
PARAMETERIZED ALGORITHMS ON
DIGRAPH AND CONSTRAINT

SATISFACTION PROBLEMS

A thesis submitted to Royal Holloway, University of London
for the degree of Doctor of Philosophy

in the Faculty of Science

May 2010

By
EUN JUNG KIM

Department of Computer Science

Declaration

I Eun Jung Kim hereby certify that this thesis is the record
of work carried out by me and that it has not been submitted
to any previous application for a higer degree. Wherever
contributions of others are involved, every effort is made to
indicate this clearly, with due reference to the literature and
acknowledgement of collaborative research and discussions.

ii

Abstract

While polynomial-time approximation algorithms remain a dominant notion in tackling
computationally hard problems, the framework of parameterized complexity has been
emerging rapidly in recent years. Roughly speaking, the analytic framework of parame-
terized complexity attempts to grasp the difference between problems which admit O(ck ·
poly(n))-time algorithms such as Vertex Cover, and problems like Dominating Set for
which essentially brute-force O(nk)-algorithms are best possible until now. Problems of
the former type is said to be fixed-parameter tractable (FPT) and those of the latter type are
regarded intractable. In this thesis, we investigate some problems on directed graphs and
a number of constraint satisfaction problems (CSPs) from the parameterized perspective.

We develop fixed-parameter algorithms for some digraph problems. In particular, we
focus on the basic problem of finding a tree with certain property embedded in a given
digraph. New or improved fpt-algorthms are presented for finding an out-branching with
many or few leaves (Directed Maximum Leaf, Directed Minimum Leaf problems). For
acyclic digraphs, DirectedMaximum Leaf is shown to allow a kernel with linear number
of vertices. We suggest a kernel for Directed Minimum Leaf with quadratic number of
vertices. An improved fpt-algorithm for finding k-Out-Tree is presented and this algo-
rithm is incorporated as a subroutine to obtain a better algorithm for Directed Minimum
Leaf.

In the second part of this thesis, we concentrate on several CSPs in which we want
to maximize the number of satisfied constraints and consider parameterization “above
tight lower bound” for these problems. To deal with this type of parameterization, we
present a new method called SABEM using probabilistic approach and applying harmonic
analysis on pseudo-boolean functions. Using SABEM we show that a number of CSPs
admit polynomial kernels, thus being fixed-parameter tractable. Moreover, we suggest
some problem-specific combinatorial approaches to Max-2-Sat and a wide special class
of Max-Lin2, which lead to a kernel of smaller size than what can be obtained using
SABEM for respective problems.

iii

Acknowledgements

It is a pleasure to record my debts to those with whom I have been fortunate enough to be
around. My first and deepest gratitude goes out to my supervisor, Gregory Gutin. After
years as a PhD student, all the more I realize how lucky I am to have him as a supervisor.
Gregory led me to the field of research in many ways and his drive and sincerity on
research has become my discipline. Support and encouragement were furnished so timely
by him, for which I am grateful. I also wish to acknowledge my appreciation to my
thesis committee, Stephan Kreutzer and Costas S. Iliopoulos, for insightful comments
and discussion on this work.

To properly thank everyone to whom I am indebted during the academic journey
would involve adding a whole new chapter to the thesis. However, I don’t want to miss
the opportunity to recognize the creative and patient efforts of my coauthors; Noga Alon,
Robert Crowston, Jean Daligault, Peter Dunkelmann, Nathann Cohen, Fedor Fomin, Arvind
Gupta, Mark Jones, Mehdi Karimi, Michael Lampis, Valia Mitsou, Matthias Mnich,
Sebastian Ordyniak, Arash Rafiey, Igor Razgon, Imre Ruzsa, Saket Saurabh, Arezou
Soleimanfallah, Stefan Szeider, Ryan Williams and Anders Yeo. I enjoyed the work and
learned so much from them. Particular thanks to Anders Yeo for countless invaluable dis-
cussions, which helped me learn things and how to think. I cannot thank enough Kyung
Chul Chae; his grateful kindness and support made it possible to start my PhD.

The geographic distribution of my friends is another evidence that we are living a
globalized era. You guys made my life easier and brighter. Special thanks to all of you.
A very special thanks to one person in particular.

Every time passing tells me how much I owe to my parents. Keep your life and work
just as you have done, and I cannot imagine better encouragement. (I want to join your
Himalayan tracking, but am afraid to drag your steps.) As always, my brother has been
there and I wish you the best of luck. I congratulate my sister, my best friend and the best
mentor, for her new track just beginning.

A final word goes to the piano which walked into my room one day and lit up another
dimension of my life.

iv

Contents

Declaration ii

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Parameterized Framework . 1
1.2 Parameterized Algorithms for Digraph Problems 2
1.3 Parameterized Algorithms for Constraint Satisfaction Problems 5
1.4 Thesis Outline and Bibliographic Note 8

2 Notions 10
2.1 Graph Theory . 10
2.2 Constraint Satisfaction Problems . 13
2.3 Probabilistic Method . 14
2.4 Parameterized Complexity . 15

I Parameterized Algorithms on Digraph Problems 18

3 Directed Maximum Leaf Problem 19
3.1 O∗(4k) Time Algorithm . 20
3.2 Faster FPT-algorithm . 23
3.3 Application: Exact Algorithm . 27
3.4 Linear Kernel for Acyclic Digraphs . 28

4 k-Out-tree Problem 31
4.1 Color-coding for k-Out-tree . 31
4.2 Randomized FPT-algorithm for k-Out-tree 33

4.2.1 Running Time Analysis . 43

v

4.3 Derandomization . 46

5 Directed Minimum Leaf Problem 52
5.1 MinLeaf on Acyclic Digraphs . 53
5.2 MinLeaf on Near-Acyclic Digraphs . 54

5.2.1 Hardness Result . 55
5.2.2 Polynomial Algorithm For Fixed Number of Leaves 58

5.3 Three Parameterizations of MinLeaf . 59
5.4 Quadratic Kernel for Directed k-Internal 60
5.5 FPT-algorithm for Directed k-Internal 67

5.5.1 Dynamic Programming on Graphs with Bounded Treewidth . . . 67
5.6 Improved FPT-algorithm for Directed k-Internal 76

II CSPs Parameterized Above Tight Lower Bounds 81

6 Strictly Above/Below Expectation Method 82
6.1 Probabilistic Inequalities . 83
6.2 Linear Ordering . 84
6.3 Max-Lin2 . 87
6.4 Betweenness . 93
6.5 MAX-r-SAT . 99
6.6 Boolean Constraint Satisfaction Problems 103

7 Combinatorial Approaches 105
7.1 MAX-2-SAT . 105

7.1.1 Kernelization . 106
7.2 A Family of Special Cases of Max-Lin2 112

7.2.1 Results on Maximum Excess . 113
7.2.2 Corollaries . 117

8 Future Work 122

Bibliography 126

vi

Chapter 1

Introduction

1.1 Parameterized Framework

Computationally intractable problems are prevalent in applications. Especially when we
look into a real-world problem which needs to be solved, it is quite likely that the problem
does not allow a polynomial-time algorithm. Several approaches have been taken to deal
with the situation. Quite so often the strategy is to sacrifice the quality of a solution for
efficiency. Approximation algorithms always produce a solution within a guaranteed gap
whereas typical randomized algorithms with error probability produce an optimal solution
often enough, though not always.

Since its emergence in the early 1990s, the parameterized framework has proved itself
as a fresh yet solid ground for tackling the apparently intractable problems and viewing
their asymptotic behavior. The conscious form of parameterized complexity appeared
with a series of papers by Downey and Fellows [49], but there are a number of early
examples for fixed-parameter algorithms. A classic example is the O∗(3k)1 dynamic pro-
gramming algorithm for the Steiner Tree Problem [50], where k is the number of terminal
vertices.

The parameterized framework can be construed as a way of looking into the structure
of an instance with a bird’s eye view, instead of an ant’s eye view on one-dimensional
space. The classic complexity theory gives a dichotomy of P versus NP based on analysis
of resource requirements in terms of the instance size only. The parameterized complexity
captures another dimension of an instance, called a parameter, and provides a framework
to explain to what extent this additional dimension affects the resource requirement. If
we are able to identify a parameter k which plays a crucial role in the seemingly unavoid-
able combinatorial explosion and hopefully the parameter can be assumed to have small

1we often use the notation O∗(f (k)) instead of f (k)(kn)O(1), i.e., O∗ hides not only constants, but also
polynomial coefficients.

1

values, we may solve the problem efficiently. In other words, the analytic framework of
parameterized complexity attempts to grasp the difference between problems which ad-
mit O(ck · poly(n))-time algorithms such as Vertex Cover, and problems like Dominating
Set for which essentially brute-force O(nk)-algorithms are best possible until now. Prob-
lems of the former type is said to be fixed-parameter tractable (FPT) and the latter type is
regarded intractable in parameterized sense.

The focus of our work will be directed at designing fixed-parameter algorithms for
hard combinatorial problems. Plenty of algorithmic methods have been developed for
parameterized problems; kernelization, depth-bounded search tree, iterative compression,
color-coding and dynamic programming for example. In particular, recent years have
witnessed a rapid progress in the study of kernelization. A good part of our work will be
devoted for kernelization issue and we attempt to provide a new method for kernelization
in Part II. An excellent overview of much recent work on kernelization can be found in
Guo and Niedermeier [65].

1.2 Parameterized Algorithms for Digraph Problems

Due to its asymmetric nature, problems on directed graphs are frequently more difficult to
settle than their counterparts on undirected graphs. In case we manage to design an algo-
rithm for some digraph problem to match the efficiency of their undirected counterpart, it
may be require a quite different approach or at least an additional idea. With this mind, we
are not so surprised that the study of parameterized algorithms on digraphs problems tends
to lag behind its undirected counterpart. Lagging behind, however, means an opportunity
to catch up.

As problems on digraphs will be the focal point in the first part of the thesis, we
provide a brief overview of the recent development in related research.

The Maximum Leaf problem is to find a spanning tree with the maximum number of
leaves in a given undirected graph. The problem is well studied from both algorithmic [57,
60, 89, 104] and graph-theoretical [47, 81, 88] points of view. Note that Maximum Leaf in
undirected setting is equivalent to the problem Connected Dominating Set. This problem
finds a primary application in wireless ad hoc network [20], where we want to decide
a set of points for routing. A small connected dominating set meets the requirementfor
such relaying points and thus, can provide a backbone for communication flow. This
problem has been studied from the parameterized complexity perspective as well and
several authors [27, 51, 53] have designed fixed parameter tractable (FPT) algorithms for
solving the parameterized version of Maximum Leaf (the k-Leaf problem): given a graph
G and an integral parameter k, decide whether G has a spanning tree with at least k leaves.

2

The study of Directed k-Leaf has begun quite recently. Alon et al. [3, 2] proved that
the problem is FPT for a wide family of digraphs including classes of strongly connected
and acyclic digraphs. Bonsma and Dorn extended this result to all digraphs in [28], and
improved the running time of the algorithm in [2] to O∗(2k log k) in [29]. Later on, Kneis et
al. [82] proposed a simple yet elegant algorithm of running time O∗(4k), a big improve-
ment for both directed and undirected k-Leaf problem. We further develop their algorithm
and obtain an fpt-algorithm running in time O∗(3.72k), which shall be described in Chap-
ter 3. The latest update on the running time race is O∗(3.4575k)-algorithm for undirected
graphs by Raible and Fernau [103].

Turning to the kernelization side, a kernel of size 3.75k is known [51] for undirected
graphs. When we stretch for directed graphs, the landscape is quite different. Fernau
et al. [54] proved that no polynomial kernel for Directed k-Leaf is possible unless the
polynomial hierarchy collapses to the third level (they applied a recent breakthrough result
of Bodlaender et al. [23]). Interestingly, if we specify the root, then the problem Rooted
Directed k-Leaf admits a polynomial size kernel and Fernau et al. [54] obtained one of
size O(k3). This was later improved to a quadratic one by Daligault and Thomassé [42].
The authors of [42] also presented an 92-approximation algorithm for DirectedMaximum
Leaf. To the best of our knowledge, no linear vertex-kernel has been proposed so far.

The k-Out-Tree problem is the problem of deciding, for a given parameter k and a
given out-tree T on k vertices, whether an input digraph contains T as a subgraph. In their
seminal work on Color Coding Alon, Yuster, and Zwick [8] provided fixed-parameter
tractable (FPT) randomized and deterministic algorithms for k-Out-Tree. While Alon,
Yuster, and Zwick [8] only stated that their algorithms are of runtime O∗(2O(k)), it is easy
to see (see Subsection 4.1) that their randomized and deterministic algorithms are of com-
plexity O∗((4e)k) and O∗(ck), where c ≥ 4e. In fact, the derandomization of Color Coding
requires a huge blow-up in the constant.

The main results of [8], however, were a new algorithmic approach called Color Cod-
ing and a randomized O∗((2e)k) algorithm for deciding whether a digraph contains a path
with k vertices (the k-Path problem). Chen et al. [31] proposed another approach, a
randomized Divide-and-Conquer technique. The new approach allowed them to design
a randomized O∗(4k)-time algorithm for k-Path. The Divide-and-Conquer technique of
Chen et al. [31] uses two colors. The colors are ‘symmetric’, i.e., both colors play similar
role and the probability of coloring each vertex in one of the colors is 0.5. In Chapter
4, we further develop the technique of [31] by making it asymmetric, i.e., the two col-
ors play different roles and the probability of coloring each vertex in one of the colors
depends on the color. As a result, we refine the result of Alon, Yuster, and Zwick by ob-
taining randomized and deterministic algorithms for k-Out-Tree, of runtime O∗(5.704k)

3

and O∗(6.14k), respectively.
Recent breakthrough results due to Koutis [83] and Williams [107] are based on an

algebraic formulation of the k-Path problem. Koutis [83] reformulated k-Path as the
problem of detecting square-free term in degree-k polynomial and obtained a randomized
O∗(23k/2)-time algorithm. Williams [107] extended his ideas culminating in a random-
ized O∗(2k)-time algorithm. While the randomized algorithms based on Color Coding and
Divide-and-Conquer are not difficult to derandomize, it is not the case for the algorithms
of Koutis [83] and Williams [107]. Thus, it is unknown whether there are deterministic
algorithms for k-Path of runtime O∗(2k) or even O∗(23k/2). In [84], Koutis and Williams
suggested a new application of their method for k-Tree, achieving the running time of
O∗(2k). The derandomization issue is yet to be resolved in this case as well.

The Directed Minimum Leaf problem is to find an out-branching with the minimum
number of leaves in a given digraph. The Hamilton path problem is its special case and
thus, Directed Minimum Leaf is NP-hard. Chapter 5 is devoted to the study of this prob-
lem.

Directed Minimum Leaf is of particular interest in computer database systems [45].
When a huge amount of information is stored in indexed tables, a naive way of retrieving
information that satisfy a query would be to inspect every row for those columns specified
by the query. To avoid such hassle, many database systems are equipped with indexes,
which are conceptually similar to an index at the end of a book. For a frequently queried
combination of columns, we may keep a list of information (i.e. combined values in the
corresponding columns) and their locations. While providing indexes seems to be an all-
round solution, the update of indexes to keep track of changes in the tables is another
costly job and we prefer fewer indexes to update. Here the following problem arise:
how can we decide the optimal set of indexes which also covers all frequently queried
combinations of columns? This questions can be easily formulated as the problem of
finding an out-branching with minimum number of leaves in an acyclic digraph. Demers
and Downing [45] suggested a heuristic approach to this problem, but no argument or
assertion has been made to provide the validity of their approach and to investigate its
running time.

