Carpool fairness in social networks

Amos Fiat
Anna Karlin
Elias Koutsoupias
Claire Mathieu
Rotem Zach
The carpool problem
The carpool problem

Suppose that n people, tired of spending their time and money in gasoline lines, decide to form a carpool... We want a scheduling algorithm that will be perceived as fair by all the members – [Fagin-Williams 1982]

- every day a subset of n people share a ride
- who should drive?
Objective: everyone drives his fair share

- let $\sigma_1, \ldots, \sigma_T$ be the subsets (requests)
- suppose that driver i has driven $m_{i,T}$ times
- his fair share is $f_{i,T} = \sum_{t: i \in \sigma_t} 1/|\sigma_t|$
- and his unfairness $|m_{i,T} - f_{i,T}|$
- **objective:** minimize $\max_i |m_{i,T} - f_{i,T}|$
- **not in this talk:** one-sided unfairness $(m_{i,T} - f_{i,T})$
Offline vs online

- We consider online algorithms
- An **online algorithm** selects the drivers based only on the past
- The **adversary** selects the sequence of requests, including its length, in advance
- The adversary knows the algorithm, but not the outcome of its random choices (**oblivious adversary**)
Offline algorithms

- There exists an offline algorithm, which
 - can maintain unfairness at most 1
 - for every driver
 - at every time step
for simplicity, we consider requests of size 2
Groups of size 2 suffice

• Every day only two people share a ride
• This is without significant loss of generality
 ▪ the general carpool problem reduces to groups of size 2
 ▪ the reduction changes the unfairness only by a factor of 2
• Similar problem: online edge orientation of a given graph to minimize (absolute) difference between outdegree and indegree
Basic online algorithms

Random
A random member drives. Unbounded unfairness (proportional to $O(\sqrt{T})$, where $T =$ number of requests)

Local Greedy
In every pair of drivers they drive alternatively. Randomize the first time. Unfairness $O(\sqrt{n \log n})$

Global Greedy
The driver with minimum unfairness drives; in case of a tie, select randomly
- **Conjecture:** Global Greedy has randomized unfairness $\Theta(\log n)$
History

- Fagin and Williams 1982: introduced the problem and the Global Greedy algorithm
- Ajtai, Aspnes, Naor, Rabani, Schulman, and Waarts [AANRSW '96]:
 - reduced the problem to groups of size 2
 - deterministic lower bound $O(n)$
 - randomized algorithms:
 - upper bound $\Theta(\sqrt{n \log n})$ by the Local Greedy algorithm
 - lower bound $\Omega(\sqrt[3]{\log n})$ (every algorithm)
This talk: general graphs

- a social network graph
- the request sequence contains only edges of the graph
Overview

<table>
<thead>
<tr>
<th></th>
<th>Det</th>
<th>Randomized</th>
<th>Random sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clique</td>
<td>(n)</td>
<td>(\log^{1/3} n \quad \sqrt{n \log n})</td>
<td>(\Theta(\log \log n)) (Greedy)</td>
</tr>
<tr>
<td>Line</td>
<td>1</td>
<td>(\Omega(\log n/ \log \log n)^{1/3})</td>
<td>(\Theta(\sqrt{n})) (Greedy)</td>
</tr>
<tr>
<td>Star</td>
<td>(n)</td>
<td>static: (\Theta(\sqrt{n}))</td>
<td>1</td>
</tr>
<tr>
<td>Planar</td>
<td></td>
<td></td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>All</td>
<td>(d)</td>
<td>conjecture: (O(\log n))</td>
<td></td>
</tr>
</tbody>
</table>
Clique [AANRSW '96]

- deterministic: $\Theta(n)$
 - Adversary requests only pairs of drivers with the same unfairness
 - At the end (after $\Theta(n^3)$ steps), all drivers have distinct unfairness
 - Therefore one of them has unfairness outside the interval $[-n/2 + 1, n/2 - 1]$
• randomized:
 ▪ lower bound $O(\sqrt[3]{\log n})$ (based on the deterministic lower bound)
 ▪ upper bound $\Theta(\sqrt{n \log n})$ (Local Greedy)
• random sequences: Global Greedy has unfairness $\Theta(\log \log n)$
Deterministic algorithms
Overview

