Sur quelques métamorphoses de la méthode des centres

Jean-Philippe Vial

ORDECSYS & Université de Genève

Journées en l'honneur de Pierre Huard Paris 20ème journée JFRO 24-26 novembre 2008

Première manifestation

La méthode des centres

P. Huard (1967)

Problème convexe

$$\lambda^* = \max\{f(x) \mid g_i(x) \ge 0, i \in J, x \in B\}$$

- -f(x) et g_i sont des fonctions concaves
- $-B \subset \mathbb{R}^n$ est un ensemble convexe, fermé, borné
- $-\operatorname{int}(A) \cap B \neq \emptyset$ où $A = \{x \mid g_i \geq 0, i \in J\}$
- Un point $x^o \in A \cap B$ avec $\lambda^0 = f(x^o) \le \lambda^*$

Outils de la méthode

- Tronçon $E(\lambda) = \{x \in A \mid f(x) \ge \lambda\}$

$$- \text{ F-distance } d(x, E(\lambda)) = \begin{cases} \min\{f(x), g_i(x) \ i \in J\} \\ (f(x) - \lambda)^\alpha \prod\limits_{i \in J} g_i(x) \\ \alpha \ln(f(x) - \lambda) + \sum\limits_{i \in J} \ln g_i(x) \end{cases}$$

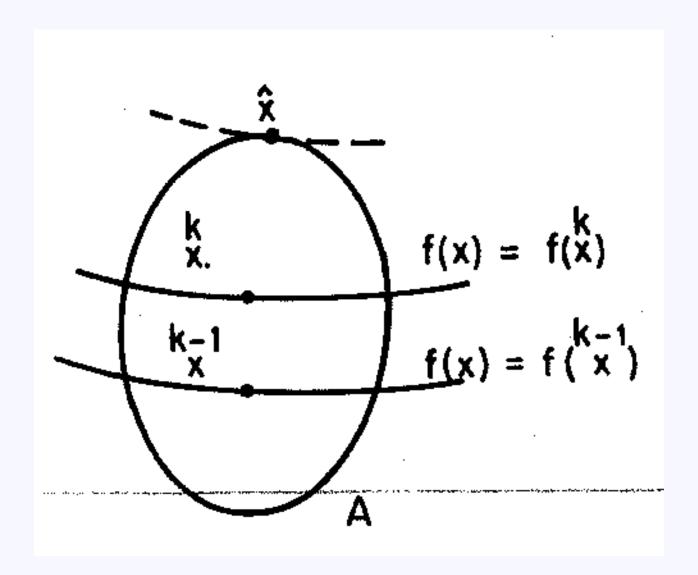
- Centre $x(\lambda) = \arg\max\{d(x, E(\lambda)) \mid x \in B\}$

Algorithme théorique

- A l'étape k, $f(x^k) = \lambda^k < \lambda^*$
- Pas de base
 - $x^{k+1} = x(\lambda^k) = \arg\max\{d(x, E(\lambda_k)) \mid x \in B\}$
 - $\bullet \ \lambda^{k+1} = f(x^{k+1})$

Convergence : Les points d'accumulation de la suite générée appartiennent à l'ensemble des solutions optimales

ORDECSYS



Algorithme « pratique »

1. Linéariser

$$f_L(x;y) = f(y) + f'(y)(x - y) \ge f(x), \ \forall x$$

 $g_{iL}(x;y) = g_i(y) + g'_i(y)(x - y) \ge g_i(x), \ \forall x$

2. Utiliser une F-distance approximante

$$d_L(x, y, E_L(\lambda)) = \min \{ f_L(x; y) - \lambda, g_{iL}(x; y) \mid i \in J(\lambda) \}$$

