Neural Networks

Exercise 1 : Simple Perceptron

We consider a case with two input variables $x_1, x_2 \in \{0, 1\}$ and a single perceptron with activation function a. We multiply these inputs respectively with weights w_1 and w_2 . The perceptron is activated if the sum of these is greater than some threshold w_0 .

$$a(x) = \begin{cases} 1 & \text{if } w_1 x_1 + w_2 x_2 - w_0 > 0 \\ 0 & \text{otherwise.} \end{cases}$$

- 1. Provide the weights w_0 , w_1 and w_2 so that the perceptron computes the logical AND function.
- 2. Do the same for the logical OR function.
- 3. Show that one single perceptron is not able to compute the logical XOR function.
- 4. Build a neural *network* with a single output that computes XOR.

Exercise 2 : Update rule for multilayer neural networks

We saw in class how to update the weights for a single unit using gradient descent. The goal of this exercise is to verify the update rules for the multilayer neural networks.

Notation :

- x_{ji} is the i^{th} input to unit j
- w_{ji} is the weight associated with the i^{th} input to unit j
- $net_j = \sum_i w_{ji} x_{ji}$ is the weighted sum of the inputs for unit j
- o_j is the output computed by unit j
- t_j is the target output for unit j
- σ is the sigmoid function
- *out* denotes the set of units in the final layer of the network

- downstream(j) the set of units whose immediate inputs include the output of unit j.

We measure the error of a training example d using this formula :

$$E_d(\vec{w}) = \frac{1}{2} \sum_{k \in out} (t_k - o_k)^2$$

1. What is the derivative of the sigmoid function $\sigma(x) = \frac{1}{1 + e^{-x}}$?

2. Write the update rules

- (a) for the units in the final layer of the network
- (b) for the units in the hidden layers

x_2	$x_1 \ { m XOR} \ x_2$
1	0
0	1
1	1
0	0
	1 0 1