<table>
<thead>
<tr>
<th></th>
<th>Det</th>
<th>Randomized</th>
<th>Random sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clique</td>
<td>n</td>
<td>$\log^{1/3} n \div \sqrt{n \log n}$</td>
<td>$\Theta(\log \log n)$ (Greedy)</td>
</tr>
<tr>
<td>Line</td>
<td>1</td>
<td></td>
<td>$\Omega(\log n / \log \log n)^{1/3}$ (Greedy)</td>
</tr>
<tr>
<td>Star</td>
<td>n</td>
<td>static: $\Theta(\sqrt{n})$</td>
<td>1</td>
</tr>
<tr>
<td>Planar</td>
<td></td>
<td></td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>All</td>
<td>d</td>
<td></td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>
Lower bound for clique

- Tight bound $\Theta(n)$ [AANRSW '96]
- For other graphs? stars?
• one-sided fairness? not in this talk
Lower bound on star and arbitrary graphs

- Fix a deterministic algorithm for the star of \(d \) leaves
- Reachable states \(\vec{x} = (x_1, \ldots, x_d) \), where \(x_i \) the unfairness of leaf \(i \)
- Define \(\phi(\vec{x}) = x_1 + 2x_2 + \cdots + 2^{d-1}x_d \)
- **Claim:** If \(\vec{x} \) minimizes \(\phi(\vec{x}) \), then \(\vec{x} + \vec{1} \) is also reachable
- \(|\vec{x} + \vec{1}|_1 - |\vec{x}|_1 = d \)
- Therefore either \(\vec{x} \) or \(\vec{x} + \vec{1} \) has root unfairness \(\lceil d/2 \rceil \)
Matching upper bound

Theorem: The deterministic unfairness of graphs of degree d is exactly $\lfloor d/2 \rfloor$.

- Fix an almost balanced orientation (outdegree and indegree differ by at most 1)
- For every oriented edge (i, j), service the odd requests with i and even requests with j
Random sequences
Overview

<table>
<thead>
<tr>
<th></th>
<th>Det</th>
<th>Randomized</th>
<th>Random sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clique</td>
<td>n</td>
<td>$\log^{1/3} n \cdot \sqrt{n \log n}$</td>
<td>$\Theta(\log \log n)$ (Greedy)</td>
</tr>
<tr>
<td>Line</td>
<td>1</td>
<td></td>
<td>$\Omega(\log n/ \log \log n)^{1/3}$ (Greedy)</td>
</tr>
<tr>
<td>Star</td>
<td>n</td>
<td>static: $\Theta(\sqrt{n})$</td>
<td>1</td>
</tr>
<tr>
<td>Planar</td>
<td></td>
<td></td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>All</td>
<td>d</td>
<td></td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>
Global Greedy on the line

all pairs of requests are selected uniformly at random

• Global Greedy has expected unfairness $O(\log \log n)$ for the clique [AANRSW'96]
• We show that for sparse networks, Global Greedy does much worse
• In particular, for the line, Global Greedy has expected unfairness $\Omega((\log n / \log \log n)^{1/3})$

• Proof

 ▪ There exists a sequence s_n^* of n^3 requests for which Global Greedy with adversarial tie breaking has unfairness $\Omega(n)$

 ▪ Break the line into k/n segments of length k

 ▪ Consider a random sequence of length k^3 in one of the segments

 ▪ What is the probability that
 ○ no request falls into the boundaries and the random sequence is the bad sequence s_k^*? : $1/k^{k^3}$
 ○ Global Greedy breaks the ties as in the worst-case : $1/2^{k^3}$
The probability that the unfairness in every segment is less than k is $(1 - 1/(2k)^{k^3})^{n/k}$, which is constant when we select $k = (\log n/ \log \log n)^{1/3}$. It follows that, with constant probability, a random sequence of length $k^3 \cdot n/k$ has unfairness $\Omega((\log n/ \log \log n)^{1/3})$.
Random sequences on planar graphs