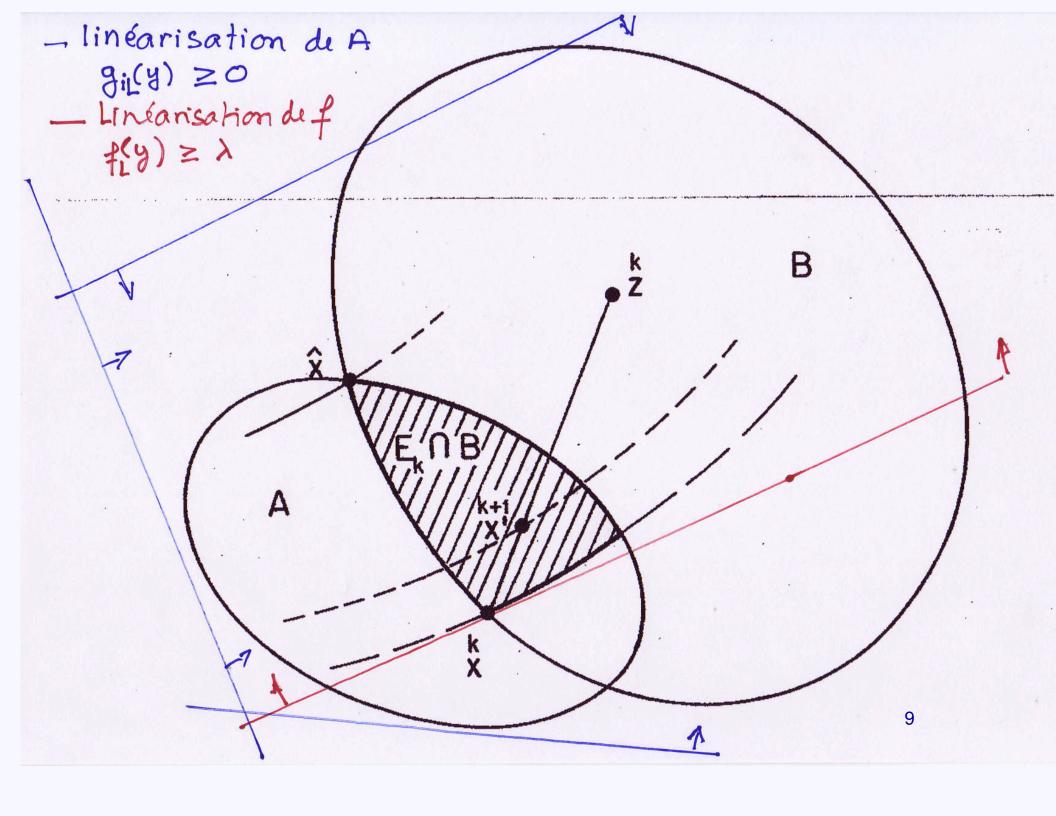
Algorithme de la méthode des centres linéarisés

- Initialisation choisir $y^0 \in B$ et faire k = 0 et $\lambda_0 = -\infty$
- Pas de base

1.
$$z^k = \arg\max_{x \in B} d(x, y^k, E_L(\lambda_k))$$

2.
$$y^{k+1}=y^k+\gamma(z^k-y^k)$$
 avec
$$\gamma=\arg\max_{\delta}\{d(x,E(\lambda^k))\mid x=y^k+\delta(z^k-y^k), 0<\delta\leq 1\}$$

3.
$$\lambda_{k+1} = f(y^{k+1})$$



Premier avatar (métamorphose)

Méthode duale de points intérieurs pour la programmation linéaire Renegar (1988)