We give a simple proof in Section 5.1 that the problem Directed Minimum Leaf can
be solved in polynomial time when the input graph is restricted to be acyclic. Then we
examine a broader class of near-acyclic digraphs with respect to known digraph width
measures and explore how far we can extend the polynomiality result. The hardness of
Directed Minimum Leaf obtained in our work fits well with the implication of the recent
papers [85, 87]; that only a relatively few NP-hard optimization problems on digraphs
become tractable when restricted to digraphs of bounded directed width parameters. This

4

is a sharp contrast to the situation with undirected graphs in which a vast body of NP-
hard optimization problems becomes tractable on graphs of bounded tree-width. These
negative outcome highlights again the difficulty in coping with digraphs and indicates a
long way to go in order to match the success of tree-width for undirected graphs.

In the subsequent sections of Chapter 5, we will study the following parameterized
version of DirectedMinimum Leaf: given a digraph D and a parameter k, decide whether
D has an out-branching with at least k internal vertices. This problem, denoted Directed
k-Internal, was studied for undirected graphs by Prieto and Sloper [101, 102]. We
demonstrate an algorithm of runtime O∗(2O(k log k)) for Directed k-Internal and another
algorithm with running time of O∗(55.8k). Recently in [58], an fpt-algorithm of running
time O∗(16k+o(k)) was presented by further exploring the idea of iteratively partitioning the
embedded tree we want to find.

A crown structure is a novel idea that allows us to have powerful reduction rules.
Its applications have been wide and successful, which includes a linear-size kernel for
the vertex cover problem [32, 52]. We propose a kernelization for Directed k-Internal
exploiting a crown structure of the instance, which yields a kernel with O(k2) vertices.
For undirected graphs, Fomin et al. exhibited a 3k-vertex kernel in [56] and obtained
O∗(8k)-algorithm for k-Internal as a corollary.

1.3 Parameterized Algorithms for Constraint Satisfaction
Problems

The Constraint Satisfaction Problems (CSPs) form one of the most important combinato-
rial problems as they offer a natural language to formulate a huge variety of combinatorial
problems with Coloring, Max-Cut and Satisfiability as notable examples. In this thesis,
we focus on the CSPs in which we want to maximize the number of satisfied constraints.
Since a majority of CSPs of this type allow randomized α-approximation algorithms by
which the number of satisfied constraints have a tight lower bound, they are often trivially
FPT under the standard parameterization. Here, a lower bound tight in the sense that it is
optimal for an infinite sequence of instances. Consider the following illustration.

Given a digraph D = (V, A), find an acyclic subdigraph of D with the maximum num-
ber of arcs. A standard parameterization for this problem asks whether D contains an
acyclic subdigraph with at least k arcs. It is easy to prove that this parameterized problem
is fixed-parameter tractable by observing that D always has an acyclic subdigraph with
at least |A|/2 arcs. Indeed, consider a bijection α : V → {1, . . . , |V |} and the following
subdigraphs of D: (V, { xy ∈ A : α(x) < α(y) }) and (V, { xy ∈ A : α(x) > α(y) }). Both

5

subdigraphs are acyclic and at least one of them has at least |A|/2 arcs. However, k ≤ |A|/2
for every small value of k and almost every practical value of |A| and, thus, our standard
parameterization is of almost no practical or theoretical interest.

Instead, one can consider the following parameterized problem: decide whether D =

(V, A) contains an acyclic subdigraph with at least |A|/2 + k arcs. We choose |A|/2 + k

because |A|/2 is a tight lower bound on the size of a largest acyclic subdigraph. Indeed,
the size of a largest acyclic subdigraph of a symmetric digraph D = (V, A) is precisely
|A|/2. (A digraph D = (V, A) is symmetric, if xy ∈ A implies yx ∈ A.)

Parameterizations above a guaranteed value were first considered by Mahajan and
Raman [90] for the problems Max-Sat and Max-Cut. They devised an algorithm for
Max-Sat with running time O∗(1.618k +

∑m
i=1 |Ci|) that finds, for a multiset {C1, . . . ,Cm} of

m clauses, a truth assignment satisfying at least ⌈m/2⌉+ k clauses, or decides that no such
truth assignment exists (|Ci| denotes the number of literals in Ci).

In a recent paper [91], Mahajan, Raman and Sikdar provided several examples of
problems of this type and argued that a natural parameterization is one above a tight
lower bound for maximization problems, and below a tight upper bound for minimization
problems. Furthermore, they observed that only a few non-trivial results are known for
problems parameterized above a tight lower bound [69, 71, 105, 90], and they listed sev-
eral problems parameterized above a tight lower bound whose complexity is unknown.
The difficulty in showing whether such a problem is fixed-parameter tractable can be il-
lustrated by the fact that often we even do not know whether the problem is in XP, i.e., can
be solved in time O(|I|g(k)) for a computable function g(k). For example, it is non-trivial
to see that the above-mentioned digraph problem is in XP when parameterized above the
|A|/2 bound.

In this thesis, we introduce the StrictlyAbove/Below ExpectationMethod (SABEM),
a novel approach for establishing the fixed-parameter tractability of maximization prob-
lems parameterized above tight lower bounds and minimization problems parameterized
below tight upper bounds. The new method is based on probabilistic arguments and uti-
lizes certain probabilistic inequalities. This method can be seen as a tool for exhibiting
the existence of a kernel. A detailed account of SABEM and its application to a number
of new and open constraint satisfaction problems will be provided in Chapter 6.

In Section 6.2, we consider the Linear Ordering problem, a generalization of the
problem discussed above: Given a digraph D = (V, A) in which each arc i j has a positive
integral weight wi j, find an acyclic subdigraph of D of maximum weight. Observe that
W/2, where W is the sum of all arc weights, is a tight lower bound for Linear Ordering.
We prove that the problem parameterized above W/2 is fixed-parameter tractable and
admits a quadratic kernel. This parameterized problem generalizes the parameterized

6

maximum acyclic subdigraph problem stated as open in [91].
In Section 6.3, we consider the problem Max Lin-2: Given a system of m linear equa-

tions e1, . . . , em in n variables over GF(2), and for each equation e j a positive integral
weight w j; find an assignment of values to the n variables that maximizes the total weight
of the satisfied equations. Various algorithmic aspects of Max Lin have been well-studied
(cf. [6, 73, 74]). Perhaps, the best known result on Max Lin is the following inapproxima-
bility theorem of Håstad [73]: unless P=NP, for each ε > 0 there is no polynomial time
algorithm for distinguishing instances of Max 3-Lin-2 in which at least (1−ε)m equations
can be simultaneously satisfied from instances in which less than (1/2+ε)m equations can
be simultaneously satisfied. It is not difficult to see that W/2, where W = w1 + · · ·+wm, is
a tight lower bound for Max Lin-2. The complexity of the problem parameterized above
W/2 is open [91]. We prove that for three nontrivial special cases there exist kernels with
O(k2) variables and equations. We also show that if we allow the weights w j to be positive
reals, the problem is NP-hard already if k = 1 and each equation involves two variables.

In Section 6.4, we explore the problem Ordinal Embeddings or Betweenness. The
problem of mapping points with measured pairwise distances into a target metric space
has a long history and been studied extensively from multiple perspectives due to its nu-
merous applications. The quality of such an embedding can be measured with various
objectives; for example isometric embeddings preserve all distances while aiming at low-
dimensional target spaces. Yet, for many contexts in nearest-neighbor search, visual-
ization, clustering and compression it is the order of distances rather than the distances
themselves that captures the relevant information. The study of such Ordinal Embeddings
dates back to the 1950’s and has recently witnessed a surge in interest [1, 12, 18, 78].
In an ordinal embedding the relative order between pairs of distances must be preserved
as much as possible, i.e., one minimizes the relaxation of an ordinal embedding defined
as the maximum ratio between two distances whose relative order is inverted by the em-
bedding. Such linear arrangements are of significant interest in molecular biology, where
for example markers on a chromosome need to be totally ordered as to satisfy the maxi-
mum number of constraints [38, 63]. More theoretical interest comes from the constraint
programming framework with unbounded domains and interval graph recognition [86].

Already deciding if all constraints can be satisfied by some linear arrangement is an
NP-complete problem [99]. Therefore, the complementary question of whether all but
k constraints are satisfiable by some linear arrangement is not fixed-parameter tractable,
unless P = NP. On the other hand, any uniformly random permutation of the variables
satisfies at least one-third of all constraints, and this fraction is tight. Better approximation
ratios are hard to achieve: the fraction of one-third is best-possible under the Unique
Games Conjecture [30], and it is NP-hard to find a linear arrangement that satisfies a

7

1 − ε fraction of the constraints for some ε ∈ (0, 1/48) [33]. The mere positive result
is a polynomial time algorithm that either determines that there is no linear arrangement
that satisfies all m constraints or finds a linear arrangement satisfying at least half of them
[33, 92].

So the right question to ask is whether there exists a linear arrangement that satisfies at
least |C|/3+ k of the constraints. The parameterized complexity of this problem attributed
to Benny Chor was open, and was stated as such in [94]. We show that Betweenness
parameterized above the tight lower bound has a kernel of quadratic size, namely, any
instance is polynomial-time reducible to an equivalent instance of size O(k2).

The Maximum r-Satisfiability Problem (Max-r-Sat) from Section 6.5 is a classic opti-
mization problem with a wide range of real-world applications. The task is to find a truth
assignment to a multiset of clauses, each with exactly r literals, that satisfies as many
clauses as possible, or in the decision version of the problem, to satisfy at least t clauses
where t is given with the input. Even Max-2-Sat is NP-hard [61] and APX-hard [73], in
strong contrast with 2-Sat which is solvable in linear time [10].

It is always possible to satisfy a 1 − 2−r fraction of a given multiset of clauses with
exactly r literals each and this lower bound is tight. Using SABEM we show that for every
fixed r we can decide in time O(m)+ 2O(k2) whether a given multiset of m clauses admits a
truth assignment that satisfies at least ((2r − 1)m + k)/2r clauses. This answers a question
posed by Mahajan, Raman and Sikdar [91].

1.4 Thesis Outline and Bibliographic Note

The remainder of the thesis is organized as follows. Chapter 2 provides the background
notion for the study. We consider three problems on digraphs in Part I. Chapter 3 pur-
sue the study of the parameterized Directed Maximum Leaf. We consider k-Out-Tree
in Chapter 4 and examine the problem Directed Minimum Leaf from the parameterized
perspective in Chapter 5. In Part II we consider several constraint satisfaction problems
parameterized above their tight bounds. We present a new method of kernelization for
such parameterization in Chapter 6 and describe how the method can be used in concrete
problems. Other problem-specific combinatorial approaches will be examined in Chapter
7.

All the results in this thesis are new unless otherwise specified. Most of the results
have been presented at journals or conferences. Below is a list of the previous articles that
our work is based on.

• [70] Minimum leaf out-branching and related problems, joint work with G. Gutin,
I. Razgon, Theoretical Computer Science 410 (45), pp. 4571-4579 (2009).

8

• [43] On the Complexity of Minimum Leaf Out-branching Problem, joint work with
P. Dunkelmann, G. Gutin, Discrete Applied Mathematics 157 (13), pp. 3000-3004
(2009).

• [41] FPT Algorithms and Kernels for the Directed k-Leaf Problem, joint work with
J. Daligault, G. Gutin, A. Yeo, Journal of Computer and System Sciences 76 (2),
pp. 144-152 (2010).

• [36] Algorithm for Finding k-Vertex Out-trees and its Application to k-Internal Out-
branching Problem, joint work with N. Cohen, F. V. Fomin, G. Gutin, S. Saurabh,
A. Yeo, To appear in Journal of Computer and System Sciences.

• [68] Probabilistic Approach To Problems Parameterized Above Tight Lower Bound,
joint work with G. Gutin, S. Szeider, A. Yeo, Proceedings of the 4th International

Workshop on Parameterized and Exact Computation (IWPEC 2009).

• [5] Solving Max-r-SAT Above a Tight Lower Bound, joint work with N. Alon, G.
Gutin, S. Szeider, A. Yeo, Proceedings of the 21st Annual ACM-SIAM Symposium

on Discrete Algorithms (SODA 2010).

• [67] Betweenness Parameterized Above Tight Lower Bound, joint work with G.
Gutin, M. Mnich, A. Yeo, To appear in Journal of Computer and System Sciences.

• [40] Lower Bounds for Maxima of Functions with Boolean Variables and Max Lin
Above Average Problem, joint work with R. Crowston, G. Gutin, M. Jones, I.Z.
Ruzsa, To appear in the 12th Scandinavian Symposium and Workshop on Algorithm

Theory (SWAT 2010).

9

Chapter 2

Notions

In this chapter we introduce some basic notions and facts that are relevant to our work.

2.1 Graph Theory

We deal with both undirected and directed graphs in the following chapters. Also we make
use of some width measures of a (directed) graph such as tree-width, directed tree-width
and DAG-width.

Undirected graphs: An undirected graph G consists of a set V(G) and a set E(G) which
is a subset of all 2-sets of V(G). The elements of V(G) are vertices and the elements of
E(G) are edges. We only consider finite graphs, that is, V(G) and E(G) are finite and by
definition we restrict ourselves to graphs without parallel edges and loops. The number of
vertices and edges of the graph under consideration will be denoted n and m respectively.
An edge e = {u, v} ∈ E(G) have the elements u,v as the endpoints and is denoted as (u, v)
or uv whichever is convenient. The two endpoints u, v of an edge e = (u, v) are said to be
adjacent with each other and are incident with the edge e. Likewise the edge e is incident
with u and v.

The set {u ∈ V(G) : (u, v) ∈ E(G)} of vertices adjacent to a vertex v ∈ V(G) is called
a neighborhood, or sometimes an open neighborhood, of v and is denoted by N(v). By
taking N(v) ∪ {v}, we get a closed neighborhood of v. In general, for a set of vertices
X ⊆ V(G), the (open) neighborhood of X is the set

∪
x∈X N(x) \ X.

The degree d(v) of a vertex v ∈ V(G) is the number of edges incident with v. A vertex
of degree 0 is said to be isolated.

Let G′ = (V ′, E′) and G = (V, E) be are two graphs. If V ′ ⊆ V and E′ ⊆ E, then
G′ is a subgraph of G, written as G′ ⊆ G. If, moreover, G′ contains all edges uv ∈ E

for all u, v ∈ V ′, then G′ is an induced subgraph of G and written as G′ := G[V ′]. A

10

spanning subgraph G′ ⊆ G is a subgraph of G with V ′ = V . Finally, we say G and G′ are
isomorphic, denote as G ≃ G′, if there exists a bijection φ : V 7→ V ′ such that uv ∈ E if
and only if φ(u)φ(v) ∈ E′.

A walk W in a graph G is an alternating sequence v0, e0, v1, e1, . . . , el−1, vl with ei =

{vi, vi+1} for 0 ≤ i < l. The walk W is usually written as v0v1 . . . vl. We say that W is a
walk from v0 to vl, or a v0 − vl walk. The number l of edges in W is the length of W.
If W is restricted to have all distinct vertices (edges, respectively), it is a path (a trail,
respectively). A walk W = v0 . . . vl is said to be a cycle if v0 = vl and all vertices vi,
0 ≤ i < l, are distinct. This cycle is denoted by v1 . . . vl(= v0). A cycle with l vertices is
denoted as l-cycle.

A graph G is said to be connected if there is a path from between every pair of vertices.
A maximal connected subgraph of G is a (connected) component of G. Any graph is either
connected or uniquely decomposed into more than one components.

For further notions in graph theory we refer the readers to the standard textbook by
Diestel [46].

Directed graphs: If we take ordered pairs of vertices as the edges in replacement of
2-sets, we obtain a directed graph D or a digraph in short. For a directed graph D, an
ordered pair e = (u, v) is called an arc or a directed edge, and u,v are the tail and head of
the arc e respectively. An arc e = (u, v) is incident from its tail u and incident to its head v.
The set of vertices and arcs of a digraph D will be denoted by V(D) and A(D) respectively.
A digraph is called an oriented graph if it has no directed 2-cycle. Most notions defined
on undirected graphs are naturally extended to cover directed graphs.

