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Abstract Arrows classical axiom of independence of irrelevant alternatives may be
more descriptively thought of as binary independence. This can then be weakened to
ternary independence, quaternary independence, etc. It is known that under the full
domain these are not real weakenings as they all collapse into binary independence
(except for independence over the whole set of alternatives which is trivially satis-
fied). Here we investigate whether this still happens under restricted domains. We
show that for different domains these different levels of independence may or may
not be equivalent. We specify when and to what extent different versions of indepen-
dence collapse into the same condition.

1 Introduction

Independence of irrelevant alternatives (IIA) is a central axiom of Arrow’s (1950)
celebrated impossibility. In general, axioms of this type require that whenever indi-
viduals’ preferences over a given set of alternatives remain the same, then so should
the social preference. Arrow’s original formulation of IIA requires independence over
every subset of alternatives. However, there is an alternative formulation which re-
quires independence only for subsets of cardinality two. Although this formulation
is superficially weaker, it is straightforward to observe that independence over pairs
implies independence over any set, and thus that the two formulations are equivalent.

Blau (1971) showed further that independence over larger subsets implies in-
dependence over smaller subsets. Thus we observe what we call the Blau equiva-
lence: roughly expressed, this states that all versions of independence have the same
strength. The Blau equivalence implies that Arrow’s result cannot be escaped by
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weakening independence to subsets of some fixed cardinality greater than two. In
turn we call this stronger version of Arrow’s result the Blau impossibility.

The Blau equivalence rests upon the full domain assumption. In this paper we
consider the effects of imposing domain restrictions.1 Section 2 presents the setting
formally, including a formal definition of the condition requiring that independence
over sets of cardinality k is satisfied. Section 3 shows that under restricted domains,
unlike under the full domain, increasing k may effectively weaken independence—
hence the Blau equivalence may fail. Section 4 characterises the domains for which
nominally different versions of independence have effectively different strengths,
thus also effectively providing a characterization for the Blau equivalence. In Sec-
tion 5 we develop the idea of what we call the Blau partition of a domain. We show
that there are many possible such partitions; thus that the Blau equivalence can fail
in many different ways. We develop a particular domain in Section 6, making sure
during its construction that it is also Arrovian, i.e. subject to Arrow’s impossibility.
We define a SWF on this domain that satisfies a weaker version of independence
alongside Arrow’s other axioms. This verifies that on some domains it is possible to
escape Arrow’s result through weakening independence. Section 7 makes some final
remarks.

2 Definitions

Let N = {1, . . . ,n} be a set of agents, for some integer n ≥ 2. Let A be a set of
alternatives with m = |A| ≥ 3. We will refer to particular alternatives as a1,a2, . . . ,am,
and arbitrary alternatives as x,y,z,. . . We represent each agent’s preference over the
alternatives as a complete preorder. A social welfare function (SWF) aggregates the
preferences of all the agents into a single complete preorder.

Denote by W (A) be the set of complete and transitive binary relations over A.
We write R ∈W (A) for an arbitrary complete preorder. We use P to denote the strict
component of R, so xPy iff ¬yRx. We say that a complete preorder R is a linear order
iff it is also antisymmetric.

Let the non-empty set D⊆W (A) denote the domain. A specific agent i’s prefer-
ence corresponds to some Ri ∈ D. A collection of n such preferences, one for each
agent, is called a preference profile, or simply a profile, and is written R ∈ DN . We
write (R−i,R

′
i) for the profile where agent i has preference R′i and all other agents

have the same preferences as in R. A SWF defined over D maps a profile to a social
preference, formally it is a function f : DN →W (A). We use f ∗(R) to denote the
strict component of f (R).

Given a set X ⊆ A, the restriction of a preference R to X is

R|X= {(x,y) ∈ R : x,y ∈ X}.

We use the same notation to apply restrictions to domains (sets of preferences) and
preference profiles. Formally, for X ⊆ A, D⊆W (A) and R ∈ DN we write

D|X= {R|X : R ∈ D} and R|X= (Ri|X )i∈N .

1 Restricting the domain is a typical approach to impossibilities in social choice theory. Gaertner (2001;
2002) has produced elaborate surveys of the literature.
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We say two preferences R and R′ coincide on X iff R|X= R′ |X . Similarly, prefer-
ence profiles, and domains, coincide on X iff their restrictions to X are identical. A
preference R over X extends a preference R′ over Y ⊆ X iff these coincide on Y .

