
IA Solutions 7: Neural Networks

Exercise 1: Simple Perceptron

1. For example, w0 = 3, w1 = w2 = 2 works.

2. For example, w0 = 1, w1 = w2 = 2.

3. For a single perceptron to compute XOR it needs to return 0 on inputs 1
and 1, thus w1 + w2 ≤ w0. At the same time, if exactly one of the inputs
is 1 it needs to return 1, thus w1 > w0 and w2 > w0. Finally, if both
inputs are 0 it must return 0, so 0 ≤ w0. This last inequality implies that
2w0 ≥ w0, thus we get

w1 + w2 > 2w0 ≥ w0 ≥ w1 + w2

which is a contradiction.

Note we need all of the inequalities above: consider w1 = w2 = −2 and
w0 = −3.

4. One method here is to construct this network out of smaller functions such
as OR and NEGATION.

Exercise 2: Update rule for multilayer neural networks

1. The derivative of the sigmoid function can be calculated as follows:

d

dx
σ(x) =

d

dx

1

1 + e−x

=
d

dx
(1 + e−x)−1

= (−e−x)(−(1 + e−x)−2)

=
e−x

(1 + e−x)2

=
1

(1 + e−x)
· e−x

1 + e−x

= σ(x)t
1 + e−x − 1

1 + e−x

= σ(x)

(
1 − 1

1 + e−x

)
= σ(x)(1 − σ(x))

2. We want to know how to adjust the weights given some training example
for which we know what the output should be. We consider the error as
a function of the weights. With our current assignment of weights, this
function outputs our current error. Using this function, we want to work

1



out which “direction” will reduce the error the most, i.e. the gradient of
steepest descent. We can then adjust the weights by some small amount
in this direction. (The method we use here is sometimes called stochastic
gradient descent ; it perfoms gradient descent on single training examples
rather than the full set of training examples.)

Thus, we want to work out a function which describes how changing each
of the weights will change the error function Ed. That is, for each weight
wji, we want to work out

∂Ed

∂wji

We proceed by working out how changes to the weight will propogate into
the network. First note that changing the weight that leads into some
node first changes the weighted sum of inputs for this node. Thus we
consider how changes to the weight change the weighted sum, and how
changes to the weighted sum change the error; we use the chain rule:

∂Ed

∂wji
=

∂Ed

∂netj
· ∂netj
∂wji

=
∂Ed

∂netj
xji as netj =

∑
i

wjixji

Now we want to work out ∂Ed

∂netj
.

Only now do we divide into the two cases suggested by the question. First,
we consider weights that are directly attached to output units. Output
units take the weighted sum, apply the sigmoid function, then give the
result as the output. It is this output that we wish to make close to the
expected value. Once again, we use the chain rule: changing the weighted
sum will change the output (through the sigmoid function), and changing
the output will change the error:

∂Ed

∂netj
=
∂Ed

∂oj
· ∂oj
∂netj

Let us first break down the left hand side of this. This expresses the rate
of change of the error according to how the output changes.

∂Ed

∂oj
=

∂

∂oj

1

2

∑
k∈out

(tk − ok)2

=
∂

∂oj

1

2
(tj − oj)

2 as only the output
oj changes

=
1

2
· 2 · (tj − oj) ·

∂

∂oj
(tj − oj)

= −(tj − oj)

2



It is perhaps easier to think about what this says in words: it says that if
the output is smaller than the expected value, then increasing the output
will decrease the error, and inversely if the output is larger decreasing it
will decrease the error.

Now let us look at the right hand side. Here, the output is really just the
sigmoid function applied to the weighted sum, so we use the result to part
1. above:

∂oj
∂netj

=
∂

∂netj
σ(netj)

= σ(netj)(1 − σ(netj))

= oj(1 − oj)

Putting this all together, we see:

∂Ed

∂netj
= −(tj − oj)oj(1 − oj)

Finally, if we suppose that we should take a “step” of size η in the direction
of maximum descent, the change to the weight is:

∆wji = η(tj − oj)oj(1 − oj)xji

What about the hidden layers? Here, the output cannot be directly com-
pared to the expected output, but instead relies on how these outputs
affect downstream nodes. The general techniques are similar, we just
need to propogate the changes further into the network using repeated
applications of the chain rule. Here we only consider a hidden layer one
level back from the output layer.

∂Ed

∂netj
=

∑
k∈downstreamj

∂Ed

∂netk

∂netk
∂netj

=
∑

k∈downstreamj

−δk
∂netk
∂netj

writing δk = − ∂Ed

∂netk

=
∑

k∈downstreamj

−δk
∂netk
∂oj

∂oj
∂netj

chain rule

=
∑

k∈downstreamj

−δkwkj
∂oj
∂netj

netk is affected by
the weight of its input

=
∑

k∈downstreamj

−δkwkjoj(1 − oj) derivative of sigmoid

If desired, you can substitute this value into

∂Ed

∂wji
=
∂Ed

netj
· netj
∂wji

and multiply by some −η to get ∆wji.

3