For a vertex v of a subgraph H of a digraph D, N+H(v) denotes the set of out-neighbors
of v. Also, let A+H(v) = {vu : u ∈ N+H(v)} and let d+H(v) = |N+H(v)| denote the outdegree of
v.. The notations N−H(v), A−H(v) and d−H(v) are defined analogously for in-neighbors of v.
When H = D we will frequently omit the subscripts in the notation above.

A directed graph D is said to be strongly connected if there is a directed path from u

to v for every ordered pair u, v of V(D). A maximal strongly connected subgraph of D is
a strong (connected) component of D. The underlying graph UG(D) of a directed graph
D is the undirected graph obtained from D by disregarding the order of elements in every
arc and deleting one edge in each pair of parallel edges. A directed graph D is connected

if UG(D) is connected. The components of D are defined as the components of UG(D).
We say that a subgraph T of a digraph D is an out-tree if T is an oriented tree with

only one vertex r of in-degree zero (called the root). We may want to emphasis the root of
an out-tree T by saying that T is an out-tree rooted at r. The vertices of T of out-degree
zero are called leaves and all other vertices internal vertices. If T is a spanning out-tree,
i.e. V(T) = V(D), then T is called an out-branching of D. It is easy to decide whether a

11

digraph contains an out-branching.

Lemma 2.1.1. [13] A digraph D has an out-branching rooted at vertex r ∈ V(D) if and

only if D has a unique strong connectivity component S of D without incoming arcs and

r ∈ S . One can check whether D has a unique strong connectivity component and find

one, if it exists, in time O(m+ n), where n and m are the number of vertices and arcs in D,

respectively.

The monograph by Bang-Jensen and Gutin [13] is a comprehensive source for con-
cepts and results on directed graph.

Tree-width: A tree decomposition of an undirected graph G is a pair (X,T) where T is a
tree whose vertices we will call nodes and X = {Xi : i ∈ V(T)} is a collection of subsets
of V(G) (called bags) such that

1.
∪

i∈V(T) Xi = V(G),

2. for each edge (v,w) ∈ E(G), there is an i ∈ V(T) such that v,w ∈ Xi, and

3. for each v ∈ V(G) the set of nodes {i : v ∈ Xi} form a subtree of T .

The width of a tree decomposition ({Xi : i ∈ V(T)},U) equals maxi∈V(T){|Xi| − 1}. The
treewidth of a graph G is the minimum width over all tree decompositions of G. We use
the notation tw(G) to denote the treewidth of a graph G.

By a tree decomposition of a digraph D we will mean a tree decomposition of the
underlying graph UG(D). Also, tw(D) = tw(UG(D)).

Sometimes it is convenient to work with a nice tree decomposition. Any tree decom-
position can be converted into a nice tree decomposition of the same width in linear time,
see [94]. A tree decomposition (X,T) of an undirected graph G is nice if it is a rooted
binary tree and any node i ∈ V(T) is one of the four types:

1. Leaf Node

2. Join Node: Node i has two children j and k and Xi = X j = Xk.

3. Introduce Node: Node i has a single child j and Xi = X j ∪ {u} for some u ∈ V(G).

4. Forget Node: Node i has a single child j and Xi = X j − {u} for some u ∈ V(G).

DAG-width: DAG-width was introduced independently by Berwanger et al. [16] and
Obdrzalek [96]. A DAG-decomposition of a digraph D is a pair (H, χ) where H is an
acyclic digraph and χ = {Wh : h ∈ V(H)} is a family of subsets (called bags) of V(D)
such that

12

1. V(D) =
∪

h∈V(H) Wh

2. if (u, v) ∈ A(D), then there exist h1, h2 ∈ V(H) (it is possible that h1 = h2) such that
u ∈ Wh1 , v ∈ Wh2 and there is a directed (h1, h2)-path in H

3. for all h, h′, h′′ ∈ V(H), if h′ lies on a directed path from h to h′′, then Wh ∩Wh′′ ⊆
Wh′ .

The width of a DAG-decomposition (H, χ) is maxh∈V(H) |Wh| − 1. The DAG-width of a
digraph D (dagw(D)) is the minimum width over all possible DAG-decompositions of D.

Directed path-width: A directed path decomposition [14] is a special case of DAG-
decomposition when H is a directed path. The directed path-width of a digraph D (dpw(D))
is defined as the DAG-width above, but DAG-decompositions are replaced by directed
path decompositions.

Directed tree-width: Directed tree-width was introduced by Johnson, Robertson, Sey-
mour and Thomas [76]. Let Z be a set of vertices of a digraph D. A set S ⊆ V(D) − Z is
Z-normal if every directed walk that leaves and again enters S must traverse a vertex of
Z. For vertices r, r′ of an out-tree T we write r ≤ r′ if there is a path from r to r′ or r = r′.

An arboreal decomposition of a digraph D is a triple (R, X,W), where R is an out-tree (not
a subgraph of D), X = {Xe : e ∈ A(R)} and W = {Wr : r ∈ V(R)} are families of sets of
vertices of D that satisfy two conditions: (1) {Wr : r ∈ V(R)} is a partition of V(D) into
nonempty sets, and (2) for each e = (r′, r′′) ∈ A(R) the set

∪{Wr : r ∈ V(R), r ≥ r′′}
is Xe-normal. The width of (R, X,W) is the least integer w such that for all r ∈ V(R),
|Wr ∪

∪
e∼r Xe| ≤ w + 1, where e ∼ r means that r is head or tail of e. The directed tree-

width of D, dtw(D), is the least integer w such that D has an arboreal decomposition of
width w.

2.2 Constraint Satisfaction Problems

A large number of combinatorial problems can be formulated as constraint satisfaction

problems. In the second part of the thesis, we consider a set of problems which belong to
a wide family called the constraint satisfaction problems (CSPs).

A constraint satisfaction problem is a triple (X,D,C), where X is a set of variables,
D the domain for the variables and C a set of constraints. Each constraint C ∈ C consists
of a pair (s,R); s is a tuple of k variables called the scope and R is a k-ary relation over
D. Each relation R in a constraint (s,R) represents the set of all possible combination of
value assignments to the variables in the scope s. A solution of a CSP instance (X,D,C)

13

is an assignment of values to the variables; v : X → D such that (v(xs
1), . . . , v(xs

k)) ∈ R for
every constraint C = (s,R) ∈ C with s = (xs

1, . . . , x
s
k).

Example 2.2.1. The 3-Coloring can be formulated as a CSP. Let G be the input graph

of 3-Coloring and {RED, BLU,YEL} be the three colors in the palette. We construct a

triple (X,D,C) as: X = V(G), D = {RED, BLU,YEL} and for every edge e = (u, v) ∈
E(G) we have the corresponding constraint Ce = (e,R), where R = {RED, BLU,YEL}3 \
{(RED,RED), (BLU, BLU), (YEL,YEL)}.

Taking a relation as a constraint and strictly confining the combinations of values to
the scope of the constraint is a classical framework of CSP and here we are interested in
feasibility question. Such constraints are said to be crisp in contrast to soft constraints
[35]. Soft constraints naturally extend the standard notion of CSPs by generalizing the k-
ary relations into cost functions of arity k. In this way, we are able to assess the desirability
of having a certain combination of values for a set of variables instead of enforcing a
certain combination of values to those variables.

In order to obtain the soft CSPs, we substitute each relation R of a k-ary constraint
(s,R) in the crisp CSPs with a cost function ϕ : Dk 7→ Ω, where Ω is a valuation structure
representing costs (see [35] for details). The objective is to find an assignment v which
minimizes the cost which is the sum of ϕ(v(xs

1), . . . , v(xs
|s|)) over all soft contraints C =

(s, ϕ) ∈ C.

Example 2.2.2. A standard CSP is a special case of soft CSP. To see this, we take

Ω = {0,∞} and for each constraint (s,R) ∈ C we construct a constraint (s, ϕR) such

that ϕR(d1, . . . , d|s|) = 0 if and only if (d1, . . . , d|s|) ∈ R. A standard CSP instance is a

yes-instance if and only if the constructed soft CSP instance has a solution of finite cost.

In this thesis, we will consider various soft CSPs and they will be referred to simply
as CSPs.

2.3 Probabilistic Method

The probabilistic method is one of the most interesting and useful approaches as an algo-
rithmic tool as well as a proof technique. In principle, a positive probability P(A) > 0 for
some event A means that there is at least one point in the probability space which belongs
to A. Typically one defines an appropriate probability space and tries to prove that the
desired good event X takes place with positive probability, which implies the existence of
a structure (i.e. point in the probability space) with the desired property (i.e. belonging to
the good event).

14

Example 2.3.1. Ramsey’s theorem says that, given an integer k ≥ 0, every large enough

(i.e. as large as the Ramsey number R(k)) graph) graph G contains either a clique or an

independent set on k vertices. There is a simple probabilistic argument stating that R(k)
should be greater than 2k/2.

We color each edge of Kn by color 0 or 1 independently at random. Color 0 and 1 can

be understood as deleting and preserving the edge, respectively. The set of instances of all

possible colorings form the probability space. We define the event AS as a set of colored

instances in which the induced subgraph of Kn on S is monochromatic, that is, either a

clique or an independent set. A bad event in this case is the set of colored instances which

belong to none of AS ’s. Simple computation show that if n ≤ 2k/2 the probability of the

bad event is strictly positive, which implies the existence of a colored instance with the

undesired property. Therefore the Ramsey number R(k) should be greater than 2k/2.

Linearity of expectation: Given random variables X1, . . . , Xn, the linearity of expecta-
tion states that

E(X1 + . . . + Xn) = E(X1) + . . . + E(Xn).

This property allows one to compute the expectation of a variable by decomposing it into
a linear combination of simpler variables.
Averaging argument: The averaging argument utilizes the fact that there is a point for
which X ≥ E(X) and a point for which X ≤ E(X) in the probability space.

For further reading on the probabilistic method, we refer the reader to the textbook [7]
by Alon and Spencer.

2.4 Parameterized Complexity

We recall some basic notions of parameterized complexity here. The bibliography is
enormous. For a start, we refer the reader to the established monographs [48, 55, 94].

A problem is a language Q over a finite alphabet Σ. A string x ∈ Σ∗, called an instance

of the problem Q, is a yes-instance if x ∈ Q and it is a no-instance otherwise. In classical
decision problems, we are interested in determining whether a given instance x ∈ Σ∗ is a
yes-instance or no-instance.

In parameterized complexity we introduce parameterization of Σ∗, which is a mapping
κ from Σ∗ into N. A parameterized problem is a language Π ⊆ Σ∗ × N with k := κ(x)
for each instance (x, k) ⊆ Σ∗ × N. The second element of a parameterized instance is
called the parameter. A yes-instance and a no-instance is defined likewise. The study
of the membership problem for parameterized languages and complexity analysis within
parameterized framework lies at the heart of parameterized complexity theory.

15

We say that Π is fixed-parameter tractable (FPT), if membership of (x, k) in Π can be
decided in time O(f (k)|x|O(1)) for some computable function f (k) independent of |x|. Let
Π be a parameterized problem. A reduction R to a problem kernel (or kernelization) is a
many-to-one transformation from (x, k) ∈ Π to (x′, k′) ∈ Π such that (i) (x, k) ∈ Π if and
only if (x′, k′) ∈ Π, (ii) k′ ≤ k and |x′| ≤ g(k) for some function g and (iii) R is computable
in time polynomial in |x| and k. In kernelization, an instance (x, k) is reduced to another
instance (x′, k′), which is called the problem kernel or simply kernel; |x′| is the size of the
kernel.

It is easy to see that a decidable parameterized problem is FPT if and only if it admits
a kernelization (cf. [55, 94]); however, the problem kernels obtained by this general result
have impractically large size. Therefore, one tries to develop kernelizations that yield
problem kernels of smaller size. The survey of Guo and Niedermeier [65] on kernelization
lists some problem for which polynomial size kernels and exponential size kernels were
obtained.

As a more generalized form of kernelization, recently the notion of bikernelization has
been introduced in [5]. A bikernelization from L to L′ is of interest especially when L′ is
a well-studied problem.

Given a pair L, L′ of parameterized problems, a bikernelization from L to L′ is a
polynomial-time algorithm that maps an instance (x, k) to an instance (x′, k′) (the bik-

ernel) such that (i) (x, k) ∈ L if and only if (x′, k′) ∈ L′, (ii) k′ ≤ f (k), and (iii) |x′| ≤ g(k)
for some functions f and g. The function g(k) is called the size of the bikernel. Observe
that a kernelization of a parameterized problem L is simply a bikernelization from L to
itself, i.e., a bikerenelization generalizes a kernelization.

Recall that a decidable parameterized problem is fixed-parameter tractable if and only
if it admits a kernelization. This result can be extended as follows: A decidable parameter-
ized problem L is fixed-parameter tractable if and only if it admits a bikernelization from
itself to a decidable parameterized problem L′. Indeed, if L is fixed-parameter tractable,
then L is decidable and admits a bikernelization to itself. If L is decidable and admits a
bikernelization from itself to a parameterized problem L′, then (x, k) can be decided by
first mapping it to (x′, k′) in polynomial time and then deciding (x′, k′) in time depending
only on k′, and thus only on k.

We are especially interested in cases when kernels are of polynomial size. The next
lemma is similar to Theorem 3 in [24]. We repeat the proof for completeness.

Lemma 2.4.1. Let L, L′ be a pair of decidable parameterized problems such that L′ is in

NP, and L is NP-complete. If there is a bikernelization from L to L′ producing a bikernel

of polynomial size, then L has a polynomial-size kernel.

Proof. Consider a bikernelization from L to L′ that maps an instance (x, k) ∈ L to an

16

instance (x′, k′) ∈ L′ with k′ ≤ f (k). Since L′ is in NP and L is NP-complete, there exists a
polynomial time reduction from L′ to L. Thus, we can find in polynomial time an instance
(x′′, k′′) of L which is decision-equivalent with (x′, k′), and in turn with (x, k). Observe
that |x′′| ≤ |x′|O(1) ≤ kO(1) and k′′ ≤ (k′)O(1) + (|x′|)O(1) ≤ f (k)O(1) + kO(1). Thus, (x′′, k′′) is a
kernel of L of polynomial size. �

17

Part I

Parameterized Algorithms on Digraph
Problems

18

Chapter 3

Directed Maximum Leaf Problem

The Maximum Leaf problem is an optimization problem to find a spanning tree with the
maximum number of leaves in a given undirected graph G. Its natural extension on di-
rected graphs is the Directed Maximum Leaf problem, which is to find an out-branching
with the maximum number of leaves in an input digraph. In this chapter we study the pa-
rameterized version of the DirectedMaximum Leaf problem called the Directed k-Leaf:
given a digraph D and an integral parameter k, decide whether D has an out-branching
with at least k leaves. If we add a condition that every out-branching in Directed k-Leaf
must be rooted at a given vertex r, we obtain a variation of Directed k-Leaf called the
Rooted Directed k-Leaf problem.

In this chapter, we present a fixed-parameter algorithm for Directed k-Leaf. Our
algorithm runs in time O∗(3.72k).We also obtain a linear size kernel for Directed k-Leaf
restricted to acyclic digraphs. Notice that (i) Directed Max Leaf restricted to acyclic
digraphs is still NP-hard [4], and (ii) for acyclic digraphs Directed k-Leaf and Rooted
Directed k-Leaf are equivalent since all out-branchings must be rooted at the unique
vertex of in-degree zero.