Most of this paper is concerned with axiomatics; general properties of SWFs.
The following are well-known examples of such properties. A SWF f is dictatorial
iff there is some i ∈ N such that xPiy implies x[ f ∗(R)]y. A SWF f is Pareto op-
timal iff xPiy,∀i ∈ N implies x[ f ∗(R)]y. These two axioms, alongside IIA which we
formally define below, are the traditional conditions for the impossibility result of Ar-
row (1950). Along the lines of Blau (1971), we consider a generalized notion of what
it means for a SWF to be “independent”. A SWF is k-IND, for an integer 2≤ k ≤ m,
if for every X ⊆ A with |X | = k, for any two profiles R,R′ ∈ DN that coincide on X ,
we have f (R)|X= f (R′)|X . As discussed in the introduction, IIA is sometimes ex-
pressed as 2-IND and sometimes as the conjunction of all k-IND for k = 2, . . . ,m;
these formulations are equivalent.

3 A counterexample on restricted domains

One may question the sense of defining k-IND separately from 2-IND. The fact that
independence over smaller sets implies independence over larger sets seems to have
become common knowledge soon after Arrow’s original presentation of IIA. Further,
this “upwards” implication holds over any domain.

Theorem 1 For any SWF f over any domain D⊆W (A), if f satisfies k-IND then it
also satisfies l-IND, for any 2≤ k < l ≤ m.

Proof Take two profiles R and R′ such that R|Y= R′|Y for some set Y of cardinality l.
We want to show that f (R)|Y= f (R′)|Y . For each distinct pair {x,y}⊂Y , there is a set
Xxy such that {x,y} ⊆ Xxy ⊂ Y and

∣∣Xxy
∣∣ = k.2 Clearly R|Xxy= R′|Xxy , thus by k-IND

f (R)|Xxy= f (R′)|Xxy . This implies f (R)|{x,y}= f (R′)|{x,y}. As this is the case for every
pair x,y ∈ Y , f (R)|Y= f (R′)|Y as required. ut

This observation dates back to May (1954), though the fact that it applies in all do-
mains is not explicitly noted.

In 1971 Blau proved the inverse “downwards” implication, thus showing that
nominally weaker versions of independence imply nominally stronger versions. The
Blau equivalence amounts to the combination of the upwards and downwards impli-
cations.

Theorem 2 (Paraphrase of Blau’s (1971) “Theorem 4”) For any SWF f over the
full domain D = W (A), if f satisfies l-IND then it also satisfies k-IND, for any 2 ≤
k < l < m.

Proof It suffices to show that when f satisfies l-IND it satisfies (l−1)-IND. Take f
that satisfies l-IND. Take two arbitrary profiles, and suppose there is a set X of size
l−1 such that the two profiles coincide on this set. We suppose that the two profiles

2 Note ⊂ is used for proper set inclusion; X ⊂ Y implies |X |< |Y |.
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are identical except for one voter, they can thus be written (R−i,Ri) and (R−i,R
′
i).

Extending to the case where multiple voters have different preferences only involves
iteration of the following. Consider two alternatives x,y∈A such that x 6= y, x 6∈X and
y 6∈X (these exist as |X | ≤m−2). Take a preference R′′ ∈W (A) such that this extends
both Ri|X∪{x} and R′i|X∪{y}. Equivalently, R′′|X∪{x}= Ri|X∪{x} and R′′|X∪{y}= R′i|X∪{y}.
There may be multiple possible R′′i s, but there is always at least one. Now by l-IND
we have f (R,Ri)|X∪{x}= f (R,R′′)|X∪{x} and f (R,R′′)|X∪{y}= f (R,R′i)|X∪{y}. Thus
clearly

f (R,Ri)|X= f (R,R′′)|X= f (R,R′i)|X .

ut

However, Blau’s proof for the downward direction uses two conditions not present
for the upward direction: first, it supposes the full domain; and second it requires
a strict inequality l < m. The second of these two is necessary because m-IND is
trivially satisfied by any SWF. We will be more interested in what happens when we
relax the assumption of a full domain, which is used by Blau in the following manner:
Blau’s proof takes two preferences and “connects” them through a third. This third
preference is guaranteed to exist on the full domain. When we consider restricted
domains, this is no longer always the case. In fact in the following domain this third
“connecting” preference never exists, for l = 3.

Example 1 Fix m= 4. Let D be the domain containing the following six linear orders,
where higher alternatives are preferred to lower ones.

