Application of Nested Monte-Carlo methods to the Traveling Salesman Problem with Time Windows

Tristan Cazenave¹ and Fabien Teytaud^{1,2}

¹ LAMSADE, Université Paris Dauphine

² HEC Paris, CNRS, 1 rue de la Libération 78351 Jouy-en-Josas

- Traveling Salesman Problem with Time Windows
- Nested Monte-Carlo Algorithm
- Nested Roll-out Policy Adaptation
- Experiments
- Conclusion

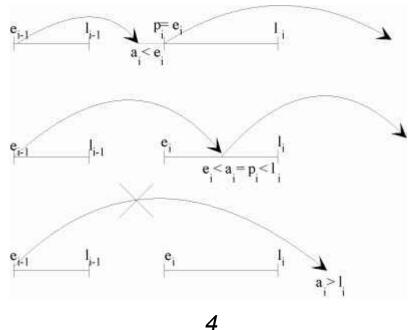
Traveling Salesman Problem (TSP)

Data

- List of cities
- Distances between all cities
- Goal
 - □ Find a path visiting each city exactly once
 - The path must be as short as possible

Traveling Salesman Problem with Time Windows (TSPTW)

- Additionnal property: Time windows
 A city can not be visited before a certain time and after a certain time
- Some problems have no solution
- Finding a valid solution is NP-hard



- Traveling Salesman Problem with Time Windows
- Nested Monte-Carlo Algorithm
- Nested Rollout Policy Adaptation
- Experiments
- Conclusion

Nested Monte-Carlo (NMC)

[Cazenave, 2009]

Tree exploration algorithm

Evaluation with Monte-Carlo simulations

Particularly efficient for one player games and when late decisions are as important as early ones.

Nested Monte-Carlo (NMC)

[Cazenave, 2009]

- Nested plays a whole game and returns the associated score
- Nested takes for parameters the level n and the current position (recursive algorithm)
- Principle
 - The score of an action is calculated by calling a nested with level n-1
 - The level 0 of NMC is a Monte Carlo simulation (random play until the end of the game)

NMC

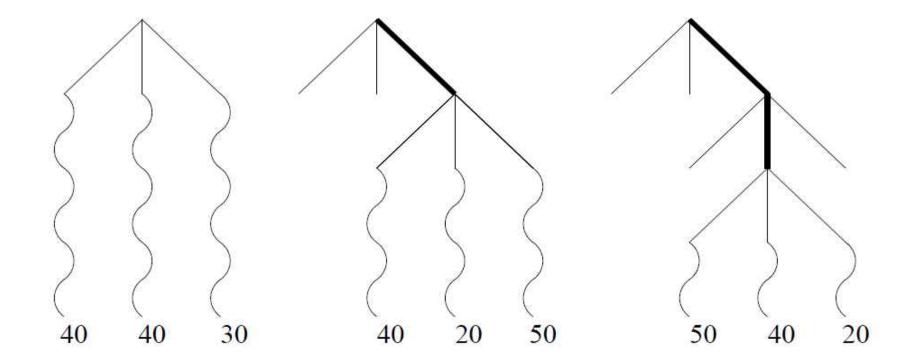
Level 0

- Monte-Carlo policy
- Choose a city randomly

Level > 0

- □Launch NMC(*level*-1)
- □ The action with the highest score is chosen

NMC(level=1) example



Adding Heuristics

[Rimmel et al, 2011]

- The algorithm can be improved by modifying the Monte Carlo simulations.
- Instead of uniformly random, the actions are chosen according to expert knowledge :
 - □ The distance to the last city
 - The waiting time (related to the inf bound of the time window)
 - □ The remaining time before the end of the time window

- Traveling Salesman Problem with Time Windows
- Nested Monte-Carlo Algorithm
- Nested Rollout Policy Adaptation
- Experiments
- Conclusion

Nested Rollout Policy Adaptation (NRPA)

- NMC can be improved by modifying the Monte Carlo simulations.
- Instead of random playouts, a policy is learned :
 Increase the weights of the best cities
 - □ Decrease the weights of other cities
 - For each city : compute a probability proportional to the exp of its weight

[Rosin, 2011]

Nested Rollout Policy Adaptation (NRPA)

Level 0

□ Adapted policy

Choose a city accordingly to its probability

Level > 0

Do N iterations of NRPA(level -1)

□Update

- The scores
- The sequences
- The policy

Adding expert-knowledge (NRPA_EK)

- Force to visit cities as soon as they go after their windows end.
- Avoid visiting a city if it makes another city go after its windows end.
- Consider all moves if no move available after these two tests.
- Important point : Optimal moves can not be pruned with this expert knowledge

- Traveling Salesman Problem with Time Windows
- Nested Monte-Carlo Algorithm
- Nested Rollout Policy Adaptation
- Experiments
- Conclusion

Experiment protocol

- - \Box Analyzes of N and the level (NRPA)
 - \Box Comparison of NRPA and NRPA_EK on one problem.
 - Comparison of the best results found by NMC, NRPA and NRPA_EK on a set of standardized problems

