
IA Solutions to sheet 2 A∗

Exercise 1

We can formally write a “chip” as an ordered pair c ∈ {1, 2, 3, 4, 5} × {b, w, e}
(this means we consider the empty space as a chip). A state s is then a set of
five chips such that exactly one chip has each of the values {1, 2, 3, 4, 5} in the
first coordinate, and two chips have b and two w in the second coordinate. By
this notation the start state is

{(1, b), (2, b), (3, w), (4, w), (5, e)}

There are multiple admissible heuristiques. Perhaps the simplest is to count
how many black chips are out of position: i.e. how many black chips have some
white chip to their right.

hb(s) = | { (i, b) ∈ s : ∃j > i such that (j, w) ∈ s } |

Symetrically, one can count how many white chips have some black chip to their
left.

hw(s) = | { (i, w) ∈ s : ∃j < i such that (j, b) ∈ s } |
A better (larger) heuristic than both of these is to sum these two values.

h(s) = hb(s) + hw(s)

We show that h is monotone (this implies it is admissible by Exercise 3). For-
mally, this means that for any solution s∗, h(s∗) = 0, and that the cost of
moving from s to s′ satisfies

c(s, s′) ≥ h(s)− h(s′)

The first part of the condition is satisfied by the definition. For the second,
we consider each of the possible moves: firstly, moves of cost one do not change
the value of the heuristic, so h(s)− h(s′) = 0 < 1.

For moves from s to s′ of cost two, only jumping a black over a white or
jumping a white over a black actually change the state. If we jump a black,
all the other blacks and all the whites remain in the same position, thus the
number of blacks that have some white chip to their left can only decrease by
one.

hb(s)− 1 ≥ hb(s
′)

Similarly, only the white chip that was jumped over can change from having a
black chip to its left to no longer having a black chip to its left, thus this value
can also only decrease by one.

hw(s)− 1 ≥ hw(s′)

Overall the maximum that the heuristic can decrease is two, the same as the
cost. The case for jumping a white is symmetric.

There are similar possibilities for moves of cost three; the maximum possible
decrease of the heuristic is three.
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Exercise 2

1. (c) - there are n vehicles, and n2 places for each, thus roughly (n2)n = n2n

possiblities (this overcounts states where vehicles end up in the same squares).

2. (c) - each vehicle has roughly 5 actions that it can perform, independent of
what the other vehicles do.

3. The block distance or Manhattan distance, which here amounts to

hi = | n− i + 1− xi |+ n− yi

4. (c).

First, we show (a) and (b) are not admissible: as the value for (a) is always
greater than or equal to (b), finding a counterexample for (b) suffices for both.
So we look for a path from a state to the solution in less than max{h1, . . . , hn}
steps. Note for this purpose we can start from any state. In the first of the
following grids, max{h1, . . . , hn} = h3 = 3, but the solution is two moves
away.

3

2

1 3

2

1 3 2 1

We now argue that (c) is admissible. Imagine that we have a path from some
start state to the solution. First, note that in moving from the state to the
solution, the sum of the distances travelled by all the vehicles is at least

n∑
i=1

hi ≥ n.min{h1, . . . , hn}

In one step, the sum of the distances travelled by all the vehicles is at most
n. This is because although an individual vehicle can travel two squares,
to do so it must jump over a stationary vehicle, and only one vehicle can
jump over such a stationary vehicle. So in any state reached after less than
min{h1, . . . , hn} steps the sum of the distances travelled by all vehicles is less
than n.min{h1, . . . , hn}, which means that the state is not a solution. Thus
the heuristic is admissible as the solution cannot be reached in fewer than
min{h1, . . . , hn} steps.
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Exercise 3

We denote by s∗ the solution, and by c(s, s′) the cost of moving from s to s′.

(1) A heuristic is monotone if h(s∗) = 0 and

c(s, s′) ≥ h(s)− h(s′)

(2) A heuristic h is admissible if for any path to the solution

s = s0 → s1 → · · · → sn = s∗

we have
n∑

i=1

c(si−1, si) ≥ h(s)

We show (1)⇒ (2). First, note if there is no path to the solution then there is
nothing to prove. So suppose that there is some minimal cost path, we proceed
by induction on the length of the path. (Note the length of a path is different
from the cost of a path.) Base case: n = 0 is direct from the definition. Suppose
true for paths of length n−1 (the inductive hypothesis, IH). Take a state s with
a path

s = s0 → s1 → s2 → · · · → sn = s∗

Here s1 → s2 → · · · → sn = s∗ must be a minimal cost path of length n − 1
from s1 to sn. Thus we have

h(s) ≤ c(s0, s1) + h(s1) by (1)

≤ c(s0, s1) +

n−1∑
i=1

c(si, si+1) by (IH)

=

n∑
i=1

c(si−1, si)
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