Constraint Satisfaction

Consider the problem of coloring (such that adjacent vertices have different colors) the following graph :

1. Use the Backtrack algorithm below to solve the problem. Take the variables in the order F, E, S, I; take the values in the order blue, yellow, red, green.
```
BackTrack (CSP net, Assignment a)
    if the assignment a is complete then return a
    var }\leftarrow\mathrm{ next non-assigned variable
    for each value val }\inD\mathrm{ (var)
        if {var=val} does not violate any constraint
            a = a U {var=val}
            result \leftarrow Backtrack(net, a)
            if result }\not=\mathrm{ failure
            return result
    return failure
```

2. Once we have assigned a value to a variable, we can look forward and limit the number of possible values.
```
ForwardChecking (CSP net, Assignment a)
    if the assignment a is complete then return a
    var }\leftarrow\mathrm{ next non-assigned variable
    for each value val }\inD\mathrm{ (var)
        if {var=val} does not violate any constraint
            a = a U {var=val}
            for each variable v connected to var
                apply arc-consistency from v to var
            result \leftarrow Backtrack(net, a)
            if result }\not=\mathrm{ failure
                return result
    return failure
```

Use ForwardChecking to find a solution, using the same orders as above.
3. Repeat ForwardChecking using the following heuristics for the order on values and variables:

- choose from the variables with the minimum remaining possible values (fail-first heuristic)
- from the above variables, choose a variable involved in the most constraints with nonassigned variables (degree heuristic)
- choose a value which constrains the fewest neighbours (least-constraining-value heuristic)