RI RII RIII RIV RV RVI

a2 a3 a3 a2 a1 a4
a1 a1 a4 a4 a4 a1
a3 a2 a2 a3 a2 a3
a4 a4 a1 a1 a3 a2

Every preference in this domain is a linear order. Further, every triple has six different
possible orderings:

∀x,y,z ∈ A such that x, y, and z are distinct,
∣∣D|{x,y,z}∣∣= 6.

Thus in a setting where preferences are restricted to linear orders, all triples are free.3

It is a standard result, established by Blau (1957) that if all triples are free Arrow’s
impossibility holds. Thus any Pareto optimal SWF on this domain that satisfies 2-IND
is dictatorial.

Note that given any linear order over three alternatives, only one preference in
the domain extends this. No preference in the domain extends a non-linear complete
preorder of three alternatives. That is to say, for X ⊂ A with |X |= 3 and R,R′ ∈ D, if
R|X= R′|X then R = R′. This implies that any SWF over this domain satisfies 3-IND
trivially. For example, ranking by Borda scores provides a non-dictatorial and Pareto
optimal SWF. By the above paragraph this cannot satisfy 2-IND; more generally this
shows that 3-IND does not imply 2-IND.

3 Note here, as is standard in the literature, “triple” means a subset of alternatives of size three. A triple
is said to be free iff every possible ordering over this triple exists within the domain.
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The above example implies that k-IND and l-IND for k 6= l need not be equivalent.
The next section first considers k-IND for some fixed value of k, before returning to
the issue of comparing k-IND to l-IND for k 6= l.

4 The Blau equivalence: when are different versions of independence
equivalent?

Given a particular SWF defined on a particular domain, k-IND may or may not be
satisfied. In this section we give a necessary and sufficient condition for this property.
This will allow us to determine the domains for which k-IND implies l-IND, for
arbitrary values of k and l. This generalizes the question as posed by Blau, who
showed that on the full domain, if a SWF satisfies k-IND then it also satisfies l-IND
for k, l < m. We have already seen in Section 3 that there are domains where this
general result does not hold. This section will allow us to determine when it does.

Definition 1 For a domain D, integer k = 2, . . . ,m and two alternatives x,y ∈ A, two
preferences R,R′ ∈ D are (k,x,y)-adjacent iff there is a set X ⊆ A such that |X | = k,
{x,y} ⊆ X and R|X= R′|X .

Just considering adjacency does not suffice; recall that in Blau’s method uses a third
profile to “connect” two profiles that were not directly adjacent. For domains that are
less populated than the full domain, it may be necessary to use even more profiles to
form this connection.

Definition 2 For a domain D, integer k = 2, . . . ,m and two alternatives x,y ∈ A, two
preferences R,R′ ∈ D are (k,x,y)-reachable iff there is a sequence of preferences
R = S0,S1, . . . ,St = R′ such that Ss and Ss+1 are (k,x,y)-adjacent. If R,R′ ∈ D are
(k,x,y)-reachable we write R∼k

xy R′.

Remark 1 For all k,x,y, the relation ∼k
xy is an equivalence relation on D. Note that

for k < l the relation ∼l
xy refines ∼k

xy. In particular, the equivalence classes of ∼m
xy are

the singleton subsets of D.

Lemma 1 A social welfare function f on D satisfies k-IND iff for any pair of alter-
natives x,y ∈ A and for any agent i and pair of profiles R and (R−i,R

′
i), if Ri and R′i

are (k,x,y)-reachable then f (R)|{x,y}= f (R−i,R
′
i)|{x,y}.

Proof (If.) Take a SWF f and suppose that the right hand side (RHS) above holds.
Take X such that |X | = k and R,R′ ∈ D such that R|X= R′|X . Now, for all i ∈ N, we
have Ri|X= R′i|X ; thus for all {x,y} ⊆ X , for all i ∈ N, Ri,R′i are (k,x,y)-adjacent, thus
(k,x,y)-reachable. Thus by the RHS for all {x,y}⊆X we have f (R)|{x,y}= f (R′)|{x,y},
so clearly f (R)|X= f (R′)|X as required.

(Only if.) Suppose that k-IND is satisfied. Suppose Ri,R′i are (k,x,y)-reachable.
Thus there is a list Ri = S0,S1, . . . ,St = R′i with each Si ∈ D such that for each s < t,
there is a Xs ⊇ {x,y} with |Xs|= k and Ss|Xs= Ss+1|Xs . Thus by k-IND f (R−i,Ss)|Xs=
f (R−i,Ss+1)|Xs , so in particular f (R−i,Ss)|{x,y}= f (R−i,Ss+1)|{x,y}. Thus

f (R)|{x,y} = f (R−i,S1)|{x,y} = · · · = f (R−i,R
′)|{x,y}

as required. ut
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This characterization will allow us to determine when different versions of indepen-
dence imply each other. First, let us formally define this generalized concept.