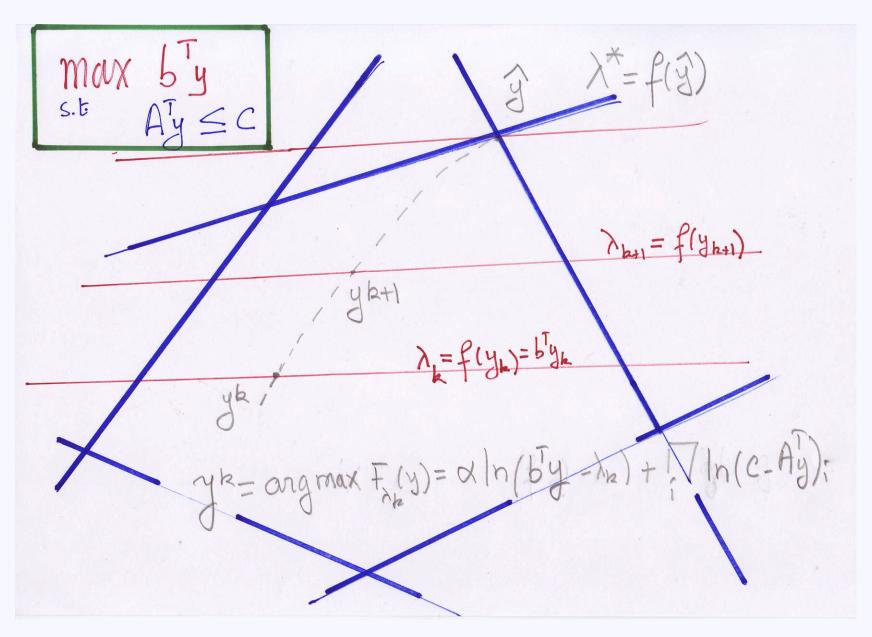
Problème linéaire

$$\lambda^* = \min\{c^T x \mid Ax = b, x \in \mathbb{R}_+^m\}$$
$$\lambda^* = \max\{b^T y \mid A^T y + s = c, s \in \mathbb{R}_+^n\}$$

Potentiel pour le problème dual

$$F_{\lambda}(y) = \alpha \ln(b^{T}y - \lambda) + \prod_{i \le n} (c - A^{T}y)_{i}$$

Défini pour $y \in \{y \mid A^T y < c\}$ et $\lambda < \lambda^*$



Algorithme théorique

- Initialisation choisir y^0 tel que $A^Ty^0 < c$ et faire k=0 et $\lambda_0 = b^Ty^0$. Précision demandée $\epsilon > 0$.
- Pas de base

1.
$$y^{k+1} = \arg \max F_{\lambda_k}(y)$$

2.
$$\lambda_{k+1} = b^T y^{k+1}$$

3. Si
$$\lambda_{k+1} - \lambda_k < \epsilon \frac{1}{1+n/\alpha}$$

• Convergence Le nombre d'itérations est borné par

$$k^* = \left[\frac{n}{\alpha} \ln \frac{\lambda^* - \lambda^0}{\epsilon} \right]$$

Propriété du centre analytique

Gradient du potentiel :

$$F'_{\lambda}(y) = \alpha s_0^{-1}b - As^{-1}$$
 avec $s_0 = b^Ty - \lambda$ et $s = c - A^Ty > 0$.

Centre analytique $y_{\lambda} = \arg \max F_{\lambda}(y)$ défini par $F'_{y_{\lambda}=0}$.

Soit

$$xs = \frac{s_0}{\alpha}e$$

qui définit un point intérieur x > 0 primal réalisable Ax = b. (e, vecteur avec composantes égales à 1.)

Calcul de la borne sur le nombre d'itérations

$$\lambda^* - b^T y \le c^T x - b^T y = x^T s = \frac{n}{\alpha} (b^T y - \lambda) \tag{1}$$

$$\lambda^* - \lambda = (\lambda^* - b^T y) + (b^T y - \lambda) \le (b^T - \lambda)(1 + \frac{n}{\alpha}) \tag{2}$$

Conclusion 1:

$$b^T y - \lambda \le \frac{\alpha}{n} \epsilon \implies \lambda^* - b^T y \le \epsilon$$

Conclusion 2 : Si $\lambda^+ = b^T y_{\lambda}$

$$\lambda^* - \lambda^+ = (\lambda^* - \lambda) + (\lambda - b^T y_\lambda) \le (\lambda^* - \lambda) \left(\frac{1}{1 + \alpha/n}\right)$$
$$\lambda^* - \lambda^k \le (\lambda^* - \lambda^0) \left(\frac{1}{1 + \alpha/n}\right)^k$$

The "missing link"

La borne sur le nombre d'itération suppose un calcul exact des centres analytiques y_{λ} .