Let D be a digraph, T an out-tree and L ⊆ V(D). A (T, L)-out-tree of D is an out-tree
T ′ of D such that (1) A(T) ⊆ A(T ′), (2) L are leaves in T ′, (3) T and T ′ have the same
root. A (T, L)-out-branching is a (T, L)-out-tree which is spanning. Let ℓmax(D,T, L) be
the maximum number of leaves over all (T, L)-out-branchings of D. We set this number
to 0 if there is no (T, L)-out-branching. For an out-tree T in a digraph D, Leaf(T) denotes
the set of leaves in T and Int(T) = V(T) − Leaf(T), the set of internal vertices of T . For
any vertex x in a tree T let Tx denote the maximal subtree of T which has x as its root.

Throughout this chapter we use a triple (D,T, L) to denote a given digraph D, an out-
tree T of D and a set of vertices L ⊆ V(D) − Int(T). We denote by D̂(T, L) the subgraph
of D obtained after deleting all arcs out of vertices in L and all arcs not in A(T) which go
into a vertex in V(T). When T and L are clear from the context we will omit them and

19

denote D̂(T, L) by D̂. We restate Lemma 2.1.1 introduced in Chapter 2 as it will be used
in the rest of the chapter.

Reminder of Lemma 2.1.1 A digraph D has an out-branching if and only if D has a

single strong component without incoming arcs. One can decide whether a digraph has

an out-branching in time O(n + m).

3.1 O∗(4k) Time Algorithm

In this section we present a slightly modified version of the algorithm in [82]. Our al-
gorithm differs from that in [82] as follows. We decide in an earlier stage which one of
the current leaves of T cannot be a leaf in a final (T, L)-out-branching and make them to
be internal vertices based on Lemma 3.1.3, see the while-loop in lines 2-4 in Algorithm
A(D,T, L). This decision works as a preprocessing of the given instance and gives us
a better chance to come up with a (T, L)-out-tree with at least k leaves more quickly. A
more important reason for this step is the fact that our algorithm is easier than the main
algorithm in [82] to transform into a faster algorithm.

The following is a folklore, and its proof can be found in [82].

Lemma 3.1.1. If there is an out-branching rooted at vertex r, whenever we have an out-

tree rooted at r with at least k leaves we can extend it to an out-branching rooted at r with

at least k leaves in time O(m + n).

Lemma 3.1.2. Given a triple (D,T, L), we have ℓmax(D, T, L) = ℓmax(D̂, T, L).

Proof. If there is no (T, L)-out-branching in D, the subgraph D̂ does not have a (T, L)-out-
branching either and the equality holds trivially. Hence suppose that T ∗ is a (T, L)-out-
branching in D with ℓmax(D,T, L) leaves. Obviously we have ℓmax(D,T, L) ≥ ℓmax(D̂,T, L).
Since the vertices of L are leaves in T ∗, all arcs out of vertices in L do not appear in T ∗,
i.e. A(T ∗) ⊆ A(D) \ {A+D(x) : x ∈ L}. Moreover A(T) ⊆ A(T ∗) and thus all arcs not in
A(T) which go into a vertex in V(T) do not appear in T ∗ since otherwise we have a vertex
in V(T) with more than one arc of T ∗ going into it (or, the root has an arc going into it).
Hence we have A(T ∗) ⊆ A(D̂) and the above equality holds. �

Lemma 3.1.3. Given a triple (D,T, L), the following equality holds for each leaf x of T .

ℓmax(D,T, L) = max{ℓmax(D,T, L ∪ {x}), ℓmax(D,T ∪ A+D̂(x), L)}

Proof. If ℓmax(D,T, L) = 0 then the equality trivially holds, so we assume that ℓmax(D,T, L) ≥
1. Since any (T, L ∪ {x})-out-branching or (T ∪ A+

D̂
(x), L)-out-branching is a (T, L)-out-

branching as well, the inequality ≥ obviously holds. To show the opposite direction,

20

suppose T ′ is an optimal (T, L)-out-branching. If x is a leaf in T ′, then T ′ is a (T, L∪ {x})-
out-branching and ℓmax(D,T, L) ≤ ℓmax(D,T, L ∪ {x}).

Suppose x is not a leaf in T ′. Delete all arcs entering N+
D̂

(x) in T ′, add A+
D̂

(x) and let
T ′′ denote the resulting subgraph. Note that d−T ′′(y) = 1 for each vertex y in T ′′ which is
not the root and A(T ′′) ⊆ A(D̂). In order to show that T ′′ is an out-branching it suffices to
see that there is no cycle in T ′′ containing x. If there is a cycle C containing x in T ′′ and
xy ∈ A(C), then C − {xy} forms a directed (y, x)-path in D̂. However this is a contradiction
as x ∈ V(T) and y < V(T) and there is no path from V(D)− V(T) to V(T) in D̂. Hence T ′′

is an out-branching.
As no vertex in L has any arcs out of it in D̂ we note that L ⊆ Leaf(T ′′). Furthermore

we note that A(T) ⊆ A(T ′′) as A(T) ⊆ A(T ′) and all arcs we deleted from A(T ′) go to a
vertex not in V(T). Therefore T ′′ is a (T, L)-out-branching which has as many leaves as
T ′. This shows ℓmax(D,T, L) ≤ ℓmax(D,T ∪ A+D′(x), L). �

Definition 3.1.4. Given a triple (D,T, L) and a vertex x ∈ Leaf(T) − L, define T root
D,L (x) as

follows.

(1) x′ B x.

(2) While d+
D̂

(x′) = 1 add A+
D̂

(x′) = {x′y} to T and let x′ B y.

(3) Add A+
D̂

(x′) to T .

Now let T root
D,L (x) = Tx. That is, T root

D,L (x) contains exactly the arcs added by the above

process.

The idea behind this definition is the following: during the algorithm, we will decide
that a given leaf x of the partial out-tree T built thus far is not a leaf of the out-branching
we are looking for. Then adding the out-arcs of x to T is correct. To make sure that
the number of leaves of T has increased even when d+V−V(T)(x) = 1, we add T root(x) to T

instead of just adding the single out-arc of x, as described in the following.

Lemma 3.1.5. Suppose we are given a triple (D,T, L) and a leaf x ∈ Leaf(T) − L. If

ℓmax(D,T, L ∪ {x}) ≥ 1 then the following holds.

(i) If |Leaf(T root
D,L (x))| ≥ 2 then ℓmax(D,T, L) = max{ℓmax(D,T, L∪{x}), ℓmax(D,T∪T root

D,L (x), L).

(ii) If |Leaf(T root
D,L (x))| = 1 then ℓmax(D,T, L) = ℓmax(D,T, L ∪ {x}).

Proof. Assume that T ′ is an optimal (T, L)-out-branching and that |Leaf(T ′x)| = 1. We will
now show that ℓmax(D,T, L∪ {x}) = |Leaf(T ′)| = ℓmax(D,T, L). If x is a leaf of T ′ then this
is clearly the case, so assume that x is not a leaf of T ′. Let y be the unique out-neighbor of

21

x in T ′. As ℓmax(D,T, L ∪ {x}) ≥ 1 we note that there exists a path P = p0 p1 p2 . . . pr(= y)
from the root of T to y in D̂(T, L ∪ {x}). Assume that q is chosen such that pq < T ′x and
{pq+1, pq+2, . . . , pr} ⊆ V(T ′x). Consider the digraph D∗ = D[V(T ′x) ∪ {pq} − {x}] and note
that pq can reach all vertices in D∗. Therefore there exists an out-branching in D∗, say T ∗,
with pq as the root. Let T ′′ be the out-branching obtained from T ′ by deleting all arcs in
T ′x and adding all arcs in T ∗. Note that |Leaf(T ′′)| ≥ |Leaf(T ′)| as Leaf(T ∗)∪ {x} are leaves
in T ′′ and Leaf(T ′x) ∪ {pq} are the only leaves in T ′ which may not be leaves in T ′′ (and
|Leaf(T ′x) ∪ {pq}| = 2). Therefore ℓmax(D,T, L ∪ {x}) ≥ |Leaf(T ′)| = ℓmax(D, T, L). As we
always have ℓmax(D,T, L) ≥ ℓmax(D,T, L ∪ {x}) we get the desired equality.

This proves part (ii) of the lemma, as if |Leaf(T root
D,L (x))| = 1 then any optimal (T, L)-

out-branching T ′, must have |Leaf(T ′x)| = 1.
We therefore consider part (i), where |Leaf(T root

D,L (x))| ≥ 2. Let Q denote the set of
leaves of T root

D,L (x) and let R = V(T root
D,L (x)) − Q. Note that by the construction of T root

D,L (x)
the vertices of R can be ordered (x =)r1, r2, . . . , ri such that r1r2 . . . , ri is a path in T root

D,L (x).
As before let T ′ be an optimal (T, L)-out-branching and note that if any r j (1 ≤ j ≤ i) is
a leaf of T ′ then |Leaf(T ′x)| = 1 and the above gives us ℓmax(D,T, L ∪ {x}) = ℓmax(D,T, L).
This proves part (i) in this case, as we always have ℓmax(D,T, L) ≥ ℓmax(D,T ∪T root

D,L (x), L).
Therefore no vertex in {r1, r2, . . . , ri} is a leaf of T ′ and all arcs (x =)r1r2, r2r3, . . . , ri−1ri

belong to T ′. By Lemma 3.1.3 we may furthermore assume that T ′ contains all the
arcs from ri to vertices in Q. Therefore T root

D,L (x) is a subtree of T ′ and ℓmax(D,T, L) =
ℓmax(D,T ∪ T root

D,L (x), L). This completes the proof of part (i). �

The following is an O(4knO(1)) algorithm. We perform the procedureA(D, {x}, ∅) for every
vertex x ∈ V(D). If one of the returns of A(D, {x}, ∅) is ”YES”, then the final output is
”YES”. Otherwise, we output ”NO”. Its complexity can be obtained similarly to [82]. We
restrict ourselves only to proving its correctness.

Algorithm 1A(D,T, L)
1: if the number of vertices with in-degree 0 differs from 1 then return ”NO”
2: while there is a vertex x ∈ Leaf(T) − L such that ℓmax(D,T, L ∪ {x}) = 0 do
3: add the arcs A+

D̂
(x) to T

4: end while
5: if |L| ≥ k then return ”YES”
6: if the number of leaves in T is at least k then return ”YES”
7: if all leaves in T belong to L then return ”NO”
8: Choose a vertex x ∈ Leaf(T) − L.
9: B1 := A(D, T, L ∪ {x}) and B2 :=“NO”.

10: if |Leaf(T root
D,L (x))| ≥ 2 then B2 := A(D,T ∪ T root

D,L (x), L).
11: if either B1 or B2 is ”YES” then return ”YES”
12: else return ”NO”

22

Remark 3.1.6. While line 5 is unnecessary, we keep it since it is needed in the next

algorithm where L ⊆ Leaf(T) is not necessarily true, see line 16 in the next algorithm,

where p0 < V(T).

Theorem 3.1.7. Algorithm A(D,T, L) works correctly. In other words, D has a (T, L)-
out-branching with at least k leaves if and only if AlgorithmA(D,T, L) returns “YES”.

Proof. We begin by showing that a call to A(D,T, L) is always made with a proper ar-
gument (D,T, L), that is, T is an out-tree of D and L ∩ Int(T) = ∅. Obviously the initial
argument (D, {x}, ∅) is proper. Suppose (D,T, L) is a proper argument. It is easy to see
that (D, T, L∪{x}) is a proper argument. Let us consider (D,T ∪T root

D,L (x), L). By Definition
3.1.4 we note that T ∪ T root

D,L (x) is an out-tree in D and since we consider the digraph D̂ at
each step in Definition 3.1.4 we note that no vertex in L is an internal vertex of T∪T root

D,L (x).
Hence (D,T ∪ T root

D,L (x), L) is a proper argument.
Consider the search tree S T that we obtain by running the algorithmA(D,T, L). First

consider the case when S T consists of a single node. If A(D,T, L) returns ”NO” in line
1, then clearly we do not have a (T, L)-out-branching. The while-loop of lines 2-4 is valid
by Lemma 3.1.3, i.e. it does not change the return of A(D,T, L). So now consider lines
5-7. As ℓmax(D,T, L) ≥ 1 after line 1, and by Lemma 3.1.3 the value of ℓmax(D,T, L)
does not change by the while-loop we note that ℓmax(D,T, L) ≥ 1 before we perform lines
5-7. Therefore there exists a (T, L)-out-branching in D. If |L| ≥ k or |Leaf(T)| ≥ k then,
by Lemma 3.1.1, any (T, L)-out-branching in D has at least k leaves and the algorithm
returns “YES”. If Leaf(T) ⊆ L then the only (T, L)-out-branching in D is T itself and as
|Leaf(T)| < k the algorithm returns “NO” as it must do. Thus, the theorem holds when
S T is just a node.

Now suppose that S T has at least two nodes and the theorem holds for all successors
of the root R of S T . By the assumption that R makes further recursive calls, we have
ℓmax(D,T, L) ≥ 1 and there exists a vertex x ∈ Leaf(T) − L. If there is a (T, L)-out-
branching with at least k leaves, then by Lemma 3.1.5 there is a (T, L∪{x})-out-branching
with at least k leaves or (T ∪T root

D,L (x), L)-out-branching with at least k leaves. By induction
hypothesis, one of B1 or B2 is “YES” and thusA(D,T, L) correctly returns ”YES”. Else if
ℓmax(D,T, L) < k, then again by Lemma 3.1.5 and induction hypothesis both B1 and B2 are
”NO”. Therefore the theorem holds for the root R of S T , which completes the proof. �

3.2 Faster FPT-algorithm

We now show how the algorithm from the previous section can be made faster by adding
an extra vertex to the set L in certain circumstances. Recall that the while-loop in the

23

above algorithm A(D,T, L) and in our new algorithm B(D,T, L) is new compared to the
algorithm in [82]. We will also allow L to contain vertices which are not leaves of the
current out-tree T . The improved algorithm is given as follows. We perform the procedure
B(D, {x}, ∅) for every vertex x ∈ V(D). If one of the returns of B(D, {x}, ∅) is ”YES”, then
the final output is ”YES”. Otherwise, we output ”NO”.

Algorithm 2 B(D,T, L)
1: if ℓmax(D,T, L) = 0 then return ”NO”
2: while there is a vertex x ∈ Leaf(T) − L such that ℓmax(D,T, L ∪ {x}) = 0 do
3: add the arcs A+

D̂
(x) to T

4: end while
5: if |L| ≥ k then return ”YES”
6: if the number of leaves in T is at least k then return ”YES”
7: if all leaves in T belong to L then return ”NO”
8: Choose a vertex x ∈ Leaf(T) − L. Color x red and let Hx := D̂.
9: Let z be the nearest ancestor of x in T colored red, if it exists.

10: L′ := L ∪ {x}.
11: if z exists and Tz has exactly two leaves x and x′ and x′ ∈ L then
12: Let P = p0 p1 . . . pr be a path in Hz − A+

D̂
(z) such that V(P) − V(Tz) = {p0} and

pr ∈ N+
D̂

(z)
13: L′ := L ∪ {p0, x}
14: end if
15: B1 := B(D,T, L′) and B2 :=”NO”
16: if |Leaf(T root

D,L (x))| ≥ 2 then B2 := B(D,T ∪ T root
D,L (x), L).

17: if either B1 or B2 is ”YES” then return ”YES”
18: else return ”NO”

The existence of P in line 12 follows from the fact that z was colored red, hence adding
z to L would not have destroyed all out-branchings. Note that p0 does not necessarily
belong to T .

For the sake of simplifying the proof of Theorem 3.2.2 below we furthermore assume
that the above algorithm picks the vertex x in line 8 in a depth-first manner. That is, the
vertex x is chosen to be the last vertex added to T such that x ∈ Leaf(T) − L.