Definition 3 For 2 ≤ k, l ≤ m, a domain D is (k, l)-equivalent iff (any SWF on D is
k-IND iff it is l-IND).

Our first theorem in this section provides a necessary and sufficient condition on
domains determining when (k, l)-equivalence holds.

Theorem 3 A domain D is (k, l)-equivalent iff for all x,y ∈ A, ∼k
xy =∼l

xy.

Proof (If.) Suppose f satisfies l-IND. We use the if direction of Lemma 1 to show
that f also satisfies k-IND: take arbitrary x,y ∈ A, agent i ∈ N and pair of profiles
R and (R−i,R

′
i) such that Ri,R′i are (k,x,y)-reachable. By the RHS, these are also

(l,x,y)-reachable. Thus as f satisfies l-IND, by the only if direction of Lemma 1 we
have f (R)|{x,y}= f (R−i,R

′
i)|{x,y} as required.

(Only if.) If k = l this is trivially satisfied, so without loss of generality assume
k < l. We proceed by contraposition: suppose the negation of the RHS. To accord
with Remark 1, ∼l

xy must properly refine ∼k
xy. Thus there are alternatives x,y ∈ A,

agent i ∈ N, and S,S′ ∈ D such that S ∼k
xy S′ but not S ∼l

xy S′. We construct an f that
satisfies l-IND but violates k-IND. First, let S = {R ∈D : R∼k

xy S} and S ′ = D\S .
Define f such that it

1. returns some fixed ordering over all pairs {z,w} where z,w 6= x,y,
2. sets x[ f (R)]z and y[ f (R)]z for all z 6= x, and
3. returns x[ f (R)]y iff ∀i ∈ N, Ri ∈S .

We claim that f satisfies l-IND but not k-IND. First let us demonstrate the violation of
k-IND: for R where ∀i ∈ N, Ri = S, f (R)|{x,y} 6= f (R−1,S

′)|{x,y} but S,S′ are (k,x,y)-
reachable. Now we show the satisfaction of l-IND. First note for all pairs except
{x,y}, all return the same ordering over these pairs, thus the condition of Lemma 1
is trivially satisfied. It remains to check for the pair {x,y}. Take an arbitrary agent
i and pair of profiles R and (R−i,R

′
i) such that Ri and R′i are (k,x,y)-reachable. If

for all j ∈ N, R j ∈ S , then as Ri ∈ S and Ri ∼k
xy R′i we also have R′i ∈ S , thus

f (R)|{x,y}= f (R−i,R
′
i)|{x,y}. So suppose for some j ∈ N, R j /∈ S . If j 6= i then we

still have R j /∈ S within (R−i,R
′
i), whereas if j = i then R′i /∈ S , thus f (R)|{x,y}=

f (R−i,R
′
i)|{x,y}. ut

5 Violating the Blau equivalence: what Blau partitions are possible?

As the name suggests, for a given domain D, (k, l)-equivalence is an equivalence
relation on the integers {2, . . . ,m}. Given that we can determine when the different
versions of independence imply one another, we now ask: what is the structure of
these for a given domain?

Definition 4 For a given domain, the Blau partition is the partition of {2, . . . ,m}
determined by (k, l)-equivalence. That is, given a domain D, integers k and l with
k < l are in the same equivalence class of the Blau partition iff D is (k, l)-equivalent.



Restricting the domain allows for weaker independence 7

Definition 5 For p,q∈N, an integer interval is a set {x ∈N : p≤ x≤ q}. An interval
partition is a partition whose equivalence classes are all integer intervals.

We use the following notation for integer intervals and interval partitions. An interval
partition of {2, . . . ,m} can be concisely expressed by the suprema of its equivalence
classes. Thus for the interval partition

{{2, . . . ,q1},{q1 +1, . . . ,q2}, . . . ,{qt−1 +1, . . . ,qt}}
where q1 < q2 < · · ·< qt = m

we write Jq1,q2, . . . ,qt K.
We now show that Blau partitions do not contain any gaps, and thus must be

composed of intervals.

Proposition 1 Every Blau partition is an interval partition.

