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= Context and objectives

= State of the art

* Model and problem to solve
» Schedulability conditions

» Optimal scheduling algorithm for systems with
multiple constraints in the monoprocessor case

= Distribution and scheduling for systems with
multiple constraints in the multiprocessor case

= Conclusion and work in progress
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RTE systems characteristics

* Functionalities: Automatic Control, Signal & Image
Processing algorithms

 Reactive: Stimulus event - Operations — Reaction event

 Real-Time: Constraints: Latency = bounded Reaction Time
Cadence = bounded Input Rate

uistributed: Power, Modularity, Wires minimization

Heterogeneous Multicomponent Architecture
* Network of Processors and Specific Integrated Circuits
« Specific Integrated Circuits = ASIC, ASIP, FPGA, IP

 Embedded: Resources minimization
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Algorithm-architecture adequation (AAA)

* Global approach based on the Synchronous
Languages Semantics and the hardware RTL models
* Unified Model: Directed graphs
 Algorithm: Operation / Data-Conditioning Dependence
« Architecture: FSM / Connection

» Implementation: distribution and scheduling through
graphs Transformations

* Adequation: Optimized Implementation (best
matching)

 Macro-Generation:
« Real-Time Executives for Multicomponent
« Structural VHDL for Integrated Circuit Synthesis
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Typical model: precedence constraints

Choice in scheduling
and potential paralellism
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Typical model: real-time constraints

= Period: T = Computation time: C
= Deadline: D = Release time: r
= Start time: s
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State of art: tasks with periodicity constraints

Processors / characteristics / optimality criterium

= 1 /T=D /- RMS: optimal for static

assignment

= 1/T<D /- DM: optimal for dynamic
assigment

= 1 /T<D,r/- NP-hard (non-preemptive)

= m/T=D /- sufficient and necessary condition

= m/T<D /- NP-hard
= m/strict T /- NP-hard (non-preemptive)
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= 1/prec, D / min L.. EDD — optimal

= 1/ prec [ foa Lawler — optimal

= 1/prec,r,D /- NP-hard

= 1/prec,r [ foan Baker — O(n?)
(preemptive)

= 1 /prec,r / min L... NP-hard

= 1 /sa-se<aas / min schedule
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Tasks with precedence & periodicity constraints

= 1/r, D const. partial order, T / - modified EDF

= 1/ prec-subtasks /- schedulability condition

= 1/ T, prec for sporadic tasks / - schedulability test
= m/ T/ minimize communications

= m/T,D-tasks ; T, D, prec-subtasks/ -
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Model and problem to solve

» Reactive systems features

= Typical vs. new model
= Latency: new constraint
= Repetitive graph

= [ atency and periodicity constraints

= Problem to solve
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Reactive systems features
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Extended to each operation and each pair of operations
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Typical vs. new model

Operation instead of task or job to be independent
of implementation aspects
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Periodic operations: Repetitive Graph
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Relation between periodicity and latency

Theorem: the periodicity constraint is a strict latency
constraint
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Problem to solve

= Several processors = Off-line scheduling
* Precedence constraints = \Without preemption
= [ atency constraints = With idle time

* Divisible periods and

execution times

Study for monoprocessor case
then results extention for multiprocessor case
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Schedulability condition for latencies

= Relations between pairs of operations
» |I: schedulability condition for imposed latencies
on pairs of operations which are in relation |l
» Z: schedulability condition for imposed latencies
on pairs of operations which are in relation Z
= X: schedulability condition for imposed latencies
on pairs of operations which are in relation X

= Schedulability condition
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4.0 Il (H.J)

Theorem: the system is schedulable if and only if L,.> > C,and L, > ZCH

Hel(A,C) Hel(H,J)
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(A,C) Z (D,G)

Theorem: the system is schedulable ifand only if L, .> ZCH and L,;> > C,
Hel(4,C) Hel(D,G)
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(D,G) X (H,J)

Theorem: the system is schedulable if
and only if one of the following relations
is satisfied
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Schedulability condition for latencies