Theorem 3.2.1. Algorithm B(D, T, L) works correctly. In other words, D has a (T, L)-
out-branching with at least k leaves if and only if Algorithm B(D,T, L) returns “YES”.

Proof. The only difference between B(D,T, L) and A(D,T, L) is that in line 12 we may
add an extra vertex p0 to L which was not done inA(D, T, L). We will now prove that this
addition does not change the correctness of the algorithm.

So assume that there is an optimal (T, L)-out-branching T ′ with x ∈ Leaf(T ′) but
p0 < Leaf(T ′). We will show that this implies that an optimal solution is found in the

24

p
0

p
0

w
a

z

x x’ x’x

z

u

Figure 3.1: Real lines represents T ′z arcs; dashed lines represent the reachability of p0;
dotted lines represent the reachability of w0.

branch of the search tree where we put z into L. This will complete the proof as if an
optimal (T, L)-out-branching T ′ does not contain x as a leaf, by Lemma 3.1.5 it is found
in B(D,T ∪ T root

D,L (x), L) and if it includes both x and p0 as leaves then it is found in
B(D,T, L′) (in line 15).

Note that Tz = T ′z as Tz had exactly two leaves x and x′ and x′ ∈ L and we have just
assumed that x is a leaf of T ′. Let D∗ = D[V(T ′z) ∪ {p0} − {z}] and consider the following
two cases.

If p0 can reach all vertices of D∗ in D∗ then proceed as follows. Let T ∗ be an out-
branching in D∗ with p0 as the root. Let T ′′ be the out-branching obtained from T ′ by
deleting all arcs in T ′z and adding all arcs in T ∗. Note that |Leaf(T ′′)| ≥ |Leaf(T ′)| as
Leaf(T ∗) ∪ {z} are leaves in T ′′ and Leaf(T ′z) are the only two leaves in T ′ which may not
be leaves in T ′′. Therefore an optimal solution is found when we add z to L.

So now consider the case when p0 cannot reach all vertices of D∗ in D∗. This means
that there is a vertex u ∈ N+T (z) which cannot be reached by p0 in D∗. All such un-
reachable vertices lie on the same branch of Tz (the branch not containing pr). Let
W = w0w1w2 . . .wlu be a path from the root of T to u, which does not use any arcs
out of z (which exists as z was colored red in line 9, so adding z to L at this stage
would not destroy all out-branchings). Assume that a is chosen such that wa < T ′z and
{wa+1,wa+2, . . . ,wl, u} ⊆ V(T ′z) (see Figure 1).

Consider the digraph D′′ = D[V(T ′z) ∪ {p0,wa} − {z}] and note that every vertex in D′′

can be reached by either p0 or wa in D′′. Therefore, there exists two vertex disjoint out-
trees Tp0 and Twa rooted at p0 and wa, respectively, such that V(Tp0)∪V(Twa) = V(D′′) (to
see that this claim holds add a new vertex y and two arcs yp0 and ywa). Furthermore since
p0 cannot reach u in D∗ we note that both Tp0 and Twa must contain at least two vertices.
Let T ′′′ be the out-branching obtained from T ′ by deleting all arcs in T ′z and adding all

25

arcs in Tp0 and in Twa . Note that |Leaf(T ′′′)| ≥ |Leaf(T ′)| as Leaf(Tp0) ∪ Leaf(Twa) ∪ {z}
are leaves in T ′′′ and Leaf(T ′z) ∪ {wa} are the only three vertices which may be leaves in
T ′ but not in T ′′′. Therefore again an optimal solution is found when we add z to L. �

Theorem 3.2.2. Algorithm B(D,T, L) runs in time O(3.72knO(1)).

Proof. For an out-tree Q, let ℓ(Q) = |Lea f (Q)|. Recall that we have assumed that
B(D,T, L) picks the vertex x in line 8 in a depth-first manner.

Consider the search tree S T that we obtain by running the algorithmB(D, {x}, ∅). That
is, the root of S T is the triple (D, {x}, ∅). The children of this root is (D, {x}, L′) when we
make a recursive call in line 15 and (D, T root

D,L (x), ∅) if we make a recursive call in line 16.
The children of these nodes are again triples corresponding to the recursive calls.

Let g(T, L) be the number of leaves in a subtree R of S T with triple (D,T, L). Clearly,
g(T, L) = 1 when (D, T, L) is a leaf of S T . For a non-trivial subtree R of S T , we will
prove, by induction, that g(T, L) ≤ cαk−ℓ(T)βk−|L|, where α = 1.96, β = 1.896 and c ≥ α2β2.

Assume that this holds for all smaller non-trivial subtrees. (Note that the value of c is
chosen in such a way that in the inequalities in the rest of the proof, we have upper bounds
for g(T ∗, L∗) being at least 1 when (D,T ∗, L∗) is a leaf of S T .)

Recall that x ∈ Leaf(T) − L was picked in line 8. Now consider the following possi-
bilities.

If |L′| = |L| + 2, then the number of leaves of R is at most the following as if a call
is made to B(D,T ∪ T root

D,L (x), L) in line 16 then the number of leaves of T increases by at
least one:

g(T, L′) + g(T ∪ T root
D,L (x), L) ≤ cαk−ℓ(T)βk−|L|−2 + cαk−ℓ(T)−1βk−|L|

= cαk−ℓ(T)βk−|L|
(

1
β2 +

1
α

)
≤ cαk−ℓ(T)βk−|L|.

So we may assume that |L′| = |L| + 1 in line 15. Now assume that |Leaf(T root
D,L (x))| , 2

in line 16. In this case either no recursive call is made in line 16 or we increase the number
of leaves in T by at least two. Therefore the number of leaves of R is at most

cαk−ℓ(T)βk−|L|−1 + cαk−ℓ(T)−2βk−|L| = cαk−ℓ(T)βk−|L|
(

1
β
+ 1
α2

)
≤ cαk−ℓ(T)βk−|L|.

So we may assume that |L′| = |L| + 1 in line 15 and |Leaf(T root
D,L (x))| = 2 in line 16. Let

T ′ = T ∪T root
D,L (x) and consider the recursive call to B(D,T ′, L). If we increase the number

of leaves in T ′ in lines 2-4 of the while-loop of this recursive call, then the number of
leaves of the subtree of S T rooted at (D,T ′, L) is at most

cαk−ℓ(T ′)−1βk−|L|−1 + cαk−ℓ(T ′)−2βk−|L| = cαk−ℓ(T ′)βk−|L|
(

1
αβ
+ 1
α2

)
.

Therefore, as ℓ(T ′) = ℓ(T) + 1, the number of leaves in R is at most

26

g(T, L′) + g(T ′, L) ≤ cαk−ℓ(T)βk−|L|−1 + cαk−ℓ(T)−1βk−|L|
(

1
αβ
+ 1
α2

)
= cαk−ℓ(T)βk−|L|

(
1
β
+ 1
α2β
+ 1
α3

)
≤ cαk−ℓ(T)βk−|L|.

So we may assume that we do not increase the number of leaves in lines 2-4 of the
while-loop when we consider (D,T ′, L). Let y and y′ denote the two leaves of T ′x (after
possibly adding some arcs in the while-loop). Consider the recursive call to B(D,T ′, L ∪
{y}). If we increase the number of leaves of T ′ in the while-loop of lines 2-4 in this call
then the number of leaves in R is at most

g(T, L ∪ {x}) + g(T ′, L ∪ {y}) + g(T ′ ∪ (T ′)root
D,L (y), L)

≤ cαk−ℓ(T)βk−|L|
(

1
β
+ (1
α2β2 +

1
α3β

) + 1
α2

)
≤ cαk−ℓ(T)βk−|L|.

So we may assume that we do not increase the number of leaves in lines 2-4 of the
while-loop when we consider (D,T ′, L ∪ {y}). However in this case we note that |L′| =
|L| + 2 in this recursive call as when we consider y′ the conditions of line 10 are satisfied
as, in particular, Tx has exactly two leaves). So in this last case the number of leaves in R

is at most

g(T, L ∪ {x}) + g(T ′, L ∪ {y}) + g(T ′ ∪ (T ′)root
D,L (y), L)

≤ cαk−ℓ(T)βk−|L|
(

1
β
+ (1
αβ3 +

1
α2β

) + 1
α2

)
≤ cαk−ℓ(T)βk−|L|.

We increase either |L| or ℓ(T) whenever we consider a child in the search tree and no
non-leaf in S T has |L| ≥ k or ℓ(T) ≥ k. Therefore, the number of nodes in S T is at most
O(kαkβk) = O(3.72k). As the amount of work we do in each recursive call is polynomial
we get the desired time bound. �

3.3 Application: Exact Algorithm

Note that Directed Maximum Leaf can be solved in time O(2nnO(1)) by an exhaustive
search using Lemma 2.1.1. Our 3.72knO(1) algorithm for Directed k-Leaf yields an im-
provement for DirectedMaximum Leaf, as follows.

Let a = 0.526. We can solve Directed Maximum Leaf for a digraph D on n vertices
using the following algorithm ADML:

Stage 1. Set k := ⌈an⌉. For each x ∈ V(D) apply B(D, {x}, ∅) to decide whether D con-
tains an out-branching with at least k leaves. If D contains such an out-branching,
go to Stage 2. Otherwise, using binary search and B(D, {x}, ∅), return the maximum
integer ℓ for which D contains an out-branching with ℓ leaves.

27

Stage 2. Set ℓ := ⌈an⌉. For k = ℓ + 1, ℓ + 2, . . . , n, using Lemma 2.1.1, decide whether
D̂(∅, S) has an out-branching for any vertex set S of D of cardinality k and if the
answer is “NO”, return k − 1.

The correctness of ADML is obvious and we now evaluate its time complexity. Let
r = ⌈an⌉. Since 3.72a < 1.996, Stage 1 takes time at most 3.72rnO(1) = O(1.996n). Since

1
aa(1−a)1−a < 1.9973, Stage 2 takes time at most

(
n
r

)
· nO(1) =

(
1

aa(1 − a)1−a

)n

nO(1) = O(1.9973n).

Thus, we obtain the following:

Theorem 3.3.1. There is an algorithm to solve DirectedMaximum Leaf in time O(1.9973n).

3.4 Linear Kernel for Acyclic Digraphs

Lemma 2.1.1 implies that an acyclic digraph D has an out-branching if and only if D has
a single vertex of in-degree zero. Since it is easy to check that D has a single vertex of
in-degree zero, in what follows, we assume that the acyclic digraph D under consideration
has a single vertex s of in-degree zero. In this section, a k-out-branching is short for an
out-branching with at least k leaves.

We start from the following simple lemma.

Lemma 3.4.1. In an acyclic digraph H with a single source s, every spanning subgraph

of H, in which each vertex apart from s has in-degree 1, is an out-branching.

Let B be an undirected bipartite graph with vertex bipartition (V ′,V ′′). A subset S of
V ′ is called a bidomination set if for each y ∈ V ′′ there is an x ∈ S such that xy ∈ E(B).
The so-called greedy covering algorithm [11] proceeds as follows: Start from the empty
bidominating set C. While V ′′ , ∅ do the following: choose a vertex v of V ′ of maximum
degree, add v to C, and delete v from V ′ and the neighbors of v from V ′′.

The following lemma have been obtained independently by several authors, see Propo-
sition 10.1.1 in [11].

Lemma 3.4.2. If the minimum degree of a vertex in V ′′ is d, then the greedy covering

algorithm finds a bidominating set of size at most 1 + |V1 |
d

(
1 + ln d|V2 |

|V1 |

)
.

Let D be an acyclic digraph with a single source. We use the following reduction rules
to get rid of some vertices of in-degree 1.

28

(A) If D has an arc a = xy with d+(x) = d−(y) = 1, then contract a.

(B) If D has an arc a = xy with d+(x) ≥ 2, d−(y) = 1 and x , s, then delete x and add
arc uv for each u ∈ N−(x) and v ∈ N+(x).

The reduction rules are of interest due to the following:

Lemma 3.4.3. Let D∗ be the digraph obtained from an acyclic digraph D with a single

source using Reduction Rules A and B as long as possible. Then D∗ has a k-out-branching

if and only if D has one.

Proof. Let D have an arc a = xy with d+(x) = d−(y) = 1 and let D′ be the digraph
obtained from D by contracting a. Let T be a k-out-branching of D. Clearly, T contains a

and let T ′ be an out-branching obtained from T by contracting a. Observe that T ′ is also
a k-out-branching whether y is a leaf of D or not. Similarly, if D′ has a k-out-branching,
then D has one, too.

Let D have an arc a = xy with d+(x) ≥ 2, d−(y) = 1 and x , s and let D′ be obtained
from D by applying Rule B. We will prove that D′ has a k-out-branching if and only if D

has one. Let T be a k-out-branching in D. Clearly, T contains arc xy and x is not a leaf
of T . Let U be the subset of N+(x) such that xu ∈ A(T) for each u ∈ U and let v be the
vertex such that vx ∈ A(T). Then the out-branching T ′ of D′ obtained from T by deleting
x and adding arcs vu for every u ∈ U has at least k leaves (T ′ is an out-branching of D′ by
Lemma 3.4.1). Similarly, if D′ has a k-out-branching, then D has one, too. �

Now consider D∗. Let B be an undirected bipartite graph, with vertex bipartition
(V ′,V ′′), where V ′ is a copy of V(D∗) and V ′′ is a copy of V(D∗) − {s}. We have E(B) =
{u′v′′ : u′ ∈ V ′, v′′ ∈ V ′′, uv ∈ A(D∗)}.

Lemma 3.4.4. Let R be a bidominating set of B. Then D∗ has an out-branching T such

that the copies of the leaves of T in V ′ form a superset of V ′ − R.

Proof. Consider a subgraph Q of B obtained from B by deleting all edges apart from one
edge between every vertex in V ′′ and its neighbor in R. By Lemma 3.4.1, Q corresponds
to an out-branching T of D∗ such that the copies of the leaves of T in V ′ form a superset
of V ′ − R. �

Theorem 3.4.5. If D∗ has no k-out-branching, then the number n∗ of vertices in D∗ is less

than 6.6(k + 2).

Proof. Suppose that n∗ ≥ 6.6(k+2); we will prove that D∗ has a k-out-branching. Observe
that by Rules A and B, all vertices of D∗ are of in-degree at least 2 apart from s and some

29

of its out-neighbors. Let X denote the set of out-neighbors of s of in-degree 1 and let
X′′ be the set of copies of X in V ′′. Observe that the vertices of V ′′ − X′′ of B − X′′

are all of degree at least 2. Thus, by Lemma 3.4.2, B − X′′ has a bidominating set S of
size at most n∗

2 (1 + ln 2) + 1. Hence, S ∪ {s} is a bidominating set of B and, by Lemma
3.4.4, D∗ has a b-out-branching with b ≥ n∗ − n∗

2 (1 + ln 2) − 2. It is not difficult to see
that b ≥ n∗

2 (1 − ln 2) − 2 ≥ 0.153n∗ − 2 ≥ k as n∗ ≥ 6.6(k + 2). Therefore D∗ has a
k-out-branching. �

30

Chapter 4

k-Out-tree Problem

The k-Out-Tree problem is the problem of deciding for a given parameter k, whether an
input digraph contains a given out-tree with k ≥ 2 vertices. In this chapter, we present a
randomized algorithms for k-Out-Tree of runtime O∗(5.704k) and a derandomized version
of the algorithm whose running time is O∗(6.14k). The derandomized algorithm returns
”YES” with good probability if the input digraph is a yes-instance while returning ”NO”
whenever it’s a no-instance. We can make the error probability bounded by an arbitrarily
small constant by executing the algorithm repeatedly.