Proof Suppose that we have (k, l)-equivalence. Take p such that k < p < l. It suffices
to show that we have (k, p)-equivalence. By Theorem 1, if a SWF is k-IND, then it is
p-IND. Similarly, if the SWF is p-IND it is also l-IND, thus by (k, l)-equivalence it
is k-IND as required. ut

For example, the Blau partition under the full domain is Jm−1,mK. The Blau parti-
tion under the domain of Example 1 is J2,4K.

Remark 2 A domain satisfies the Blau equivalence if and only if it has Blau parti-
tion Jm−1,mK.

One way of violating the Blau equivalence is if the Blau partition only contains a
single equivalence class. This only occurs for extremely restricted domains.

Proposition 2 The Blau partition contains one equivalence class if and only if D ⊆
{R,R−1} for some linear order R, where xR−1y if and only if xRy.

Proof (If.) For any SWF, the property of k-IND is trivially satisfied for all k =
2, . . . ,m.
(Only if.) Contraposition: there must be R,R′ ∈D such that R|{x,y}= R′|{x,y} for some
x,y. We describe a SWF f that satisfies m-IND but not 2-IND. Indeed, as m-IND is
trivially satisfied for any SWF, setting x f (R)y if and only if no agents in R have linear
order R suffices (arbitrarily fix the ordering over the other candidates). ut

Of course, more interesting violations are also possible. We show in the next
theorem that any interval partition that contains m as a singleton is the Blau partition
under some domain. Indeed, for an arbitrary such interval partition we provide an
explicit construction of the required domain.

Theorem 4 For any interval partition of {2, . . . ,m} which contains {m} as an equiv-
alence class, there is a domain D such that the Blau partition under this domain is
this interval partition.
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Proof We use some additional notation. Recall we label the alternatives a1, . . . , am.
Let R↓ be the linear order over A such that aiRa j iff i < j. Write R↓k for the ordering
that has aiPa j for i < j, i 6= k, j 6= k and aiPak for all i 6= k. Informally, R↓k starts with
R↓ and sends the kth element to the bottom, thus R↓ = R↓m.

Take a set {q1, . . . ,qk}= K ⊆ {2, . . . ,m}. Let D∗ = {R↓k : k ∈ K}. We will show
that the Blau partition of the domain D∗ is Jq1, . . . ,qk K if m−1,m∈K. By transitivity,
it suffices to show that

1. if k ∈ K, then (k,k+1)-equivalence does not hold, and
2. if k 6∈ K, then (k,k+1)-equivalence holds.

Let us deal with these in turn.

1. Here R↓k ∈ D∗. Consider a1Pa2 . . .Pak ∈ W ({a1, . . . ,ak}). Both R↓ and R↓k are
extensions of this within D∗, which implies that R↓∼k

a1al
R↓k. Now, all preferences

R′ 6= R↓k in the domain have akR′ai for the m−k alternatives ai where i > k. This
implies that no linear order in the domain coincides with R↓k on a superset of
{ak−1ak} of size k + 1. This implies that R↓ 6∼k+1

a1ak
R↓k. As ∼k

a1ak
6= ∼k+1

a1ak
, by

Theorem 3 we do not have (k,k+1)-equivalence.
2. Here R↓k 6∈ D∗. We first show the following lemma.

Lemma 2 Take integers k′,k′′ such that 2≤ k′ < k′′ ≤m. Suppose for any S,S′ ∈
D and set X ⊂ A such that S|X= S′|X and |X |= k′, there are Y,Y ′ ⊃ X and S′′ ∈D
such that S|Y= S′′ |Y , S′′ |Y ′= S′ |Y ′ and |Y | = |Y ′| = k′′. Then we have (k′,k′′)-
equivalence.

Proof (of Lemma 2) To see this, take arbitrary {x,y} ⊂ A and R,R′ ∈ D such
that R ∼k′

xy R′. We want to show that R ∼k′′
xy R′. So, suppose there is a list R =

S1,S2, . . .St = R′ such that for each i = 1, . . . , t−1 there is a set Xi ⊃ {x,y}, with
|X |= k′, and such that Si|Xi= Si+1|Xi . We want to find a list R = S′1,S

′
2, . . .S

′
t ′ = R′

such that for each i = 1, . . . , t ′−1 there is a set Yi ⊃{x,y}, with |Y |= k′′, and such
that S′i |Yi= S′i+1 |Yi . We expand the first list, adding in a single new linear order
between each adjacent pair. First, for 1 ≤ i ≤ t, set Si = S′2i−1, with in particular
St = S′2t−1 = S′t ′ . Then, for 1 ≤ i < t, take the two linear orders required by the
condition as S = Si and S′ = Si+1, and define each S′2i = S′′. �

We now show that the condition of Lemma 2 is satisfied for k′ = k and k′′ = k+1.
Consider an arbitrary set X = {as1 , . . . ,ask}, with si > s j if i > j (of cardinality k)
and an arbitrary ordering S over this set.
Suppose S 6= R↓ |X , then there is at most one extension of S in D∗, so there is
nothing to prove. So suppose S = R↓|X , and consider R and R′ in the domain that
extend S. Note these must be of the form R↓p and R↓q for p,q 6= s1,s2, . . . ,sk−1,
as otherwise S 6= R↓|X . Without loss of generality suppose p < q.
Case 1. If p,q 6= sk, R↓p|X∪|q|= R↓|X∪|q| and R↓q|X∪|p|= R↓|X∪|p| as required.
Case 2. Suppose p = sk.

Subcase a. Suppose sk < m. Then there is r 6∈ K such that r > sk. As sk > k,
there is some r′ 6∈K such that r′ < sk. We have R↓p|X∪{r′}= R↓|X∪{r′} and
R↓q|X∪{r}= R↓|X∪{r} as required.
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Subcase b. Suppose sk =m. As m−1,m∈K, k <m−1, thus there are distinct
r,r′ 6∈K such that r,r′ < sk . Without loss of generality suppose r 6= p and
r′ 6= q, we then have R↓p|X∪{r}= R↓|X∪{r} and R↓q|X∪{r′}= R↓|X∪{r′} as
required. ut

6 Blau’s impossibility: do k-IND SWFs exist on Arrovian domains?

We now have a better idea of when l-IND implies k-IND for l > k. The fact that for
some domains the Blau equivalence fails opens up the possibility that on a domain
where the Arrovian impossibility holds, i.e. a domain where 2-IND and PO imply
dictatoriality, we may nonetheless have a SWF that satisfies k-IND, PO and non-
dictatoriality with 2 < k < m. This may be thought of as a successful weakening of
independence; such a weakening overcomes what we call Blau’s impossibility.

In fact, we have already seen a somewhat trivial successful weakening of inde-
pendence. For the domain of Example 1 ranking by Borda scores satisfies 3-IND,
but as every triple is free this domain is Arrovian. This example is trivial in that 3
belongs to the “top” equivalence class in the Blau partition, thus any SWF on this do-
main satisfies 3-IND. We now describe an example of a SWF that is not trivial in this
sense, defined on the union of single-peaked and single-dipped domains. Of course,
single-peakedness is well known as an escape from the Arrovian impossibility.4

Definition 6 A domain is single-peaked if there is a linear order � on A, called the
axis, such that (x� y� z or z� y� x) implies (xRy implies yRz).

Note that single-peakedness by itself does not define a particular domain; it is instead
a property that a domain might satisfy. For a fixed axis� there is a unique largest (by
cardinality and inclusion) single-peaked domain that contains all other single-peaked
domains with the same axis.

Definition 7 A maximal single-peaked domain is a largest single-peaked domain
with respect to some given axis.

Maximal single-peaked domains are examples of domains that satisfy the Blau equiv-
alence but where the Arrovian impossibility does not apply.

Proposition 3 For m> 2, any maximal single-peaked domain satisfies the Blau equiv-
alence, i.e. it has Blau partition Jm−1,mK.

Proof As for m> 2 a maximal single-peaked domain has more than two elements, by
Proposition 2 we know that there is not one single partition. Thus it suffices to show
(l, l +1)-equivalence for l = 2, . . . ,m−2. We proceed by showing that the condition
of Lemma 2 holds. Thus suppose that S|X= S′|X for S,S′ ∈D and X ⊂ A with |X |= l.
Note as |X |= l ≤ m−2 there are a,b ∈ A\X . For x ∈ A, Y ⊆ A and R ∈ D, define

µ(x,Y,R) = |{y ∈ Y | x� y,yRx}|− |{y ∈ Y | y� x,yRx}| .

