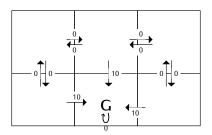

Apprentissage par renforcement

Exercice 1

Fonction de récompenses immédiates \boldsymbol{r}


On utilise un taux de dévaluation $\gamma = 0.9$.

Calculez la fonction Q(s, a).

Calculez la fonction V^{\star} .

Donnez plusieurs stratégies optimales.

Exercice 2

Fonction de récompenses immédiates r

- 1. On fait de même pour la situation ci-dessus avec $\gamma=0.8$: donnez V^\star pour chaque état; Q(s,a) pour chaque transition et une politique optimale.
- 2. Proposez un changement de la fonction de récompense qui induirait un changement pour la fonction Q mais pas de changement pour la politique optimale
- 3. Proposez un changement de la fonction de récompense qui induirait un changement pour la fonction Q mais pas de changement pour V^\star
- 4. On suppose que l'agent va utiliser Q-learning en partant de la case en bas à gauche et avec une politique qui lui fait visiter toutes les cases dans le sens des aiguilles d'une montre. Quelles valeurs de \widehat{Q} sont mises à jour durant cet épisode? Que ce passe-t-il lors d'un second épisode en suivant la même politique? Lors d'un troisième épisode?

On rappelle que lorsque l'agent a choisi une action a dans un état s, ce qui amène l'agent dans l'état s', la règle de mise à jour est

$$\widehat{Q}(s, a) \leftarrow r(s, a) + \gamma \max_{a'} \widehat{Q}(s', a')$$