Throughout this chapter we let Leaf(T) denotes the set of leaves in T for an out-tree
T , and Int(T) = V(T) − Leaf(T) stand for the set of internal vertices of T . Note that an
input digraph D contains a copy of an out-tree T if there is an injection f : V(T)→ V(D)
such that (f (u), f (v)) ∈ A(D) whenever (u, v) ∈ A(T). Given such an injection f , or a copy
of T in D equivalently, we say that the vertex f (u) in V(D) plays the role of u ∈ V(T).

In Section 4.1, we describe and analyze the randomized algorithm for k-Out-Tree by
Alon, Yuster and Zwick [8]. In Section 4.2, we present a new randomized algorithm for k-
Out-Tree and and analyze its computational complexity. We derandomize our algorithm
in Subsection 4.3.

4.1 Color-coding for k-Out-tree

Let c : V(D) → {1, . . . , k} be a vertex k-coloring of a digraph D and let T be a k-vertex
out-tree contained in D (as a subgraph). Then V(T) and T are colorful if no pair of vertices
of T are of the same color.

The following algorithm of [8] verifies whether D contains a colorful out-tree H such
that H is isomorphic to T , when a coloring c : V(D) → {1, . . . , k} is given. Note that a
k-vertex subgraph H will be colorful with a probability of at least k!/kk > e−k. Thus, we
can find a copy of T in D in ek expected iterations of the following algorithm.

31

Algorithm 3 L(T, r)
Require: A digraph D with a given coloring c : V(D) → {1, . . . , k}, an out-tree T on k

vertices, a specified vertex r of T
Ensure: For each vertex u of D, CT (u) := {C : C is a set of colors which appear on a

colorful copy of T in D, where u plays the role of r}.
1: if |V(T)| = 1 then
2: for all u ∈ V(D) do
3: Insert {c(u)} into CT (u).
4: end for
5: Return CT (u) for each vertex u of D.
6: else
7: Choose an arc (r′, r′′) ∈ A(T).
8: Let T ′ and T ′′ be the subtrees of T obtained by deleting (r′, r′′), where T ′ and T ′′

contains r′ and r′′, respectively.
9: Call L(T ′, r′).

10: Call L(T ′′, r′′).
11: for all u ∈ V(D) do
12: Compose the family of color sets CT (u) as follows:
13: for all (u, v) ∈ A(D) do
14: for all C′ ∈ CT ′(u) and C′′ ∈ CT ′′(v) do
15: C := C′ ∪C′′ if C′ ∩C′′ = ∅
16: Insert C into CT (u).
17: end for
18: end for
19: end for
20: Return CT (u) for each vertex u of D.
21: end if

Theorem 4.1.1. Let T be an out-tree on k vertices and let D = (V, A) be a digraph. A

subgraph of D isomorphic to T , if one exists, can be found in O(k(4e)k · |A|) expected time

by running the algorithm L(T, r) for a random coloring c iteratively.

Proof. Let c : V(D)→ {1, . . . , k} be a given coloring of D and suppose T ′ and T ′′ are the
subtrees of T obtained in line 8. Let |V(T ′)| = k′ and |V(T ′′)| = k′′, where k′ + k′′ = k.
Then |CT ′(u)| ≤

(
k−1
k′−1

)
and |CT ′(u)| ≤

(
k−1

k′′−1

)
. Checking C′∩C′′ = ∅ takes O(k) time. Hence,

lines 11-19 require at most
(

k
k/2

)2
· k|A| ≤ k22k|A| operations.

Let T (k) be the number of operations for L(T, r). We have the following recursion.

T (k) ≤ T (k′) + T (k′′) + k22k−2|A| (4.1)

By induction, it is not difficult to check that T (k) ≤ k4k|A|. Since the expected number
of iterations of the algorithm L(T, r) is at most ek, we achieve the claimed running time.

�

32

Let C be a family of vertex k-colorings of a digraph D. We call C an (n, k)-family of

perfect hashing functions if for each X ⊆ V(D), |X| = k, there is a coloring c ∈ C such
that X is colorful with respect to c. One can derandomize the above algorithm of Alon
et al. by using any (n, k)-family of perfect hashing functions in the obvious way. The
time complexity of the derandomized algorithm depends of the size of the (n, k)-family
of perfect hashing functions. Let τ(n, k) denote the minimum size of an (n, k)-family of
perfect hashing functions. Nilli [95] proved that τ(n, k) ≥ Ω(ek log n/

√
k). It is unclear

whether there is an (n, k)-family of perfect hashing functions of size O∗(ek) [31], but even
if it does exist, the running time of the derandomized algorithm would be O∗((4e)k).

4.2 Randomized FPT-algorithm for k-Out-tree

Before we introduce our new randomized algorithm for k-Out-Tree, we will give a brief
account of the basic idea behind it. Let T be an out-tree on k vertices and let D be a
digraph in which we want to find a copy of T . As in the randomized algorithm by Alon,
Yuster and Zwick in [8], we break T into two subtrees Tw and Tb. However, unlike the
former which deletes an arc of T , we break it by choosing a “splitting vertex” denoted as
v∗ and furthermore the resulting two subtrees overlap exactly on this splitting vertex v∗.
Next we randomly partition the digraph D into two vertex-disjoint parts Dw and Db, and
then find a copy of Tw in Dw and a copy of Tb in Db, if one exists. If we try sufficiently
many partitions of D, it is possible to find a copy of T whenever D contains one as a
subgraph (with some good probability in a randomized version of the algorithm, which
can be derandomized consequently).

The trouble is that the fact Dw and Db that contain copies of Tw and Tb, respectively
does not necessarily means that D contains a copy of T as a whole. We need to ensure
that there exist copies of Tw and Tb that actually overlap (and overlap only) on a vertex of
D corresponding to the splitting vertex v∗. To this end, we allow some vertices of Dw, say
S , to be shared by Db by considering Db + S instead of Db. Here S is the set of vertices in
Dw that could correspond to the splitting vertex v∗ of Tw. When we search for a copy of
Tb in Db + S , only those trees isomorphic to Tb in Db + S are considered legitimate where
the vertex corresponding to v∗ lies in S . In other words, we convey the information S

obtained in the phase for Tw-Dw to the next phase for Tb-Db so that we do not only ensure
the global connectivity of Tw + Tb = T in D but also reduce the search space for finding a
copy of Tb in Db.

Moreover, by conveying the information for v∗ we can save the extra effort for ”merg-
ing” the solutions (i.e. copies of Tw and Tb). Rather, once we obtain a copy of Tb in Db+S ,
it follows immediately that we have a copy of T in D. Since the number of partitions of D

33

we need to try is a function of k, the time complexity of finding a copy of T in D can be
written as T (k, n) = f (k)(T (k′, n)+T (k−k′, n)+p1(n))+p2(n), T (1, n) = p3(n), where pi(n)
is polynomial in n for i = 1, 2, 3. This is why the running time of our algorithm remains
polynomial in n. Making this approach efficient depends crucially on two aspects:

1. to obtain k′ in the above formula as close to half of k as possible; and

2. to replace f (k) with as small growing function as possible.

For the latter, we use a simple unbalanced-partition-strategy which will be explained later.
We achieve the former goal by choosing an appropriate splitting vertex v∗ and then using
it to obtain a Tw-Tb split. The splitting procedure is one of the key parts of our algorithm
and next we describe this procedure in details.

The following lemma is well known and will be used as a basic scheme of choosing
v∗.

Lemma 4.2.1 ([34]). Let T be an undirected tree and let w : V → R+ ∪ {0} be a weight

function on its vertices. There exists a vertex v ∈ V(T) such that the weight of every

subtree T ′ of T − v is at most w(T)/2, where w(T) =
∑

v∈V(T) w(v).

Consider a partition n = n1 + · · · + nq, where n and all ni are nonnegative integers
and a bipartition (A, B) of the set {1, . . . , q}. Let d(A, B) :=

∣∣∣∣ ∑i∈A ni −
∑

i∈B ni

∣∣∣∣. Given a set
Q = {1, . . . , q} with a nonnegative integer weight ni for each element i ∈ Q, we say that
a bipartition (A, B) of Q is greedily optimal if d(A, B) does not decrease by moving an
element of one partite set into another. The following procedure describes how to obtain
a greedily optimal bipartition in time O(q log q). For simplicity we write

∑
i∈A ni as n(A).

Algorithm 4 Bipartition(Q, {ni : i ∈ Q})
Require: A set Q = {1, . . . , q} with a nonnegative integer weight ni, ∀i ∈ Q
Ensure: A greedily optimal bipartition (A, B) of Q

1: Let A := ∅, B := Q.
2: while n(A) < n(B) and there is an element i ∈ B with 0 < ni < d(A, B) do
3: Choose such an element i ∈ B with a largest ni with ni < d(A, B).
4: A := A ∪ {i} and B := B − {i}.
5: end while
6: Return (A, B).

Lemma 4.2.2. Let Q be a set of size q with a nonnegative integer weight ni for each i ∈ Q.

The algorithm Bipartition(Q, {ni : i ∈ Q}) finds a greedily optimal bipartition A ∪ B = Q

in time O(q log q).

34

Proof. First we want to show that the values ni chosen in line 3 of the algorithm do
not increase during the performance of the algorithm. The values of ni do not increase
because the values of the difference d(A, B) do not increase during the performance of the
algorithm. In fact, d(A, B) strictly decreases. To see this, suppose that the element i is
selected in the present step. If n(A∪{i}) < n(B−{i}), then obviously the difference d(A, B)
strictly decreases. Else if n(A∪ {i}) > n(B− {i}), we have d(A∪ {i}, B− {i}) < ni < d(A, B).

To see that the algorithm returns a greedily optimal bipartition (A, B), it is enough
to observe that for the final bipartition (A, B), moving any element of A or B does not
decrease d(A, B). Suppose that the last movement of the element i0 makes n(A) > n(B).
Then a simple computation implies that d(A, B) < ni0 . Since the values of ni in line 3 of
the algorithm do not increase during the performance of the algorithm, n j ≥ ni0 > d(A, B)
for every j ∈ A, the movement of any element in A would not decrease d(A, B). On the
other hand suppose that n(A) < n(B). By the definition of the algorithm, for every j ∈ B

with a positive weight we have n j ≥ d(A, B) and thus the movement of any element in B

would not decrease d(A, B). Hence the current bipartition (A, B) is greedily optimal.
Now let us consider the running time of the algorithm. Sorting the elements in non-

decreasing order of their weights will take O(q log q) time. Moreover, once an element is
moved from one partite set to another, it will not be moved again and we move at most
q elements without duplication during the algorithm. This gives us the running time of
O(q log q). �

Now we describe a new randomized algorithm for k-Out-Tree. Let D be a digraph and
let T be an out-tree on k vertices. Let us specify a vertex t ∈ V(T) and a vertex w ∈ V(D).
We call a copy of T in D a T-isomorphic tree. We say that a T -isomorphic tree TD in D is
a (t,w)-tree if w ∈ V(TD) plays the role of t.

We first give an intuitive explanation of our algorithm before giving a formal descrip-
tion. To find the desired tree in the given input digraph, we first split the tree in two parts
with one common vertex such that the both parts are “almost balanced” Then we ran-
domly partition the vertices of the D in two parts with probability of a vertex lying in one
part or the other depends on the sizes of the trees we obtained in the first step by splitting
it on a vertex. This allows us to more or less independently look for the different parts of
the tree in different parts of the partition. We finally merge them cleverly to obtain our
solution.

In the following algorithm find-tree, we have several arguments other than the natural
arguments T and D. Our next argument is a vertex t of T . The argument t indicates that
we want to return, at the end of the current procedure, the set of vertices Xt such that
there is a (t,w)-tree for every w ∈ Xt. The fact that Xt , ∅ means two points: we have a
T -isomorphic tree in D, and the information Xt we have can be used to construct a larger

35

wD[V]

Xv*Xb

Xh

uX

wU]subtree T[

bUsubtree T[{v*}]U

uX

Return S’: A set of vertices

that can accommodate t in this way

uX

t

S=

D[Vb U S]

L={a,b,c,d,e,f,g,h} for u in L

: the vertices playing the role of u belong to

g

e

d

c

b

a

v*

f

h

Figure 4.1: An example: The given out-tree T is divided into two parts T [Uw] and T [Ub∪
{v∗}] by the splitting vertex v∗. The digraph D contains a copy of T meeting the restrictions
on L.

tree which uses the current T -isomorphic tree as a building block. Here, Xt is a kind of
‘joint’.

The basic strategy is as follows. We choose a pair TA and TB of subtrees of T such
that V(TA) ∪ V(TB) = V(T) and TA and TB share only one vertex, namely v∗, the splitting
vertex. We call recursively two ‘find-tree’ procedures on subsets of V(D) to ensure that
the subtrees playing the role of TA and TB do not overlap. The first call (line 15) tries to
find Xv∗ and the second one (line 18), using the information Xv∗ delivered by the first call,
tries to find Xt.

We also need another argument to our algorithm find-tree which is useful while merg-
ing and that is:

• a pair consisting of L ⊆ V(T) and {Xu : u ∈ L}, where Xu ⊂ V(D) and Xu’s are
pairwise disjoint.

The arguments L ⊆ V(T) and {Xu : u ∈ L} form a set of information needed to argue the
correctness of the algorithm. Essentially L is a set of vertices of the tree T which has been
used as a splitting vertex at some point during the execution of our recursive procedure.
Let TD be a T -isomorphic tree; if for every u ∈ L, TD is a (u,w)-tree for some w ∈ Xu and
V(TD) ∩ Xu = {w}, we say that TD meets the restrictions on L. The algorithm find-tree

36

intends to find the set Xt of vertices such that for every w ∈ Xt, there is a (t,w)-tree which
meets the restrictions on L.

Deleting a splitting vertex v∗ may produce several subtrees, and there might be many
ways to divide them into two groups, namely (TA, TB). To make the algorithm more
efficient, we try to obtain as ‘balanced’ a partition (TA, TB) as possible. The algorithm
tree-Bipartition is used to produce a pretty ‘balanced’ bipartition of the subtrees. More-
over we introduce another argument to have a better complexity behavior. The argument
v is a vertex which indicates whether there is a predetermined splitting vertex. If v = ∅,
we do not have a predetermined splitting vertex so we find one in the current procedure.
Otherwise, we use the vertex v as a splitting vertex.

Let r be the root of T . To decide whether D contains a copy of T , it suffices to run
find-tree(T,D, ∅, r, ∅, ∅).

Lemma 4.2.3. During the performance of find-tree(T,D, ∅, r, ∅, ∅), the sets Xu, u ∈ L are

pairwise disjoint.

Proof. We prove the claim inductively. For the initial call, trivially the sets Xu, u ∈ L are
pairwise disjoint since L = ∅. Suppose that for a call find-tree(T,D, v, t, L, {Xu : u ∈ L})
the sets Xv, v ∈ L are pairwise disjoint. For the first subsequent call in line 15, the
sets are obviously pairwise disjoint. Consider the second subsequent call in line 18. If
v∗ ∈ L before line 17, the claim is true since we convey the argument t := v∗ to the first
subsequent call in line 15 and thus S is contained in Xv∗ . Otherwise, observe that Xu ⊆ Vb

for all u ∈ L ∩ Ub and they are pairwise disjoint. Since Xv∗ ∩ Vb = ∅, the sets Xu for all
u ∈ L ∩ Ub together with Xv∗ are pairwise disjoint. �

The algorithm tree-Bipartition is a subroutine used during the execution of find-tree.
Let T1, . . . , Tq be the subtrees of T − v∗, where v∗ is a splitting vertex of the current call
to find-tree. At the end of tree-Bipartition, we obtain a partition of the subtrees, or
more precisely, a partition (WH, BL) of the indices {1, . . . , q} of the subtrees. The attained
partition (WH, BL) is ’a greedily optimal bipartition’ in certain sense while a nonnegative
integer weight on an element of {1, . . . , q} is set to be w(Ti) with some fine-tuning.