4 Black (1948) provides the classic reference concerning single peaked domains.
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This may be thought of as a measure of “how far anti-clockwise” x is in R with respect
to some set of alternatives Y . Now, there is a S′′ ∈D such that S′′|X= S|X , µ(a,X ,S) =
µ(a,X ,S′′) and µ(b,X ,S′) = µ(b,X ,S′′). Then, as required, S|X∪{a}= S′′|X∪{a} and
S′|X∪{b}= S′′|X∪{b}. ut

By removing preferences from the single-peaked domain we can create a domain
to which neither the Blau equivalence nor the Arrovian impossibility implies. For
instance, consider the domain Dp with the following rankings:5

Rp1 Rp2 Rp3 Rp4 Rp5 Rp6 Rp7 Rp8

a1 a2 a2 a3 a3 a4 a4 a5
a2 a1 a3 a2 a4 a3 a5 a4
a3 a3 a1 a4 a2 a5 a3 a3
a4 a4 a4 a1 a5 a2 a2 a2
a5 a5 a5 a5 a1 a1 a1 a1

Let us draw attention to the pair (a1,a2). Because Rp6 and Rp7—and also Rp7 and
Rp8—are (4,a1,a2)-adjacent, therefore

{5} is a member of the Blau partition of Dp. (?)

However, none of Rp6, Rp7 or Rp8 are (4,a1,a2)-adjacent to Rp4, as the rankings,
firstly, of a1 and a5 and, secondly, of 2 and a4 are different in each pair of preferences.
It can similarly be seen that Rp5 is not (4,a1,a2)-adjacent to any of the other rankings
in Dp. Therefore it is not (4,a1,a2)-reachable to any other ranking, although it is
certainly (2,a1,a2)-reachable to other rankings. Thus 2 and 4 are in different sets of
the Blau partition for this domain, so

Dp does not satisfy the Blau equivalence. (†)

The inverse of a single-peaked domain is a single dipped domain. Without going
into too many details, the single dipped version of the above domain is Dd:

Rd1 Rd2 Rd3 Rd4 Rd5 Rd6 Rd7 Rd8

a1 a1 a1 a1 a5 a5 a5 a5
a2 a2 a2 a5 a1 a4 a4 a4
a3 a3 a5 a2 a4 a1 a3 a3
a4 a5 a3 a4 a2 a3 a1 a2
a5 a4 a4 a3 a3 a2 a2 a1

We now consider the union domain Du = Dp∪Dd. This satisfies the free triple con-
dition and thus is subject to the Arrovian impossibility: there is no PO, 2-IND and
non-dictatorial SWF defined on Du. As the only rankings in the domain with a2 pre-
ferred to a1 are in Dp (because Rd8 = Rp8), the statements (?) and (†) equally apply

5 Preferences were not removed arbitrarily to create this domain. For the remaining preferences, note
that the alternatives on either side of the “peak” are balanced; that these alternatives are interspersed as far
as possible. Cf. the idea of equidistantly single-peaked domains described by Ozdemir and Sanver (2007).
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if we substitute Du for Dp. This opens up the possibility for a successful weaken-
ing of independence. Define DL = {Dpi,Ddi : for i = 1,2,3,4} and DR = {Dpi,Ddi :
for i = 5,6,7,8}.

Definition 8 Selective pairwise majority is the function on Du that proceeds as fol-
lows: divide the voters into those who have preferences in DL and those who have
preferences in DR, then perform pairwise majority6 on the larger of these two groups.
Break ties arbitrarily in a consistent and deterministic manner.

Theorem 5 Selective pairwise majority is non-dictatorial SWF on Du that satisfies
PO and 4-IND.

Proof First note that DL and DR are each single-crossing domains7 (see Figure 1),
thus this function does actually return a total preorder as required. As pairwise major-
ity on DL—or indeed on DR—is non-dictatorial, so to is selective pairwise majority.
If all agents prefer x to y, then a majority also do so for whichever of DL or DR has
more voters; selective pairwise majority is PO.

To finish we show that selective pairwise majority is 4-IND. Take arbitrary R∈DL

and R′ ∈DR. Note that a1Ra5 but a5R′a1; and also a2Ra4 but a4R′a2. As there are only
five alternatives, R and R′ never coincide on a set of four alternatives. Thus R and R′

are not (k,x,y)-adjacent for any pair of alternatives x,y. As R and R′ were chosen
arbitrarily, they are not (k,x,y)-reachable either.8 So for a R′′ such that R ∼4

xy R′′,
R′′ ∈ DL, by the definition of the SWF substituting this R′′ for R in a profile will not
change the outcome. The same point applies if we substitute R′ in the place of R.
Thus by Lemma 1 we have 4-IND. ut

