IA Solutions to sheet 1

Exercise 1

It is possible. Let’s represent wolves as w, goats as g, the boat as b and the river
as |, so we can take the starting state as wwwgggb| (with everything on the left
side of the river). One route to the solution which never has more wolves than
goats on the same side of the river is

wwwygggb| = wggg|lwwb — wwgggblw — ggg|lwwwd
— gggwb|lvw — gw|ggwwdb — ggwwblwg — ww|wgggb
— wwwbd|ggg — wlwwgggb — wwblwggg — |lwwwgggb

This introduces the idea of a state space in which we search for a solution.
For this specific example we would most likely be interested in the path to the
solution as well. Sensible search methods here involve keeping track of what
states you have already visited in order to avoid pointless loops: i.e. it is a good
idea to draw a graph of what states are accessible from what other states. Note
that searching a graph (keeping track of visited nodes) requires more memory
space than some of the bounds given in Exercise 3 below: to speak generally,
there is often a tradeoff between time and space.

Exercise 2

In the pseudo-code as it is given, it is not specified in which order we choose the
nodes from the frontier. If we treat the frontier as a stack, or a last in first out
structure, the pseudo-code performs depth-first search. If we treat the frontier
as a queue, a first in first out structure, the pseudo-code performs breadth-first
search.

Exercise 3

For this question, we call a search method complete if it always finds some solu-
tion (if a solution exists). A search method is optimal if it only finds solutions
of minimal depth (this is the same as finding a minimal cost path when the cost
function is constant). Note this question concerns searching using a tree.

Depth- Iterative-

BFS DFS limited deepening Bidirectional
complete v v b 4 v 4
time complexity omHHT o™ o0 O(b?) O(b?)
memory complexity O(b1)T O(bm) O(bl) O(bd) O(b%)
optimal v X b 4 v v

* If the maximal depth is finite.
1 If d < m (otherwise b™).

Here is a bit more explanation of why BFS has time complexity O(b%*1),
whereas Iterative-deepening only has time complexity O(b%). We assume that
our algorithm only checks whether a node is a solution state directly before it
is expanded. When we expand all the nodes at depth k, we might have to add
bEt+1 nodes to the frontier, so we might perform at least b*+! “operations”. In
particular, for BFS it is possible that b**t! — b nodes at depth d + 1 are added
to the frontier before we check the solution. In total, we might have to have
“seen” 1+ b+ b2 + - +b% + (b9! — b) nodes, thus we get at least O(b%1) (a
bit more reasoning shows that this bound is tight).

For Iterative-deepening, we perform successive Depth-limited searches, each
time increasing [by one. For the time complexity, we simply add up the time
taken by each Depth-limited search with [=1,2,...,d. We argue that this sum
is dominated by the time taken by the Depth-limited search with [= d.

In a Depth-limited search up to [, we effectively assume that the nodes at
level [have no children. When we expand a node on level [there are no children
to add to the frontier, so (roughly speaking) we perform only b' operations for
all the nodes at level [(we still perform at least b**! operations for all the
nodes at a level k <). This means that we get a time complexity of O(b') for
Depth-limited search. Altogether, the time complexity of Iterative-deeping is
therefore the same as that of Depth-limited with [= d, thus we get O(b%) for
Iterative-deepening.