Lemma 4.2.4. Consider the algorithm tree-Bipartition and let (WH, BL) be a bipartition

of {1, . . . , q} obtained at the end of the algorithm. Then the partition Uw :=
∪

i∈WH V(Ti)∪
{v∗} and Ub :=

∪
i∈BL V(Ti) of V(T) has the the following property.

1) If v∗ = t, moving a component Ti from one partite set to the other does not decrease the

difference d(w(Uw),w(Ub)).
2) If v∗ , t, either exchanging v∗ and the component Tl or moving a component Ti, i , v∗, l

from one partite set to the other does not decrease the difference d(w(Uw),w(Ub)).

37

Algorithm 5 find-tree(T,D, v, t, L, {Xu : u ∈ L})
Require: An out-tree T on k vertices, a digraph D, v ∈ {∅} ∪ V(T), a specified vertex t ∈

V(T), a subset of vertices L ⊆ V(T), a family of pairwise disjoint subsets Xu ⊆ V(D)
for each u ∈ L.

Ensure: A set of vertices Xt ⊆ V(D) such that there is a (t,w)-tree which meets the
restriction on L for every w ∈ Xt.

1: if |V(T) \ L| ≥ 2 then
2: for all u ∈ V(T): Set w(u) := 0 if u ∈ L, w(u) := 1 otherwise.
3: if v = ∅ then Find v∗ ∈ V(T) such that the weight of every subtree T ′ of T − v∗ is

at most w(T)/2 (see Lemma 4.2.1) else v∗ := v
4: (WH, BL):=tree-Bipartition(T, t, v∗, L).
5: Uw :=

∪
i∈WH V(Ti) ∪ {v∗}, Ub :=

∪
i∈BL V(Ti).

6: for all u ∈ L ∩ Uw: color all vertices of Xu in white.
7: for all u ∈ L ∩ (Ub \ {v∗}): color all vertices of Xu in black.
8: α := min{w(Uw)/w(T),w(Ub)/w(T)}.
9: if α2−3α+1 ≤ 0 (i.e., α ≥ (3−

√
5)/2, see (4.2) and the definition of α∗ afterwards)

then vw := vb := ∅
10: else if w(Uw) < w(Ub) then vw := ∅, vb := v∗ else vw := v∗, vb := ∅.
11: Xt := ∅.
12: for i = 1 to

⌈
2.51

ααk(1−α)(1−α)k

⌉
do

13: Color the vertices of V(D) −∪
u∈L Xu in white or black such that for each vertex

the probability to be colored in white is α if w(Uw) ≤ w(Ub), and 1−α otherwise.
14: Let Vw (Vb) be the set of vertices of D colored in white (black).
15: S :=find-tree(T [Uw],D[Vw], vw, v∗, L ∩ Uw, {Xu : u ∈ L ∩ Uw})
16: if S , ∅ then
17: Xv∗ := S , L := L ∪ {v∗}.
18: S ′ :=find-tree(T [Ub ∪ {v∗}],D[Vb ∪ S], vb, t, (L ∩ Ub), {Xu : u ∈ (L ∩ Ub)}).
19: Xt := Xt ∪ S ′.
20: end if
21: end for
22: Return Xt.
23: else {|V(T) \ L| ≤ 1}
24: if {z} = V(T) \ L then Xz := V(D) −∪

u∈L Xu, L := L ∪ {z}.
25: Lo := {all leaf vertices of T }.
26: while Lo , L do
27: Choose a vertex z ∈ L \ Lo s.t. N+T (z) ⊆ Lo.
28: Xz := Xz ∩

∩
u∈N+T (z) N−(Xu); Lo := Lo ∪ {z}.

29: end while
30: Return Xt.
31: end if

Proof. Let us consider the property 1). The bipartition (WH, BL) is determined in the
first ‘if’ statement in line 2 of tree-Bipartition. Then by Lemma 4.2.2 the bipartition
(WH, BL) is greedily optimal, which is equivalent to the statement of 1).

38

Algorithm 6 tree-Bipartition(T, t, v∗, L)
1: T1, . . . , Tq are the subtrees of T − v∗. Q := {1, . . . , q}. w(Ti) := |V(Ti) \ L|, ∀i ∈ Q.
2: if v∗ = t then
3: (A, B):=Bipartition(Q, {ni := w(Ti) : i ∈ Q})
4: if w(A) ≤ w(B) then WH := A, BL := B. else WH := B, BL := A.
5: else
6: Let l be such that t ∈ V(Tl)
7: if w(Tl) − w(v∗) ≥ 0 then
8: (A, B):=Bipartition(Q, {ni := w(Ti) : i ∈ Q \ {l}} ∪ {nl := w(Tl) − w(v∗)})
9: if l ∈ B then WH := A, BL := B. else WH := B, BL := A

10: else {w(Tl) − w(v∗) < 0}
11: (A, B):=Bipartition((Q \ {l}) ∪ {v∗}, {ni := w(Ti) : i ∈ Q \ {l}} ∪ {nv∗ := w(v∗)})
12: if v∗ ∈ A then WH := A− {v∗}, BL := B∪ {l}. else WH := B− {v∗}, BL := A∪ {l}
13: end if
14: end if
15: Return (WH, BL).

Let us consider the property 2). First suppose that the bipartition (WH, BL) is deter-
mined in the ‘if’ statement in line 7 of tree-Bipartition. The exchange of v∗ and the com-
ponent Tl amounts to moving the element l in the algorithm Bipartition. Since (WH, BL)
is returned by Bipartition and thus is a greedily optimal bipartition of Q, any move of an
element in one partite set would not decrease the difference d(WH, BL) and the statement
of 2) holds in this case.

Secondly suppose that the bipartition (WH, BL) is determined in the ‘if’ statement
in line 10 of tree-Bipartition. In this case we have w(Tl) = 0 and thus exchanging Tl

and v∗ and amounts to moving the element v∗ in the algorithm Bipartition. By the same
argument as above, any move of an element in one partite set would not decrease the
difference d(WH, BL) and again the statement of 2) holds. �

Consider the following equation:

α2 − 3α + 1 = 0 (4.2)

Let α∗ := (3−
√

5)/2 be one of its roots. In line 10 of the algorithm find-tree, if α < α∗ we
decide to pass the present splitting vertex v∗ as a splitting vertex to the next recursive call
which gets, as an argument, a subtree with greater weight among the two subtrees T [Uw]
and T [Ub ∪ {v∗}]. Lemma 4.2.5 justifies this execution. It claims that if α < α∗, then in
the next recursive call with a subtree of weight (1 − α)w(T), we have a more balanced
bipartition with v∗ as a splitting vertex. Actually, the bipartition in the next step is good
enough so as to compensate for the increase in the running time incurred by the biased
(‘α < α∗’) bipartition in the present step. We will show this later.

39

Lemma 4.2.5. Suppose that v∗ has been chosen to split T for the present call to find-tree
such that the weight of every subtree of T − v∗ is at most w(T)/2 and that w(T) ≥ 5.

Let α be defined as in line 8 and assume that α < α∗. Let {U1,U2} = {Uw,Ub} such

that w(U2) ≥ w(U1) and let {T1,T2} = {T [Uw],T [Ub ∪ {v∗}]} such that U1 ⊆ V(T1) and

U2 ⊆ V(T2). Let α′ play the role of α in the recursive call using the tree T2. In this case

the following holds: α′ ≥ (1 − 2α)/(1 − α) > α∗.

Proof. Let T1,T2,U1,U2, α, α
′ be defined as in the statement. Note that α = w(U1)/w(T).

Let d = w(U2) − w(U1) and note that w(U1) = (w(T) − d)/2 and that the following holds

1 − 2α
1 − α =

w(T) − 2w(U1)
w(T) − w(U1)

=
2d

w(T) + d
.

We now consider the following cases.
Case 1. d = 0: In this case α = 1/2 > α∗, a contradiction.
Case 2. d = 1: In this case α∗ > α = w(U1)/(2w(U1) + 1), which implies that

w(U1) ≤ 1. Therefore w(U2) ≤ 2 and w(T) ≤ 3, a contradiction.
Case 3. d ≥ 2: Let C1,C2, . . . ,Cq denote the components in T − v∗ and without loss

of generality assume that V(C1) ∪ V(C2) ∪ · · · ∪ V(Ca) = U2 and V(Ca+1) ∪ V(Ca+2) ∪
· · · ∪ V(Cq) = U1. Note that by Lemma 4.2.4 we must have w(Ci) ≥ d or w(Ci) = 0 for all
i = 1, 2, . . . , q except possibly for one set Cl (containing t), which may have w(Cl) = 1 (if
w(v∗) = 1).

Let Cr be chosen such that w(Cr) ≥ d, 1 ≤ r ≤ a and w(Cr) is minimum possible
with these constraints. We first consider the case when w(Cr) > w(U2) − w(Cr). By the
above (and the minimality of V(Cr)) we note that w(U2) ≤ w(Cr) + 1 (as either C j, which
is defined above, or v∗ may belong to V(T2), but not both). As w(U2) = (w(T) + d)/2 ≥
w(T)/2+ 1 we note that w(Cr) ≥ w(T)/2+ d/2− 1. As w(Cr) ≤ w(T)/2 (By the statement
in our theorem) this implies that d = 2 and w(Cr) = w(T)/2 and w(U2) = w(Cr) + 1. If
U1 contains at least two distinct components with weight at least d then w(U1) > w(U2),
a contradiction. If U1 contains no component of weight at least d then w(U1) ≤ 1 and
w(T) ≤ 4, a contradiction. So U1 contains exactly one component of weight at least d.
By the minimality of w(Cr) we note that w(U1) ≥ w(Cr) = w(U2) − 1, a contradiction to
d ≥ 2.

Therefore we can assume that w(Cr) ≤ w(U2) − w(Cr), which implies the following
(the last equality is proved above)

α′ ≥ w(Cr)
w(U2)

≥ d
(w(T) + d)/2

=
1 − 2α
1 − α .

As α < α∗, we note that α′ ≥ (1 − 2α)/(1 − α) > (1 − 2α∗)/(1 − α∗) = α∗. �

40

For the selection of the splitting vertex v∗ we have two criteria in the algorithm find-tree:
(i) ‘found’ criterion: the vertex is found so that the weight of every subtree T ′ of T − v∗ is
at most w(T)/2. (ii) ‘taken-over’ criterion: the vertex is passed on to the present step as
the argument v by the previous step of the algorithm. The following statement is an easy
consequence of Lemma 4.2.5.

Corollary 4.2.6. Suppose that w(T) ≥ 5. If v∗ is selected with ‘taken-over’ criterion, then

α > α∗.

Proof. For the initial call find-tree(T,D, ∅, r, ∅, ∅) we have v = ∅ and thus, the splitting
vertex v∗ is selected with the ‘found’ criterion. We will prove the claim by induction.
Consider the first vertex v∗ selected with then ‘taken-over’ criterion during the perfor-
mance of the algorithm. Then in the previous step, the splitting vertex was selected with
‘found’ criterion and thus in the present step we have α > α∗ by Lemma 4.2.5.

Now consider a vertex v∗ selected with the ‘taken-over’ criterion. Then in the previous
step, the splitting vertex was selected with the ‘found’ criterion since otherwise, by the
induction hypothesis we have α > α∗ in the previous step, and ∅ has been passed on as the
argument v for the present step. This is a contradiction. �

Due to Corollary 4.2.6 the vertex v∗ selected in line 3 of the algorithm find-tree func-
tions properly as a splitting vertex. In other words, we have more than one subtree of
T − v∗ in line 4 with positive weights.

Lemma 4.2.7. If w(T) ≥ 2, then for each of Uw and Ub found in line 5 of by find-tree we

have w(Uw) > 0 and w(Ub) > 0.

Proof. For the sake of contradiction suppose that one of w(Uw) and w(Ub) is zero. Let us
assume w(Uw) = 0 and w(Ub) = w(T). If v∗ is selected with ‘found’ criteria, each compo-
nent in T [Ub] has a weight at most w(T)/2 and T [Ub] contains at least two components
of positive weights. Then we can move one component with a positive weight from Ub

to Uw which will reduce the difference d(Uw,Ub), a contradiction. The same argument
applies when w(Uw) = w(T) and w(Ub) = 0.

Consider the case when v∗ is selected with “taken-over” criteria. There are three pos-
sibilities.

Case 1. w(T) ≥ 5: In this case we obtain a contradiction with Corollary 4.2.6.
Case 2. w(T) = 4: In the previous step using T ′, where T ⊆ T ′, the splitting vertex v∗

was selected with “found” criteria. Then by the argument in the first paragraph, we have
w(T ′) ≥ 5. A contradiction follows from Lemma 4.2.5.

Case 3. 2 ≤ w(T) ≤ 3: First suppose that w(v∗) = 0. Note that T [Uw] − v∗ or T [Ub]
contains a component of weight w(T) since otherwise we can move a component with a

41

positive weight from one partite set to the other and reduce d(Uw,Ub). Considering the
previous step using T ′, where T ⊆ T ′, the out-tree T is the larger of T ′w and T ′b. We pass
the splitting vertex v∗ to the larger of the two only when α < α∗. So when w(T) = 3, we
have 3 > (1−α∗)w(T ′) and thus w(T ′) ≤ 4, and when w(T) = 2 we have 2 > (1−α∗)w(T ′)
and thus w(T ′) ≤ 3. In either case, however, T ′ − v∗ contains a component with a weight
greater than w(T ′)/2, contradicting to the choice of v∗ in the previous step (Recall that v∗

is selected with ‘found’ criteria in the previous step using T ′).
Secondly suppose that that w(v∗) = 1. Then w(Uw) = w(T) and w(Ub) = 0. We can

reduce the difference d(Uw,Ub) by moving the component with a positive weight from Uw

to Ub, a contradiction.
Therefore for each of Uw and Ub found in line 5 of by find-tree we have w(Uw) > 0

and w(Ub) > 0. �

Lemma 4.2.8. Given a digraph D, an out-tree T and a specified vertex t ∈ V(T), consider

the set Xt (in line 22) returned by the algorithm find-tree(T,D, v, t, L, {Xu : u ∈ L}). We

assume that the sets Xu, u ∈ L are pairwise disjoint. If w ∈ Xt then D contains a (t,w)-
tree that meets the restrictions on L. Conversely, if D contains a (t,w)-tree for a vertex

w ∈ V(D) that meets the restrictions on L, then Xt contains w with probability larger than

1 − 1/e > 0.6321.

Proof. Lemma 4.2.7 guarantees that the splitting vertex v∗ selected at any recursive call
of find-tree really ‘splits’ the input out-tree T into two nontrivial parts, unless w(T) ≤ 1.

First we show that if w ∈ Xt then D contains a (t,w)-tree for a vertex w ∈ V(D) that
meets the restrictions on L. When |V(T) \ L| ≤ 1, using Lemma 4.2.3 it is straightforward
to check from the algorithm that the claim holds. Assume that the claim is true for all
subsequent calls to find-tree. Since w ∈ S ′ for some S ′ returned by a call in line 18,
the subgraph D[Vb ∪ Xv∗] contains a T [Ub ∪ {v∗}]-isomorphic (t,w)-tree T b

D meeting the
restrictions on (L ∩ Ub) ∪ {v∗} by induction hypothesis. Moreover, Xv∗ , ∅ when S ′ ∋ w

is returned and this implies that there is a vertex u ∈ Xv∗ such that T b
D is a (v∗, u)-tree.

