
Application of Nested Monte-
Carlo methods to the Traveling 
Salesman Problem with Time 

Windows

Tristan Cazenave1 and Fabien Teytaud1,2

 
1 LAMSADE, Université Paris Dauphine
2 HEC Paris, CNRS, 1 rue de la Libération 78351 Jouy-en-Josas



2

Outline

 Traveling Salesman Problem with Time 
Windows

 Nested Monte-Carlo Algorithm
 Nested Roll-out Policy Adaptation
 Experiments
 Conclusion



3

Traveling Salesman Problem (TSP)

 Data
 List of cities
 Distances between all cities

 Goal
 Find a path visiting each city exactly once
 The path must be as short as possible
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Traveling Salesman Problem with 
Time Windows (TSPTW)

 Additionnal property: Time windows
A city can not be visited before a certain time 

and after a certain time

 Some problems have 
no solution

 Finding a valid 
solution is NP-hard
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Nested Monte-Carlo (NMC)
[Cazenave, 2009]

 Tree exploration algorithm

 Evaluation with Monte-Carlo simulations

 Particularly efficient for one player games and 
when late decisions are as important as early 
ones.
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Nested Monte-Carlo (NMC)
[Cazenave, 2009]

 Nested plays a whole game and returns the 
associated score

 Nested takes for parameters the level n and the 
current position (recursive algorithm)

 Principle
– The score of an action is calculated by calling a nested 

with level n-1

– The level 0 of NMC is a Monte Carlo simulation (random 
play until the end of the game)
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NMC

 Level 0
 Monte-Carlo policy
 Choose a city randomly

 Level > 0
Launch NMC(level-1)
The action with the highest score is chosen
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NMC(level=1) example
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Adding Heuristics
[Rimmel et al, 2011]

 The algorithm can be improved by modifying the 
Monte Carlo simulations.

 Instead of uniformly random, the actions are 
chosen according to expert knowledge :

 The distance to the last city
 The waiting time (related to the inf bound of the time 

window) 
 The remaining time before the end of the time window
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Nested Rollout Policy Adaptation
(NRPA)

 NMC can be improved by modifying the Monte 
Carlo simulations.

 Instead of random playouts, a policy is learned :
 Increase the weights of the best cities
 Decrease the weights of other cities
 For each city : compute a probability proportional to 

the exp of its weight

[Rosin, 2011]
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Nested Rollout Policy Adaptation
(NRPA)
 Level 0

Adapted policy
Choose a city accordingly to its probability

 Level > 0
Do N iterations of NRPA(level -1)
Update
• The scores
• The sequences
• The policy
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Adding expert-knowledge
(NRPA_EK)
 Force to visit cities as soon as they go after their 

windows end.
 Avoid visiting a city if it makes another city go after its 

windows end.
 Consider all moves if no move available after these two 

tests.
 Important point : Optimal moves can not be pruned with 

this expert knowledge
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Experiment protocol

 Experiments : 
 Tuning of NMC

 Analyzes of N and the level (NRPA)

 Comparison of NRPA and NRPA_EK on one problem.
 

 Comparison of the best results found by NMC, NRPA and 
NRPA_EK on a set of standardized problems

[Lopez-Ibanez and Blum, 2010]
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Experiments (Tuning of NMC)
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Experiment results (1)
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Experiment results (2)

 Hardest problem 
from the set,

 46 cities,

 Best known 
result : 868,76



20

Experiment results (3)
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Experiment results (3)
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Conclusion

 Results
 Efficient algorithm (77% of SOTA scores for NRPA_EK)
 Promising results with no/few domain knowledge.
 Expert knowledge is always helpful
 Difficulties when the number of nodes becomes too large.

 Current work
 Beam NRPA
 Local optima issues ?
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Thank you
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