- Algorithm for stars
 - leaves have unfairness -1, 0, 1
 - when at 0, they help the unfairness of the root
- It has constant unfairness
- Extension to planar graphs
 - partition the edges of the graph into stars
 - every node belongs to at most 6 stars
 - run the algorithm for each star
 - the expected unfairness of every node is constant
 - the maximum unfairness among all nodes is $O(\log n)$
Randomized algorithms
Overview

<table>
<thead>
<tr>
<th></th>
<th>Det</th>
<th>Randomized</th>
<th>Random sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clique</td>
<td>n</td>
<td>$\log^{1/3} n \ldots \frac{\log n}{\sqrt{n \log n}}$</td>
<td>$\Theta(\log \log n)$ (Greedy)</td>
</tr>
<tr>
<td>Line</td>
<td>1</td>
<td>$\Omega(\log n/ \log \log n)^{1/3}$</td>
<td>(Greedy)</td>
</tr>
<tr>
<td>Star</td>
<td>n</td>
<td>static: $\Theta(\sqrt{n})$</td>
<td>1</td>
</tr>
<tr>
<td>Planar</td>
<td></td>
<td></td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>All</td>
<td>d</td>
<td>conjecture: $O(\log n)$</td>
<td></td>
</tr>
</tbody>
</table>
Static algorithms

Static randomized online algorithm :: there exists a probability distribution π over the set of states

- the algorithm starts in π
- it remains in π after every possible request.
- **Theorem:** The unfairness of every static algorithm is $\Omega(\sqrt{d})$, where d is the degree of the social graph
• Upper bound (on stars)
 ▪ Balanced Local Greedy algorithm
 ○ Fix a balanced orientation
 ○ Every oriented edge \((i, j)\) alternates between unoriented and oriented according to fixed orientation starting at a random state
• Lower bound (on stars)
 1. Characterize the stationary distributions of the Markov chain
 2. Express the question as linear program
 3. Solve the linear program
• Static characterization
• for every \(x_{-i} \): \(\sum_{k \in \mathbb{Z}} \pi(k, \tilde{x}_{-i})(-1)^k = 0 \)
• eliminate variables \(\pi(\tilde{x}) \) when \(\tilde{x} \) has at least one 0
• the value of the linear program is at least equal to

\[
\min_{y_i^*} E \left[\left| \sum_i y_i^* X_i \right| \right]
\]

- \(X_i \)'s are 0-1 unbiased binomial random variables
• this is minimized when half of \(y_i^* \)'s are 1 and half are \(-1\)
• exactly as in the Local Greedy algorithm
• Complete characterization
• what distributions π are stationary distributions of Markov chains on the line (when $p_{x,x} = \text{const}$)?
 ▪ answer: $\pi(k) - \pi(k + 1) + \pi(k + 2) - \cdots \geq 0$, for every k
Overview

<table>
<thead>
<tr>
<th></th>
<th>Det</th>
<th>Randomized</th>
<th>Random sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clique</td>
<td>n</td>
<td>$\log^{1/3} n \ldots \sqrt{n \log n}$</td>
<td>$\Theta(\log \log n)$ (Greedy)</td>
</tr>
<tr>
<td>Line</td>
<td>1</td>
<td></td>
<td>$\Omega(\log n/ \log \log n)^{1/3}$ (Greedy)</td>
</tr>
<tr>
<td>Star</td>
<td>n</td>
<td>static: $\Theta(\sqrt{n})$</td>
<td>1</td>
</tr>
<tr>
<td>Planar</td>
<td></td>
<td></td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>All</td>
<td>d</td>
<td>conjecture: $O(\log n)$</td>
<td></td>
</tr>
</tbody>
</table>
Thank you