IA Solutions to sheet $2 A^{*}$

Exercise 1

We can formally write a "chip" as an ordered pair $c \in\{1,2,3,4,5\} \times\{b, w, e\}$ (this means we consider the empty space as a chip). A state s is then a set of five chips such that exactly one chip has each of the values $\{1,2,3,4,5\}$ in the first coordinate, and two chips have b and two w in the second coordinate. By this notation the start state is

$$
\{(1, b),(2, b),(3, w),(4, w),(5, e)\}
$$

There are multiple admissible heuristiques. Perhaps the simplest is to count how many black chips are out of position: i.e. how many black chips have some white chip to their right.

$$
h_{b}(s)=\mid\{(i, b) \in s: \exists j>i \text { such that }(j, w) \in s\} \mid
$$

Symetrically, one can count how many white chips have some black chip to their left.

$$
h_{w}(s)=\mid\{(i, w) \in s: \exists j<i \text { such that }(j, b) \in s\} \mid
$$

A better (larger) heuristic than both of these is to sum these two values.

$$
h(s)=h_{b}(s)+h_{w}(s)
$$

We show that h is monotone (this implies it is admissible by Exercise 3). Formally, this means that for any solution $s^{*}, h\left(s^{*}\right)=0$, and that the cost of moving from s to s^{\prime} satisfies

$$
c\left(s, s^{\prime}\right) \geq h(s)-h\left(s^{\prime}\right)
$$

The first part of the condition is satisfied by the definition. For the second, we consider each of the possible moves: firstly, moves of cost one do not change the value of the heuristic, so $h(s)-h\left(s^{\prime}\right)=0<1$.

For moves from s to s^{\prime} of cost two, only jumping a black over a white or jumping a white over a black actually change the state. If we jump a black, all the other blacks and all the whites remain in the same position, thus the number of blacks that have some white chip to their left can only decrease by one.

$$
h_{b}(s)-1 \geq h_{b}\left(s^{\prime}\right)
$$

Similarly, only the white chip that was jumped over can change from having a black chip to its left to no longer having a black chip to its left, thus this value can also only decrease by one.

$$
h_{w}(s)-1 \geq h_{w}\left(s^{\prime}\right)
$$

Overall the maximum that the heuristic can decrease is two, the same as the cost. The case for jumping a white is symmetric.

There are similar possibilities for moves of cost three; the maximum possible decrease of the heuristic is three.
States are written with Bs, Ws and 0 the empty space. So the starting state is
$s_{0}=$ BBWW0. For a state s with path
$s_{0}=s_{i_{0}} \rightarrow s_{i_{1}} \rightarrow \cdots \rightarrow s_{i_{k}}=s$

 ЧГ!Чм и! ләрло әЧд ‘әрои е .ภи!̣риедхә иәЧМ леf моч uodn spuәdәр иәлр!!ч ләлоәun әм
 a state gives the order in which it was unи! рәриедхә әле sәұеұя рәләлоәи ${ }^{\text {'рәләлоә }}$ $(s) y+(s) f$ јо әпГел โеш!̣!̣и әчł јо ләр.о (ties broken by the index). When expand-

 $\angle \quad \angle s$ $\begin{array}{ccc}\mathrm{LI}_{s} & 9 & \mathrm{I}_{s} \\ \mathrm{~L} & \mathrm{~g} & \varepsilon_{S}\end{array}$
 $\begin{array}{lll}6 s & 9 & 9 s \\ & \\ { }^{6} s & 9 & 9\end{array}$

 solution) has cost 8 we know

Exercise 2

1. (c) - there are n vehicles, and n^{2} places for each, thus roughly $\left(n^{2}\right)^{n}=n^{2 n}$ possiblities (this overcounts states where vehicles end up in the same squares).
2. (c) - each vehicle has roughly 5 actions that it can perform, independent of what the other vehicles do.
3. The block distance or Manhattan distance, which here amounts to

$$
h_{i}=\left|n-i+1-x_{i}\right|+n-y_{i}
$$

4. (c).

First, we show (a) and (b) are not admissible: as the value for (a) is always greater than or equal to (b), finding a counterexample for (b) suffices for both. So we look for a path from a state to the solution in less than $\max \left\{h_{1}, \ldots, h_{n}\right\}$ steps. Note for this purpose we can start from any state. In the first of the following grids, $\max \left\{h_{1}, \ldots, h_{n}\right\}=h_{3}=3$, but the solution is two moves away.

We now argue that (c) is admissible. Imagine that we have a path from some start state to the solution. First, note that in moving from the state to the solution, the sum of the distances travelled by all the vehicles is at least

$$
\sum_{i=1}^{n} h_{i} \geq n \cdot \min \left\{h_{1}, \ldots, h_{n}\right\}
$$

In one step, the sum of the distances travelled by all the vehicles is at most n. This is because although an individual vehicle can travel two squares, to do so it must jump over a stationary vehicle, and only one vehicle can jump over such a stationary vehicle. So in any state reached after less than $\min \left\{h_{1}, \ldots, h_{n}\right\}$ steps the sum of the distances travelled by all vehicles is less than $n . \min \left\{h_{1}, \ldots, h_{n}\right\}$, which means that the state is not a solution. Thus the heuristic is admissible as the solution cannot be reached in fewer than $\min \left\{h_{1}, \ldots, h_{n}\right\}$ steps.

Exercise 3

We denote by s^{*} the solution, and by $c\left(s, s^{\prime}\right)$ the cost of moving from s to s^{\prime}.
(1) A heuristic is monotone if $h\left(s^{*}\right)=0$ and

$$
c\left(s, s^{\prime}\right) \geq h(s)-h\left(s^{\prime}\right)
$$

(2) A heuristic h is admissible if for any path to the solution

$$
s=s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{n}=s^{*}
$$

we have

$$
\sum_{i=1}^{n} c\left(s_{i-1}, s_{i}\right) \geq h(s)
$$

We show $(1) \Rightarrow(2)$. First, note if there is no path to the solution then there is nothing to prove. So suppose that there is some minimal cost path, we proceed by induction on the length of the path. (Note the length of a path is different from the cost of a path.) Base case: $n=0$ is direct from the definition. Suppose true for paths of length $n-1$ (the inductive hypothesis, IH). Take a state s with a path

$$
s=s_{0} \rightarrow s_{1} \rightarrow s_{2} \rightarrow \cdots \rightarrow s_{n}=s^{*}
$$

Here $s_{1} \rightarrow s_{2} \rightarrow \cdots \rightarrow s_{n}=s^{*}$ must be a minimal cost path of length $n-1$ from s_{1} to s_{n}. Thus we have

$$
\begin{gathered}
h(s) \leq c\left(s_{0}, s_{1}\right)+h\left(s_{1}\right) \\
\leq c\left(s_{0}, s_{1}\right)+\sum_{i=1}^{n-1} c\left(s_{i}, s_{i+1}\right) \\
=\sum_{i=1}^{n} c\left(s_{i-1}, s_{i}\right)
\end{gathered}
$$