- Peut-on borner le nombre d'itérations avec des centres approchés ?
- Quel effort de calcul pour obtenir un centre analytique approché?

Le jury répond OUI aux deux questions, grâce aux bonnes propriétés du potentiel F vis-à-vis de la méthode de Newton. Mais il faut le payer par un $\alpha=\sqrt{n}$ pas trop grand, ce qui donne la borne

$$k^* = O(\sqrt{n} \ln \frac{\lambda^* - \lambda^0}{\epsilon})$$

Une affaire de voisinage au pays de Newton

$$N_{\lambda}(y,\eta) = \{ y \mid ||F'_{\lambda}(y)||_{F''_{\lambda}(y)} \le \eta \}$$

Théorème 1 Pour tout $0 < \eta \le \bar{\eta} < 1$ tel que $||F_{\lambda}'(y)||_{F_{\lambda}''(y)} \le \eta$

- 1. $y_{\lambda} \in N_{\lambda}(y, \eta)$
- 2. Le pas de Newton $y^+ = y + [F_{\lambda}''(y)]^{-1} F_{\lambda}'(y)$ garantit $||F_{\lambda}'(y^+)||_{F_{\lambda}''(y^+)} \le \eta^2$.

Théorème 2 Soit $\alpha = \sqrt{n}$ dans la définition du potentiel.

$$\begin{aligned} &\textit{Si} \ ||F_{\lambda}'(y)||_{F_{\lambda}''(y)} \leq \eta^2 \ \textit{et} \ \lambda^+ = \lambda + \theta(b^Ty - \lambda) \ \textit{pour} \ 0 < \theta < 1 \\ &\textit{alors} \ ||F_{\lambda}''(y)||_{F_{\lambda}''(y)} \leq \eta. \end{aligned}$$

La méthode des petits pas

Hypothèse : on dispose d'un point initial qui se trouve dans un voisinage η^2 du point y_{λ} de la trajectoire des centres.

Iteration de base

- 1. Changer λ en λ^+ suivant la règle du théorème 2. Le point courant se trouve dans un voisinage η du point y_{λ^+} .
- 2. Faire un pas de Newton comme décrit dans le théorème 1. Le nouveau point y^+ se trouve dans un voisinage η^2 du point y_{λ^+} de la trajectoire des centres.

Extension à une classe de problèmes non-linéaires

Nesterov et Nemirovski (1994) ont introduit la classe de fonctions convexes non-linéaires, dites fonctions auto-concordantes, qui ont les mêmes propriétés (théorème 1) vis-à-vis de la méthode de Newton.

Cela permet de donner des bornes sur la minimisation de fonctions convexes auto-corcordantes et sur la résolution de programmes linéaires sur les cônes du second-ordre et des matrices semi-définies positives.

Méthodes de plans sécants pour la programmation convexe non-différentiable

	Centre analytique	Centre de Tchebichev
proposition	Goffin-Haurie-Vial (1992)	Elzinga-Moore (1975)
convergence	Nesterov (1995) Goffin-Luo-Ye (1996) Nesterov-Vial (1999)	Ouorou (2008)
	borne sur # d'itérations	point d'accumulation

Du différentiable au non différentiable

Les fonctions linéaires $f_L(y,z) - \lambda$ et $g_{iL}(y,z), \forall i \in J$ introduites dans la méthode des centres linéarisée définissent des supports globaux pour E:

$$E \subset \{y \mid f_L(y, z) - \lambda \ge 0, g_{iL}(y, z), \forall i \in J\}$$

La propriété reste vraie si on utilise un sous-différentiel lorsque les fonctions sont simplement convexes (peut-être non différentiables).

