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Definition

e Complete digraph D = (V,A4) with V ={0,...,n — 1}
e Arc costs vectors ¢! and ¢2

o k: number of uncapacitated stacks

Find two hamiltonian circuits C and C? s.t.

o There exists a loading plan into k stacks

o cl(Ch) + c?(C?) is minimum

<

Remark

@ k = 1: reduces to compute one ATSP

@ k> n — 1: reduces to compute two ATSPs

A\
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Consistency

C' and C? k-consistent < there exists a loading plan into & stacks

Proposition (Bonomo et al., Toulouse et al., Casazza et al.)

C! and C? are k-consistent iff no k + 1 vertices of V' \ {0} form
an increasing sequence for both circuits.

Proof: (=)

easy.
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Consistency

C' and C? k-consistent < there exists a loading plan into & stacks

Proposition (Bonomo et al., Toulouse et al., Casazza et al.)

C! and C? are k-consistent iff no k + 1 vertices of V' \ {0} form
an increasing sequence for both circuits.

Proof: (<)
i =< j if i precedes j in C' and C? for i # j € V \ {0}.
o G=(V\{O0LE), E={ij:i<jorj=<i}.

Increasing sequence < clique in G.

Size of a clique in G is at most k.
G is perfect = x(G) < k.

Each color (stable set) corresponds to a stack.
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Consistency

C' and C? k-consistent < there exists a loading plan into & stacks
Proposition (Bonomo et al., Toulouse et al., Casazza et al.)

C! and C? are k-consistent iff no k + 1 vertices of V' \ {0} form
an increasing sequence for both circuits.

Checking consistency can be done in polynomial time.
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State of the art

Consistency with stack capacity (Bonomo et al.)
@ NP-complete in general

e Polynomial for fixed &

From stacks to ATSPs (Toulouse et al., Casazza et al.)

o NP-complete in general

e Polynomial for fixed k (dynamic programming)

Approximation (Toulouse)

@ Uncapacitated: 1/2 approx for max STSP2S

o Capacitated: 1/2 - e differential approx
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State of the art

Local searches (Petersen et al., Felipe et al., Coté et al.)
e VNS
e LNS

Results up to n = 67 (3 stacks)

Exact Algorithms
o Different ILP (Petersen et al., Alba et al.): B&B, B&C
e k best TSPs (Lusby et al.)
e B&B for 2 stacks (Carrabs et al.)

Results up to n = 14 (2 stacks)
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Polyhedral results

C hamiltonian circuit. S set of circuits k-consistent with C.
If £ > 2, then dim(conv(S)) = dim(ATSP,,).

Id, =0,n—1,n—-2,...,1
Proof:
e Wlo.g., C=1Id,. Set d, = dim(ATSP,).
e dim(conv(S)) < dp.
e Since Pay, C Py p, find dy, + 1 affinely independant circuits

2-consistent with Id,,.
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Polyhedral results

C hamiltonian circuit. S set of circuits k-consistent with C.
If £ > 2, then dim(conv(S)) = dim(ATSP,,).

Id,=0,n—1,n—2,...,1
Proof: (Induction)
o True for n < 4.
e Hypothesis: Ci,..., Cy 11 a.i. 2-consistent with Id,.
e (Cy,n) 2-consistent with Id, 1 for i =1,...,d, + 1.

= d, + 1 a.i. circuits 2-consistent with Id, .

Remark: Each of them contains the arc (n,0).
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C hamiltonian circuit. S set of circuits k-consistent with C.
If £ > 2, then dim(conv(S)) = dim(ATSP,,).

Id,=0,n—1,n—2,...,1
Proof: (Induction)
Adding new a.i. circuits:

Unused arcs
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C hamiltonian circuit. S set of circuits k-consistent with C.
If £ > 2, then dim(conv(S)) = dim(ATSP,,).

Id,=0,n—1,n—2,...,1
Proof: (Induction)
Adding new a.i. circuits:

@ 0,2,3,...,n—2,n,1,n—1 2 n—1
@ 0,i+1,i4+2,...,n,1,2,....1,
fori=1,2,...,n—2
n 0
1 n—2

Unused arcs
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C hamiltonian circuit. S set of circuits k-consistent with C.
If £ > 2, then dim(conv(S)) = dim(ATSP,,).

Id,=0,n—1,n—2,...,1
Proof: (Induction)
Adding new a.i. circuits:

@ 0,2,3,...,n—2,n,1,n—1 2 n—1
@ 0,i+1,i4+2,...,n,1,2,...,4,
fori=1,2,...,n—2
n 0
® 0,n,1,2,...,n—1
le n—2

Unused arcs
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C hamiltonian circuit. S set of circuits k-consistent with C.
If £ > 2, then dim(conv(S)) = dim(ATSP,,).