7 Final remarks

We have focused on the Blau (1971) equivalence, which concerns the impossibility
of weakening binary independence by considering independence over sets of higher
cardinality. We started by observing that this equivalence may vanish under domain
restrictions, i.e., for some domains k-IND diverges from 2-IND for 2 < k < m. Next,
we provided, for any given domain D and any given value of k, a necessary and
sufficient condition for a SWF to satisfy k-IND. We used this result to identify a
necessary and sufficient condition which renders a domain D (k, l)-equivalent—a
result which enables the determination of cases where the Blau equivalence holds.
The Blau equivalence itself was defined in terms of Blau partitions; we also saw that

6 Pairwise majority determines the ranking over pairs of alternatives based upon which is preferred by
more voters.

7 A domain is single-crossing if its preferences can be listed R1,R2, . . . ,Rt —or placed on a line—such
that, for all x and y, if xR1y and yRsx, then xRiy for s≤ i≤ t. Gans and Smart (1996) provide some economic
applications of this property. Rothstein (1991) shows that for any profile on a single-crossing domain there
is a representative voter whose (strict) preferences coincide with the (strict) majority relation (though note
he does not use the term single-crossing.

8 For all alternatives x 6= y, the set of equivalence classes of ∼xy
4 on Du is the following refinement of

{DL,DR}: {{Rp1,Rp2,Rp3,Rd2,Rp3},{Rp6,Rp7,Rp8,Rd6,Rp7},{Rp4},{Rp5},{Rd4},{Rd5}}.
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Rp8
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Rp6

Rp5Rp4

Rp3

Rp2

Rp1

Rd7

Rd6

Rd5Rd4

Rd3

Rd2

Fig. 1 The single-crossing line for DL is the semicircle to the left; that for DR is the semicircle to the right.

for almost any such partition there is a domain that exemplifies it. Finally, in the
section preceding this one we turned attention to defining a particular five candidate
Arrovian domain that violates the Blau equivalence, and a non-dictatorial SWF on
this domain that is PO and 4-IND.

What results can we draw from our work? There is no logical dependence be-
tween the Blau equivalence and the Arrovian impossibility. We have seen domains
where both hold (the full domain), where just the Blau equivalence holds (any maxi-
mal single-peaked domain), where just the Arrovian impossibility holds (the domain
of Example 1 and the domain Du in Section 6), and also where neither hold (the
domains Dp and Dd in Section 6).

Let us restrict our attention to Arrovian domains. Here the Blau equivalence im-
plies that the impossibility holds even for weaker versions of independence. Hence,
when the Blau equivalence fails, a potential escape from Arrow’s impossibility arises:
there may be domains where Arrow’s result holds, i.e. where 2-IND, Pareto opti-
mality and non-dictatoriality are logically incompatible; but also where there exist
non-dictatorial SWFs that satisfy Pareto optimality and some version of k-IND.

As was noted by Blau (1971), it is not interesting to weaken independence to
m-IND, because this is trivially satisfied by any SWF. For example, on any domain,
ranking by Borda scores is non-dictatorial and satisfies m-IND and PO, though this
escape from Arrow’s impossibility is somewhat unsatisfying. We consider this SWF
to be similarly unsatisfying on the domain of Example 1. Although on this four can-
didate domain ranking by Borda scores satisfies 3-IND, so too will any other SWF: 3
and 4 are in the same equivalence class of the Blau partition of this domain. Blau’s im-
possibility, when elaborated in line with the above strand of thought, properly states:
there is no non-dicatorial, PO and k-IND SWF, for any k not in the equivalence class
of the Blau partition that contains m. Thus Blau’s impossibility holds on Arrovian
domains where there are only two equivalence classes in the Blau partition, though
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Section 5 shows that there are many domains with more than two such equivalence
classes.

Section 6 gives an example of a non-trivial weakening of independence: a non-
dictatorial SWF defined on a five candidate Arrovian domain that satisfies PO and
4-IND, where 4 is in a different equivalence class to 5 in the Blau partition. Thus
Blau’s impossibility is extensionally a stronger result than Arrow’s impossibility; it
applies to fewer domains. Of course, the domain and SWF we describe are (some-
what) designed to provide the necessary example. However, it is interesting to note
the way that what started with a single-peaked and single-dipped domains changed
into a single-crossing condition. These are all Condorcet domains, where the pairwise
majority relation is transitive, but we see no particular reason why successful weak-
enings should involve domains of this type. We have found at least one other (less
simply expressed) example on the domain Du; we conjecture that there are many
different types of successful weakenings.
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