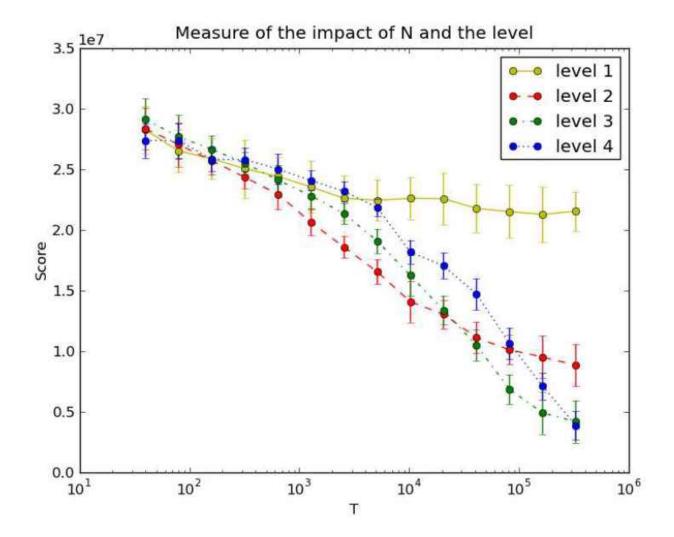
[Lopez-Ibanez and Blum, 2010]

Experiments (Tuning of NMC)

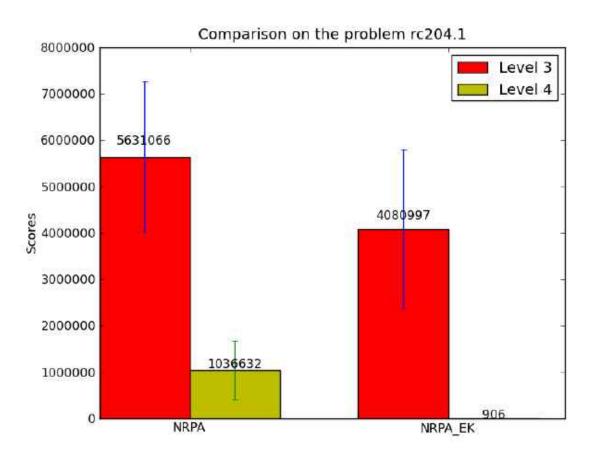
Iterations	BEST	KBEST	MEAN
1	2.7574e + 06	2.4007e + 06	2.3674e + 06
2	5.7322e + 04	3.8398e + 05	1.9397e + 05
3	7.2796e004	1.6397e + 05	618.22
4	5.7274e + 04	612.60	606.68
5	2.4393e + 05	601.15	604.10
6	598.76	596.02	602.96
7	599.65	596.19	603.69
8	598.26	594.81	600.79
9	596.98	591.64	602.54
10	595.13	590.30	600.14
11	590.62	591.38	600.68
12	593.43	589.87	599.63
13	594.88	590.47	599.24
14	590.60	589.54	597.58
15	589.07	590.07	599.73

Table 1. Evolution of the true score on the problem rc206.3.

Experiment results (1)



Experiment results (2)



- Hardest problem from the set,
- * 46 cities,
- Best knownresult : 868,76

Experiment results (3)

Problem	# cities	State of	NMC_EK	NRPA	NRPA_EK
	1=	the art	score	score	score
rc206.1	4	117.85	117.85	117.85	117.85
rc207.4	6	119.64	119.64	119.64	119.64
rc202.2	14	304.14	304.14	304.14	304.14
rc205.1	14	343.21	343.21	343.21	343.21
rc203.4	15	314.29	314.29	314.29	314.29
rc203.1	19	453. <mark>4</mark> 8	453.48	453.48	453.48
rc201.1	20	444.54	444.54	444.54	444.54
rc204.3	24	455.03	455.03	455.03	455.03
rc206.3	25	574.42	574.42	574.42	574.42
rc201.2	26	711.54	711.54	711.54	711.54
rc201.4	26	793.64	793.64	793.64	793.64
rc205.2	27	755.93	755.93	755.93	755.93
rc202.4	28	793.03	793.03	800.18	793.03
rc205.4	28	760.47	760.47	765.38	760.47

Experiment results (3)

Problem	# cities	State of	NMC_EK	NRPA	NRPA_EK
		the art	score	score	score
rc202.3	29	837.72	837.72	839.58	839.58
rc208.2	29	533.78	536.04	537.74	533.78
rc207.2	31	701.25	707.74	702.17	701.25
rc201.3	32	790.61	790.61	796.98	790.61
rc204.2	33	662.16	675.33	673.89	664.38
rc202.1	33	771.78	776.47	775.59	772.18
rc203.2	33	784.16	784.16	784.16	784.16
rc207.3	33	682.40	687.58	688.50	682.40
rc207.1	34	732.68	743.29	743.72	738.74
rc205.3	35	825.06	828.27	828.36	825.06
rc208.3	36	634.44	641.17	656.40	650.49
rc203.3	37	817.53	837.72	820.93	817.53
rc206.2	37	828.06	839.18	829.07	828.06
rc206.4	38	831.67	859.07	831.72	831.67
rc208.1	<mark>38</mark>	789.25	7 <mark>97.8</mark> 9	799.24	793.60
rc204.1	46	868.76	899.79	883.85	880.89

- Traveling Salesman Problem with Time Windows
- Nested Monte-Carlo Algorithm
- Nested Rollout Policy Adaptation
- Experiments
- Conclusion

Conclusion

Results

- Efficient algorithm (77% of SOTA scores for NRPA_EK)
- Promising results with no/few domain knowledge.
- Expert knowledge is always helpful
- □ Difficulties when the number of nodes becomes too large.

Current work

- Beam NRPA
- □ Local optima issues ?

Thank you