Id,=0,n—1,n—2,...,1
Proof: (Induction)
Adding new a.i. circuits:

® 0,2,3,....n—2,n,1,n—1

@ 0,i+1,¢4+2,...,n,1,2,...,4,
fori=1,2,...,n—2

® 0,n,1,2,...,n—1

@ 0,1,...,i—1,n,i+1,i+2,...,n—1,
fori=2,3,...,n—1

Unused arcs
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Polyhedral results

Theorem (Borne, Grappe, L.)
Given k > 2, dim(Pyy,) = 2d,.

Proof:

e (,...,C4,+1 a.i. hamiltonian circuits.
e Hy,...,Hy 41 ai. circuits 2-consistent with Cg,41.

C1 Cq, Ca,+1 Cap1

C1 Cy H; Hg, 41
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Given k > 2, dim(Pyy,) = 2d,.

Proof:

e (,...,C4,+1 a.i. hamiltonian circuits.
e Hy,...,Hy 41 ai. circuits 2-consistent with Cg,41.

C1 Cq, Cua,+1 Cap1
A S+ A, . + p1 B o (S | =0

Ci Ca, H Hg, 11
dp+1

dn
Z i + Z pi =0
i=1 i=1
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Theorem (Borne, Grappe, L.)
Given k > 2, dim(Pyy,) = 2d,.

Proof:

e (,...,C4,+1 a.i. hamiltonian circuits.
e Hy,...,Hy 41 ai. circuits 2-consistent with Cg,41.

C1 Ca, Ca, 41 Ca,+1
Ml )| e by =0
C1 Ca, H; Hg, 11
dp, dp+1
YIEES SR
=1 =1
dy dpt1

STNCi+ Y piCa =02 Xi=0¥i=1,...dn.
i=1 i=1
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Polyhedral results

Theorem (Borne, Grappe, L.)
Given k > 2, dim(Py,n) = 2d,.

Proof:

e (1,...,C4,+1 a.i. hamiltonian circuits.
e Hy,...,Hy 41 a.i. circuits 2-consistent with Cg,41.

Ca,+1 Ca,+1
! R AR =0
0 Hg, 41

dn dp+1
inclwr Z 1iCq 41 =0= X\ =0,Vi=1,...dy.
i=1 i=1
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Given k > 2, dim(Py,n) = 2d,.

Proof:

e (1,...,C4,+1 a.i. hamiltonian circuits.
e Hy,...,Hy 41 a.i. circuits 2-consistent with Cg,41.

Cipt1 Cp 1
ot B4 =0
Hy Hy, 11

dp+1
S il = 0= pi=0¥i=1,. dn+ 1.
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Polyhedral results

Theorem (Borne, Grappe, L.)
Given k > 2, dim(Py,n) = 2d,.

Proof:

e (1,...,C4,+1 a.i. hamiltonian circuits.
e Hy,...,Hy 41 a.i. circuits 2-consistent with Cg,41.

Cipt1 Cp 1
co 41 =0
0 Hg, 41

dy+1
Z/.LiHi:0:>/Li:0,vz':1,..4dn+l.
=1
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Polyhedral results

Theorem (Borne, Grappe, L.)
Given k > 2, every facet of ATSP,, defines a facet of Py ,.

Proof:
o (,..., (g4, a.i. hamiltonian circuits of a facet F' of ATSP,,.
e Hy,...,Hy 41 a.i. circuits 2-consistent with Cj,,.

G Cq,—1 Ca, Ca,
. S . e a.i. and belong to F’.
C1 Cq,—1 Hy Hg,+1
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Formulation

Variables

Vh=1,2V(5j) € A

n_ ) 1 if (4,7) belongs to ch,
0 otherwise,

Linear ATSP Constraints

Y al=1 VieV,Vh=12, (1)
jeV\{i}

Y af=1 VjeV,Vh=12, (2)
i€ V\{j}

o a#l>1 VOCWCV,Vh=1.2, (3)
aest (W)
0<zh<1 VacAYh=1,2. (4)
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Formulation

C' and C? 2-consistent < P 4,4, k with 1 <j < k
Forbidden structure

Consistency constraints

Vitj#tk#ie V\{0},
Eza;fﬁ <IPY+ 1P -1 V P, P2 € PY(D\ {k}). (5)
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Formulation

C' and C? 2-consistent < P 4,4, k with 1 <j < k
Forbidden structure

Consistency constraints

Vitj#tk#ie V\{0},
Eza;fﬁ <P+ P -1 V P, P2 € PY(D\ {k}). (5)

Theorem (Borne, Grappe, L.)
Pa.n = conv({(zt, 2?) € {0, 134 x {0,134 : (2!, 22) satisfies (1)-(5)})

M. Lacroix The Uncapacitated Asymmetric TSP with MS 15 /23
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Linear relaxation

Theorem (Borne, Grappe, L.)

