Game Theory

Exercise 1 : Pure Equilibria

Find all the Nash equilibria in the following games:

	G	D
H	2,2	0,1
B	1,0	1,1

	G	D
H	1,1	0,0
B	0,0	1,1

	G	D
H	2,2	0,0
B	0,0	1,1

G D
H $\quad 0,0 \quad 3,1$
B 1,3 2,2

Exercise 2 : Mixed Equilibria

Explain why in the following game the pair of mixed strategies where

- the row player plays H with probability $\frac{3}{4}, \mathrm{M}$ with probability 0 and B with probability $\frac{1}{4}$
- the column player plays G with probability $0, C$ with probability $\frac{1}{3}$ and D with probability $\frac{2}{3}$ is a Nash equilibrium (each \star represents an unknown utility).

	G	C	D
H	$\star, 2$	3,3	1,1
M	\star, \star	$1, \star$	$2, \star$
B	$\star, 4$	5,1	0,7

Exercise 3

We consider n farmers who can each produce at no cost as much wheat as they want. If the k th farmer produces q_{k}, the total quantity produced is $Q=q_{1}+q_{2}+\ldots+q_{n}$. The price of wheat will then be $p=e^{-Q}$.

1. Show that the individual strategy of producing one unit of wheat is dominant for each farmer. From this deduce that the profit for each farmer is e^{-n}.
2. Suppose that the farmers reach an explicit agreement where in total 1 unit of wheat is produced. Show that in this case the total profit is maximal. Would this happen in the absence of an explicit contract?

PSL太

