform randomly a function  
• Play one time scalarized UCB1 for  
• Play each arm once 
•   
Update mean vectors and counters 
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Scalarized multiple arm successive accepts and rejects 
[Drugan & Nowe, 2014b]

• Successively deletes suboptimal arms in K-1 rounds  
• The length of the rounds increases with the number of arms’ pulls 
• We consider a fixed set of scalarization functions  
• Each scalarization function is associated with a set of active arms 

• sSAR assumes there are p Pareto optimal arms identifiable with each 
scalarization function 

• To each scalarization function is assigned  
• A set of active arms that is initialized to the set of arms I   
• A set of accepted arms that is initialized to the empty set 

• An arm i is deleted in the k-th epoch from the active set if it maximizes the 
reward gap to the p(k)+1-st arm 

• The deleted arm i is accepted if better than the p(k) best arm 
• The algorithm stops when there are p arms identified as the best arms
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Scalarized multiple arm successive accepts and rejects 

• Initialization: 
• for each scalarization function    , initialize the set of 

active arms   
• The length of the k-th round is 
• The Pareto front              ,  
• the set of accepted arms  

• For all rounds  
• For all the arms i for which                 play the arm for 
• For all the scalarization functions            do 

• Let                                      be the arm to dismiss next 
• Update the set of active arms  
• If the arm i among the best         arms,                                     

• Accept the arm i,  
• Update the set of accepted arms 
• Set the remaining number of arms to be accepted 

to 
• Return the Pareto front as the reunion of accepted arms 
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Shape driven Pareto front identification algorithms [Drugan, 
2015a]

•  -optimal arm given a scalarization     is 
•  is the accuracy probability and    is the error probability 
• A policy is        correct if  
• Each arm is sampled an equal and fixed number of times 

• For each weight vector, several   - optimal arms are identified 

• Weight D - rectangles 
• Two weight vectors belong to the same D-rectangle if they have the same 

optimal arm. 
• Convex Pareto front à contiguous D-rectangles 
• We do not need to search further between two weight vectors belonging 

to the same D-rectangle 
• Update the list of D-rectangles with a new weight vector generated 

between two D - rectangles 
• Stop when the distance between two D-rectangles is less than accuracy
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Weight hyper-rectangle decomposition on the wet clutch 
example
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Challenges in designing scalarized MOMABs
•Identify the entire Pareto front 

•Large Pareto fronts 
•Non-convex Pareto fronts 
•Non-uniform distributions of arms on the Pareto front  

•Optimising the performance of scalarized MOMABs in terms of upper and 
lower regret bounds 

•The scalarized / Pareto regret metric 
•The Kullback-Leibler divergence regret metric 

•Exploitation/exploration trade-off:  
•Exploration: sample scalarization functions, and pull arms that might 
be unluckily identified as suboptimal  

•Exploitation: pull as much as possible the Pareto optimal arms of 
relevant scalarization functions
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Multi-armed bandits for multi-objective optimisation

• Adaptive operator selection for evolutionary multi-objective algorithms 
• UCB1 is used in continuous multi-objective optimization [Ke Li et al, 2014] 
• adaptive pursuit is used for selecting scalarization functions  for many-

objective combinatorial optimization [Drugan, 2015b] 

• Adaptive multi-operator selection  
• multi-objective multi-armed bandits (a multi-objective version of adaptive 

pursuit) is used to select multiple parameters for Pareto local search 
[Drugan & Talbi, 2014] 

• Monte Carlo Tree search  
• splits the solution space into areas in order to focus the search in the 

most promising (high fitness) area 
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Adaptive operator selection
• Motivation:  

• the performance of EAs depends on the used parameters  
• the performance of a genetic operator depends on the landscape 
• an operator can have different performance in different regions of the 

landscape 

• Tuning genetic operators  
• Selection of parameters 
• Mutation rates  / Recombination exchange rates 
• Population size 
• Variable neighbourhood size (local search)  

• Online learning strategy 
• The algorithms should learn relatively fast the best operator  
• There are several operators that perform similarly
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UCB1 for online operator selection [Fialho at al, 2010]
• Each operator is considered an arm with unknown probability of getting a 

reward 

• The reward function for operator i contains 

• the estimated value for the operator  

• the exploitation coefficient                      

• where     is the number of times the operator i was selected and C the 
exploration constant 