The linear relaxation is polynomial-time solvable.

Proof:

e Constraints (1),(2),(4): polynomial number

e Constraints (3): polynomial number of minimum cuts

M. Lacroix The Uncapacitated Asymmetric TSP with MS
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Linear relaxation

Theorem (Borne, Grappe, L.)

The linear relaxation is polynomial-time solvable.

Proof:
Consistency constraints (z =1 — )

| ViFiFk#ic VA{0},
V P, P? e PY(D\ {k}).

PRI

h:172 aEPh

A\

o For fixed 1, j, k:
Find a minimum i0j-path P* of D\ {k} for h =1,2.
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Linear relaxation

Theorem (Borne, Grappe, L.)

The linear relaxation is polynomial-time solvable.

Proof:

e For fixed i, j, k and fixed h:
Compute in D\ {k}:
e (J1: minimum ¢0-path
e (J2: minimum 0j-path

If #"((Q1, Q2)) < 1, then (Q1, Q2) is a i0j-path.
= Computation of 2 minimum paths.

= Polynomial separation for consistency inequalities (5).
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Agenda

© Focus on two stacks

o Valid inequalities
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Strenghtening the consistency constraints (Alba et al.)

Adding arcs in each path P
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Strenghtening the consistency constraints (Alba et al.)

Adding arcs in each path P

S
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New inequalities

Ps-subgraph inequalities

z'(B) +2*(B) < 3

B: Set of arcs in the figure.

M. Lacroix The Uncapacitated Asymmetric TSP with MS 19 /23



Formulation
Focus on two stacks Valid inequalities

New inequalities

Ps-subgraph inequalities

z'(B) +2*(B) < 3

B: Set of arcs in the figure.

M. Lacroix The Uncapacitated Asymmetric TSP with MS 19 /23



Formulation
Focus on two stacks Valid inequalities

New inequalities

Ps-subgraph inequalities

z'(B) +2*(B) < 5

B: Set of arcs in the figure.
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New inequalities

U; 1 U2 U3

Ps-subgraph inequalities

1 (B) + z2(B) < 2(|Uy| + | Ua| + |Us| — 1) — 1

B: Set of arcs in the figure.
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New inequalities

AL

P,-subgraph inequalities

zY(B) + 2*(B) < 4

B: Set of arcs in the figure.
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New inequalities

AL

P,-subgraph inequalities

z'(B) +2*(B) <6

B: Set of arcs in the figure.
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New inequalities

n—1

P,-subgraph inequalities

z'(B) +2*(B) <6

B: Set of arcs in the figure.
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New inequalities

P,-subgraph inequalities

z'(B) + 2%(B) < 2(|Up| + | U1 + 1) — 2

B: Set of arcs in the figure.
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New inequalities

P,-subgraph inequalities

z'(B) +2*(B) <6

B: Set of arcs in the figure.
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New inequalities

P,-subgraph inequalities

2 (B) + 22(B) < 2(|Up| + | Uz + 1) — 2

B: Set of arcs in the figure.
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New inequalities

R B: Set of arcs in the figure
U=10,1,2,3,4}

If C" N B is a path covering U:
1 <ch 3 <ch 4

Ws-subgraph inequalities

#'(B) +2*(B) < 7

M. Lacroix The Uncapacitated Asymmetric TSP with MS 21 /238
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New inequalities

B: Set of arcs in the figure
U=1{0,1,3,4} U U

If C" N B is a path covering U:
1 <ch 3 <ch 4

Ws-subgraph inequalities

' (B) + z%(B) < 2(|Us| +3) — 1
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New inequalities

B: Set of arcs in the figure
U= {0,3,4}U Ui U Uy

Uy
If C" N B is a path covering U:

either Uy <gn 3 <cgn 4

or there exists v; € Uy s.t. v <gn 3 <cn 4 <on V\ U

Ws-subgraph inequalities

21 (B) 4 2*(B) < 2(|U1| + |Us| +2) — 1
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Conclusion & Perspectives

Polyhedral results

Formulation for 2 stacks

Valid inequalities

Separation algorithms

Taking into account stack capacities

Adding extra variables (7)
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Thank you for your attention
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