Theorem: the system is schedulable if and only if:

= forall pairs (4,C) 1 (HJ), L,e = D.Cyand L2 D.C,

Hel(4,0) Hel(D.G)

= forall pairs (4,C) Z(D.G), L,c =2 D.Cy, and L, 2 > C,

Hel(A4,C) Hel(H,J)

for all pairs (D,G) X (H,J;),one of following relations is satisfied:
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Theorems:
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Schedulability condition for periodicities

» Theorem: for a system with periodicity and
precedence constraints

= the existence of a hyperperiod from Smax tO Smax +T, where T is the

least common multiple of all periodicity constraints

= if the system is schedulable then Y C. <1
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General schedulability condition

» Theorem: if the system is schedulable then
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Scheduling algorithm for monoprocessor

= Algorithm of latency marking
= Scheduling algorithm
= Optimality
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Scheduling algorithm

= Algorithm of latency marking

= the mark of an operation is the smallest value of all
latency constraints for which there is a path from this
operation to the second operation of the latency constraint

= Infinite scheduling algorithm

* the steps of initialization schedule the operations in this
order: first, operations without constraints, then operations
with mark = 0, and finally periodic operations

= once a periodic operation is scheduled, the order of the
scheduling is the opposite order of the initialization order
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Optimality

Scheduling algorithm applied, only, from O t0 smax +T

» Theorem: the scheduling algorithm is optimal (if there
IS a schedule, the algorithm will find it)

* The system has only precedence and latency constraints
(By contradiction)

» The system has only periodicity and precedence
constraints (Theorem)

*» The system has periodicity, latency and precedence
constraints (Combination of previous cases)
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= Scheduling of
operations is not
sufficient

= Distribution of
operations onto
pProcessors

= Distribution and
= A 5 scheduling based on
B algorithm graph and

Shared :

________ 1 @i architecture graph
transformations

*..* Bus/mux/demux/arbiter

O Bus/mux/demux

______________________
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Distribution and scheduling model (1/2)

The set of all possible implementations is described as
the composition of three binary relations:

(Gal, Gar) rout o distrib o sched > (Gal’, Gar’)

* Routing: creation of all the inter-operator routes

« Distribution: spatial allocation
« Partitioning and allocation: operations onto operator
 Partitioning of inter-partition edges according to routes

« Creation and allocation:
« Communication vertices onto communicators of the route
» Allocation vertices onto memories
 ldentity vertices onto bus/mux/demux/ with or without arbiter
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Distribution and scheduling model (2/2)

« Scheduling: temporal allocation
 Partial Order — Total Order for:

« Each partition of operations allocated onto an operator
« Each partition of communication operations allocated onto a communicator

Routing, Distribution and Scheduling lead to a
Partial Order consistent with the initial Partial
Order of the Algorithm Graph
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Distribution and scheduling optimization

= Distribution and scheduling optimizations lead
to NP-hard problems

» Heuristics based on scheduling results for
monoprocessor such that communication cost
IS taken into account

» Fast: Greedy: list-scheduling for Rapid Prototyping
= Slow: Neighboring list-scheduling with back-tracking
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CyCab application

® Vitesse 30km/h

@® Moteurs électriques
® 4 roues motrices

® 2 directions AV, AR

@® Multi-processeur MPC555 +
un Pentium

@® Bus Can

Industrialisé par Robosoft
www.robosoft.fr
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System level CAD software: SynDEXx
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D |
Conclusion

= New model for real-time systems

= Relations between:
= | atency and periodicity constraints
» | atency constraint and deadline
= Monoprocessor
= Optimal scheduling algorithm
= Schedulability condition for latencies
= Schedulability condition for periodicities
» General schedulability condition
= Multiprocessor
= Distribution and scheduling for one latency = period
= Heuristics taking into account communication cost
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T S,
Work In progress

= Extension to multiprocessor by using heuristics
based on previous results

= Preemptive scheduling algorithm
» Periodicity with jitter
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