• Remarks 

• Originally, UCB1 has positive sub-unitary values 

• Tuning C is important for any fitness landscape 

• UCB1 detects changes in the environment but will react quite slow to 
them   

• UCB1 is combined with other optimisation techniques to improve the 
performance of the online operator selection algorithm 
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UCB1 for operator selection in multi-objective optimization
• Performance of operator selection depends on the improvement measure considered 

like difference in fitness value and / or diversity 

• Techniques to improve the performance of UCB1 
• Detect a change in the distribution with Page-Hinkley statistical tests 
• Weigh the operators using their frequency in applying it 
• Area under curve is also used as a measure of improvement in UCB1 
• Extreme values operator selection focuses on extremes to encourage exploration 

• Hyper-parameter tuning, or tuning the tuner 
• Off-line parameter tuning with F-race 

• UCB1 is used to  
• select solutions that adapt the CMA-ES matrix in continuous MO-CMA-ES 

[Loshchilov et al, 2011] 
• select operators to improve the performance of MOEA/D algorithms [Ke Li et al, 

2014]
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Adaptive pursuit strategy (AP) [Thierens, 2005]
• Each operator i has associated a probability value       of selection and an 

estimated reward value  
• Online operator selection algorithm with fixed target probabilities is a step 

like distribution 
•        has a large probability value to select often the best operator 
•        has a small non zero probability to select any suboptimal operator  

• The iterative algorithm 
• Pursuit with probability        the operator v with the maximal estimated 

reward  
• Get reward vector        for the operator v 
• Update reward value        using the immediate reward    
• High rank the estimated reward distribution        and set the values in 

vector r 
• For each operator i, update the selection probabilities 

P (t)
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Online multi-operator selection [Drugan & Talbi, 2014]
• Optimise the usage of two or more operators simultaneously 

• Motivated by the quadratic assignment problem: 

• Exploring large variable neighbourhoods is expensive 

• Iterated local search is efficient for QAPs   

• Probability distribution of the mutation and the neighbourhood operators 

• Quality distribution of the mutation and the neighbourhood operators 

• Update reward vectors: an improvement in the cost of the candidate solution when 
compared with the current solution  

• Update probabilities: the probability distributions are independently updated
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Bandits trees for continuous multi objective optimisation
• Monte Carlo Tree Search (MCTS) is a heuristic used to solve intractable problems, i.e. 

huge search spaces, like playing computer Go  
• MCTS builds a search tree using a search policy selecting the most probable nodes to 

expand 
• A top down approach, i.e. root to leaves, with the following steps 

• Selection of the most promising children 
• Expansion creates new nodes using a tree policy 
• Simulation plays at random from the current node to the end of the game 
• Back-propagation updates the information on the explored path 

• MCTS variants are used in optimisation of real-coded multi-dimensional functions by 
partitioning the search space in subdomains  

• The search focuses on the most promising partitions, i.e. that contain the best solutions 

• Simultaneous optimistic optimisation (SOO) [Preux et al, 2014] is successfully applied 
on many dimensional test problems from the CEC’2014 competition on single objective 
real-parameter numerical optimisation. 

• SOO is straightforwardly extended to multi-objective optimisation in [van Moffaert et al, 
2014]
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Multi-objective optimization under uncertainty
• Stochastic multi-objective optimization [Gutjahr, 2011] 

• stochastic optimization and multi-objective optimization evolved 
separately even though their intersection is multi-criteria decision making 
(MCDM) 

• operational research —> risk analysis, finances, facilities allocations 
• combinatorial multi-objective optimization problems that use Pareto 

dominance 

• Risk neutral decision making  
• only expectations of reward vectors are optimised 
• linear utility functions are considered by the decision maker 

• Risk adversarial decision making 
• non-linear utility functions 
• both expectations are optimised and variations are minimised
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Concluding remarks on multi-objective multi-armed bandits algorithms
• Multi-objective multi-armed bandits 

• Follows closely the latest developments in MABs and MOO 
• New theoretical tools needed to study the performance of MOMAB 

algorithms 

• Multi-criteria reinforcement learning 
• Reinforcement learning is a generalisation of multi-armed bandits to multi-

states that associate state and action pairs with transition probabilities 
• Hybrid algorithms between reinforcement learning and evolutionary 

computation  

• Open research questions  
• Computationally efficient exploitation / exploration trade-off 
• Adequate performance measures for MOMABs 
• Advanced MOO techniques to improve the performance of MOMAB 

algorithms 
• Challenging real world problems to motivate MOMABs paradigms  
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Concluding remarks on multi-armed bandits and multi-
objective optimization

• New emerging paradigms between multi-objective optimisation and multi-
armed bandits problem  
• to solve challenging realistic problems for example finances and 

engineering 

• incomplete observations and / or large stochastic and changing 
environments 

• potential to develop new algorithms for automatic parameter tuning   

• Focus on integrating techniques from one problem to another depending on 
the goal of the designed algorithm 
• deterministic or stochastic optimization 
• finite, large or continuous search spaces (or environments)
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