En revanche, le pas de la méthode des centres linéarisée

$$y^{k+1} = y^k + \gamma(z^k - y^k)$$

avec

$$\gamma = \arg\max_{\delta} \{ d(x, E(\lambda^k)) \mid x = y^k + \delta(z^k - y^k), 0 < \delta \le 1 \}$$

n'est plus garanti car la direction $(z^k - y^k)$ n'est plus nécessairement une direction de descente $\Rightarrow \delta = 0$.

Méthode des centres par plans sécants

- Initialisation Choisir $y^0 \in B$. Faire k = 0, $\lambda_0 = -\infty$ et $H_0 = \mathbb{R}^n$
- Pas de base
 - 1. Cas $z^k \not\in A$, c.-à.d. $g_i < 0$ for some $i \in J$ $h_k = \{y \mid g_i(z^k) + g_i'(z^k)(y z^k) \ge 0\} \text{ (plan strictement sécant)}$ $H_{k+1} = H_k \cap h_k \text{ et } \lambda_{k+1} = \lambda_k$
 - 2. Cas $z^k \in A$, c.-à.d. $q_i \geq 0$ for all $i \in J$
 - (a) Cas $f(z^k) \leq \lambda_k$ $h_k = \{y \mid f(z^k) \lambda_k + f'(z^k)(y z^k) \geq 0\} \text{ (plan sécant)}$ $H_{k+1} = H_k \cap h_k \text{ et } \lambda_{k+1} = \lambda_k$
 - (b) Cas $f(z^k) > \lambda_k$ $H_{k+1} = H_k$ et $\lambda_{k+1} = f(z^k)$

Convergence : méthode des centres analytiques, version homogène

Problème	Hypothèse	Convergence	
Problème de réalisabilité			
Trouver $y \in Y^*$	$Y^* \ {\bf convexe} \\ B(\bar{y},\varepsilon) \subset Y^* \subset B(0,R)$	$k \le \frac{(1+R^2)^2}{\varepsilon^2} M$	
Problème d'inégalité variationnelle			
Trouver $y^* \in Q$ tel que $h_y^T(y-y^*) \geq -\epsilon$ $\forall y \in Q, \text{ and all } h_y \in H(y)$	Q convexe avec sc. barrière $H(y)$ monotone sur Q $ h_y \leq L$ sur Q	$\frac{k}{\sqrt{k+\nu}} \le \frac{L(1+R^2)}{\epsilon\theta_3} e^{\theta_2\sqrt{\nu}}$	
Problème d'optimisation convexe sous contrainte			
$\min\{f(y)\mid y\in Q\}$	Q convexe avec sc. barrière $Q \subset \{y \mid y \leq R\}$ f convexe et $ \partial f \leq L$	$f(\hat{y}) - f^* \le \frac{L}{\sqrt{k+\nu}} \left[\sqrt{\nu} + \frac{e}{\theta_3} \left(1 + \frac{\nu}{k} \right) \right] [1 + R^2]^{1 + \frac{\nu}{2k}}$	

Quelques exemples récents d'applications

- [1] BABONNEAU, F., ET VIAL, J.-P. Proximal-ACCPM with a nonlinear constraint and an active set strategy to solve nonlinear multicommodity flow problems. (2006). A paraître dans *Mathematical Programming*.
- [2] BABONNEAU, F., ET VIAL, J.-P. Traffic equilibrium with elastic demands. Working paper (2006). A paraître dans in *Transportation Science*.
- [3] L. DROUET, A. HAURIE, J.-P. VIAL ET M. VIELLE. A coupled game solved with the homogeneous version of OBOE to model Post Kyoto international climate policy. Document de travail ORDECSYS (2008). Soumis à *Annals of Operations Research*

Les sources de la suite OBOE (dernier avatar de la méthode ACCPM) sont disponibles sur le site de COIN-OR ou depuis

http://www.ordecsys.com/fr/produits