Since u ∈ Xv∗ , induction hypothesis implies that the subgraph D[Vw] contains a T [Uw]-
isomorphic (v∗, u)-tree, say T w

D.
Consider the subgraph TD := T w

D ∪ T b
D. To show that TD is a T -isomorphic (t,w)-tree

in D, it suffices to show that V(T w
D)∩V(T b

D) = {u}. Indeed, V(T w
D) ⊆ Vw, V(T b

D) ⊆ Vb ∪ Xv∗

and Vw ∩ Vb = ∅. Thus if two trees T w
D and T b

D share vertices other than u, these common
vertices should belong to Xv∗ . Since T b

D meets the restrictions on (L ∩Ub) ∪ {v∗}, we have
Xv∗ ∩ V(T b

D) = {u}. Hence u is the only vertex that two trees T w
D and T b

D have in common.
We know that u plays the role of v∗ in both trees. Therefore we conclude that TD is T -
isomorphic, and since w plays the role of t, it is a (t,w)-tree. Obviously TD meets the
restrictions on L.

42

Secondly, we shall show that if D contains a (t,w)-tree for a vertex w ∈ V(D) that
meets the restrictions on L, then Xt contains w with probability larger than 1 − 1/e >
0.6321. When |V(T) \ L| ≤ 1, the algorithm find-tree is deterministic and returns Xt

which is exactly the set of all vertices w for which there exists a (t,w)-tree meeting the
restrictions on L. Hence the claim holds for the base case, and we may assume that the
claim is true for all subsequent calls to find-tree.

Suppose that there is a (t,w)-tree TD meeting the restrictions on L and that this is a
(v∗,w′)-tree, that is, the vertex w′ plays the role of v∗. Then the vertices of TD correspond-
ing to Uw, say T w

D, are colored white and those of TD corresponding to Ub, say T b
D, are

colored black as intended with probability ≥ (αα(1 − α)1−α)k. When we hit the right col-
oring for T , the digraph D[Vw] contains the subtree T w

D of TD which is T [Uw]-isomorphic
and which is a (v∗,w′)-tree. By induction hypothesis, the set S obtained in line 15 contains
w′ with probability larger than 1 − 1/e. Note that T w

D meets the restrictions on L ∩ Uw.
If w′ ∈ S , the restrictions delivered onto the subsequent call for find-tree in line 17

contains w′. Since TD meets the restrictions on L confined to Ub−v∗ and it is a (v∗,w′)-tree
with w′ ∈ S = Xv∗ , the subtree T b

D of TD which is T [Ub ∪ {v∗}]-isomorphic meets all the
restrictions on L. Hence by induction hypothesis, the set S ′ returned in line 18 contains w

with probability larger than 1 − 1/e.
The probability ρ that S ′, returned by find-tree in line 18 at an iteration of the loop,

contains w is, thus,

ρ > (αα(1 − α)1−α)k × (1 − 1/e)2 > 0.3995(αα(1 − α)1−α)k.

After looping ⌈(0.3995(αα(1−α)1−α)k)−1⌉ times in line 12, the probability that Xt contains
w is at least

1 − (1 − ρ)1/(0.3995(αα(1−α)1−α)k) > 1 − (1 − 0.3995(αα(1 − α)1−α)k)1/(0.3995(αα(1−α)1−α)k) > 1 − 1
e
.

Observe that the probability ρ does not depend on α and the probability of coloring a
vertex white/black. �

4.2.1 Running Time Analysis

The complexity of Algorithm find-tree is analyzed in the following theorem.

Theorem 4.2.9. Algorithm find-tree has running time O(n2kρCk), where w(T) = k and

43

|V(D)| = n, and C and ρ are defined and bounded as follows:

C =
(

1
α∗α∗(1 − α∗)1−α∗

)1/α∗

, ρ =
ln(1/6)

ln(1 − α∗) , ρ ≤ 3.724, and C ≤ 5.7039.

Proof. Let L(T,D) denote the number of times the ‘if’-statement in line 1 of Algorithm
find-tree is false (in all recursive calls to find-tree). We will prove that L(T,D) ≤ R(k) =
BkρCk + 1, B ≥ 1 is a constant whose value will determined later in the proof. This would
imply that the number of calls to find-tree where the ‘if’-statement in line 1 is true is also
bounded by R(k) as if line 1 is true then we will have at least two calls to find-tree (in
fact it will have at least three as

⌈
2.51

ααk(1−α)(1−α)k

⌉
≥ 3 and we always have a call in line 15).

We can therefore think of the search tree of Algorithm 3 as an out-tree where all internal
nodes have out-degree at least two and therefore the number of leaves is greater than the
number of internal nodes.

Observe that each iteration of the for-loop in line 12 of Algorithm find-tree makes at
most two recursive calls to find-tree and the time spent in each iteration of the for-loop
is at most O(n2). As the time spent in each call of find-tree outside the for-loop is also
bounded by O(n2) we obtain the desired complexity bound O(n2kρCk).

Thus, it remains to show that L(T,D) ≤ R(k) = BkρCk+1. First note that if k = 0 or k =

1 then line 1 is false exactly once (as there are no recursive calls) and min{R(1),R(0)} ≥
1 = L(T,D). If k ∈ {3, 4}, then line 1 is false a constant number of times by Lemma 4.2.7
and let B be the minimal integer such that L(T,D) ≤ R(k) = BkρCk + 1 for both k = 3 and
4. Thus, we may now assume that k ≥ 5 and proceed by induction on k.

Let R′(α, k) = (6((1 − α)k)ρC(1−α)k)/(ααk(1 − α)(1−α)k). Let α be defined as in line 8 of
Algorithm find-tree. We will consider the following two cases separately.

Case 1, α ≥ α∗: In this case we note that the following holds as k ≥ 2 and (1−α) ≥ α.

L(T,D) ≤
⌈
2.51/(ααk(1 − α)(1−α)k)

⌉
× (R(αk) + R((1 − α)k))

≤ 3/(ααk(1 − α)(1−α)k) × (2 · R((1 − α)k))

= R′(α, k).

By the definition of ρwe observe that (1−α∗)ρ = 1/6, which implies that the following
holds by the definition of C:

R′(α∗, k) = 6((1 − α∗)k)ρC(1−α∗)k ×Cα
∗k = kρCk = R(k).

Observe that

44

ln(R′(α, k)) = ln(6) + ρ [ln(k) + ln(1 − α)] + k [(1 − α) ln(C) − α ln(α) − (1 − α) ln(1 − α)]

We now differentiate ln(R′(α, k)) which gives us the following:

∂(ln(R′(α,k)))
∂(α) = ρ −1

1−α + k (− ln(C) − (1 + ln(α)) + (1 + ln(1 − α)))

=
−ρ

1−α + k
(
ln

(
1−α
αC

))
.

Since k ≥ 0 we note that the above equality implies that R′(α, k) is a decreasing
function in α in the interval α∗ ≤ α ≤ 1/2. Therefore L(T,D) ≤ R′(α, k) ≤ R′(α∗, k) =
R(k), which proves Case 1.

Case 2, α < α∗: In this case we will specify the splitting vertex when we make
recursive calls using the larger of Uw and Ub (defined in line 5 of Algorithm find-tree).
Let α′ denote the α-value in such a recursive call. By Lemma 4.2.5 we note that the
following holds:

1
2
≥ α′ ≥ 1 − 2α

1 − α > α
∗.

Analogously to Case 1 (as R′(α′, (1 − α)k) is a decreasing function in α′ when 1/2 ≥
α′ ≥ α∗) we note that the L-values for these recursive calls are bounded by the following,
where β = 1−2α

1−α (which implies that (1 − α)(1 − β) = α):

R′(α′, (1 − α)k) ≤ R′ (β, (1 − α)k)

= 3/
((
ββ(1 − β)(1−β)

)(1−α)k
)
× 2 × R((1 − β)(1 − α)k)

= 6R(αk)/
((
ββ(1 − β)(1−β)

)(1−α)k
)
.

Thus, in the worst case we may assume that α′ = β = (1 − 2α)/(1 − α) in all the
recursive calls using the larger of Uw and Ub. The following now holds (as k ≥ 2).

L(T,D) ≤
⌈
2.51/(ααk(1 − α)(1−α)k)

⌉
× (R(αk) + R′(α′, (1 − α)k))

≤ 3/(ααk(1 − α)(1−α)k) × R(αk) ×
(
1 + 6/

((
ββ(1 − β)(1−β)

)(1−α)k
))

≤ 3R(αk)/(ααk(1 − α)(1−α)k) × 7/
((
ββ(1 − β)(1−β)

)(1−α)k
)

Let R∗(α, k) denote the bottom right-hand side of the above equality (for any value of
α). By the definition of ρ we note that ρ = 2 ln(1/6)

2 ln(1−α∗) =
ln(1/36)
ln(α∗) , which implies that (α∗)ρ =

1/36. By the definition of C and the fact that if α = α∗ then β = (1 − 2α∗)/(1 − α∗) = α∗,
we obtain the following:

45

R∗(α∗, k) = 3R(α∗k)/(α∗α
∗k(1 − α∗)(1−α∗)k) × 7/

((
α∗α

∗
(1 − α∗)(1−α∗)

)(1−α∗)k)
= 21 · R(α∗k) ·Cα∗k ·Cα∗(1−α∗)k

= 21α∗ρkρCα
∗k ×C(2α∗−α∗2)k

= 21α∗ρR(k)

< R(k).

We will now simplify R∗(α, k) further, before we differentiate ln(R∗(α, k)). Note that
β = 1−2α

1−α implies that (1 − α)(1 − β) = α and β(1 − α) = 1 − 2α.

R∗(α, k) = 21R(αk)/(ααk(1 − α)(1−α)k) × 1/
((
ββ(1 − β)(1−β)

)(1−α)k
)

= 21(αk)ρCαk/(ααk(1 − α)(1−α)k) × 1/
((

1−2α
1−α

)(1−2α)k (
α

1−α

)αk
)

= 21(αk)ρ
(
Cα/(α2α(1 − 2α)(1−2α))

)k
.

Thus, we have the following:

ln(R∗(α, k)) = ln(21) + ρ (ln(k) + ln(α)) + k (α ln(C) − 2α ln(α) − (1 − 2α) ln(1 − 2α)) .

We now differentiate ln(R∗(α, k)) which gives us the following:

∂(ln(R∗(α,k)))
∂(α) =

ρ

α
+ k (ln(C) − 2(1 + ln(α)) + 2(1 + ln(1 − 2α)))

=
ρ

α
+ k

(
ln

(
C(1−2α)2

α2

))
Since k ≥ 0 we note that the above equality implies that R∗(α, k) is an increasing

function in α in the interval 1/3 ≤ α ≤ α∗. Therefore L(T,D) ≤ R∗(α, k) ≤ R∗(α∗, k) <
R(k), which proves Case 2. �

Theorem 4.2.10. There is an O(n25.704k) time randomized algorithm that solves the k-
Out-Tree problem.

4.3 Derandomization

In this section we discuss the derandomization of the algorithm find-tree using the general
method presented by Chen et al. [31] and based on the construction of (n, k)-universal sets
studied in [93].

Definition 4.3.1. An (n, k)-universal set F is a set of functions from [n] to {0, 1}, such that

for every subset S ⊆ [n], |S | = k the set F |S = { f |S : f ∈ F } is equal to the set 2S of all

the functions from S to {0, 1}.

46

Such an universal set can play in find-tree the role of the random colorings. In the
same article [31], Chen et al. also give an algorithm to generate one :

Proposition 4.3.2. ([31]) There is an O(n2k+12 log2 k) time deterministic algorithm that

constructs an (n, k)-universal set of size bounded by n2k+12 log2 k+2.

Using this universal set alone, however, would not enable us to obtain a deterministic
fixed-parameter algorithm for find-tree, as the size of the family (and, thus, the number
of iterations in the main loop of the algorithm) would now also depend on n, besides k.
Hence, Chen et al. make use (see [31]) of a family of pre-coloring functions (gn,k,z)z≤2n to
obtain a fixed-parameter algorithm. To explain it, let us first give a result from Fredman
et al. [59].

Proposition 4.3.3. Let n and k be integers, n ≥ k, and let q0 be the smallest prime number

such that n ≤ q0 < 2n. For any k-subset S in Zn = {0, . . . , n − 1}, there is an integer

z, 0 ≤ z ≤ q0, such that the function gn,k,z over Zn, defined as gn,k,z(a) = (az mod q0)
mod k2, is injective from S .

By the above proposition, computing a (k2, k)-universal set Fk2,k instead of a (n, k)-
universal set is enough for our purposes. Indeed, if we are looking for a k-subgraph S in
our graph, there exists 1 ≤ z < 2n such that gn,k,z is injective on S , thus ensuring that the
family F ′k,n,z = Fk2,k ◦ gn,k,z = { f ◦ gn,k,z : f ∈ Fk2,k} is such that F ′k,n,z|S is equal to the set
2S .

This way, derandomizing find-tree amounts to running it at most 2n times (once for
each possible value of z), each time using as a set of coloring functions the family F ′k,n,z.
Two lines of the algorithm will then need to be modified :

12 for each function f ∈ F′k,n,z do

13 ∀i such that xi ∈ V(D) −∪
u∈L Xu, let vi be colored in white if f (i) = 0 and in black

if f (i) = 1

Besides, we also need to pre-compute a (k2, k′)-universal set for any k′ ≤ k, as this
will be needed in the recursions steps of the algorithm. By Proposition 4.3.2, this can be
done in time O(k32k+12 log2 k). Note that these modifications make the algorithm find-tree
deterministic.

Then, from Proposition 4.3.3 we deduce that if a digraph D contains an out-tree T

meeting the requirements, then there exists a z such that gn,k,z is injective on V(T). Dur-
ing the iteration of the algorithm corresponding to z there will be an f ∈ F ′k,n,z such that
the vertices corresponding to Uw in D with be colored in white while the vertices corre-
sponding to Ub will be colored in black. Using induction on k, we can prove that this

47

deterministic algorithm correctly returns the required out-tree provided that such an out-
tree exists in the digraph.

Let us briefly sketch how the running time is derived. We consider the following type
of recurrence relations:

T (k, n) ≤ X02k × (T ((1 − α)k, n) + T (αk, n))

Here X0 is a constant determined by the size of the initial out-tree we are considering,
and it adds to the exponent of T (k, n) with o(k) factor. On the other hand, the value of α
asymptotically evolves around α∗ as we see in the randomized version of algorithm. As a
result, T (k, n) is a function of the form (21/α∗)k+o(k). Overall the computation is similar to
that described in the proof of Theorem 4.3.4. For completeness, we give a full proof.

Theorem 4.3.4. Algorithm find-tree has running time O(n2kρCk), where w(T) = k and

|V(D)| = n, and C and ρ are defined and bounded as follows:

C = 21/α∗ , ρ =
log 1/(2X0)
log (1 − α∗) ≈ O(log2 k0), and C ≤ 6.139.

Here, we set X0 = 22 log k0+12 log2 k0+2, where k0 denotes the number of vertices in the

initial tree.

Proof. Let L(T,D) denote the number of times the ‘if’-statement in line 1 of Algorithm
find-tree is false (in all recursive calls to find-tree). We will prove that L(T,D) ≤ R(k) =
BkρCk + 1, B ≥ 1 is a constant whose value will determined later in the proof. This would
imply that the number of calls to find-tree where the ‘if’-statement in line 1 is true is also
bounded by R(k) as if line 1 is true then we will have at least two calls to find-tree (in
fact it will have at least three as k2

02k+12 log2 k+2 ≥ 3 and we always have a call in line 15).
We can therefore think of the search tree of Algorithm 3 as an out-tree where all internal
nodes have out-degree at least two and therefore the number of leaves is greater than the
number of internal nodes.

Observe that each iteration of the for-loop in line 12 of Algorithm find-tree makes at
most two recursive calls to find-tree and the time spent in each iteration of the for-loop
is at most O(n2). As the time spent in each call of find-tree outside the for-loop is also
bounded by O(n2) we obtain the desired complexity bound O(n2kρCk).

Thus, it remains to show that L(T,D) ≤ R(k) = BkρCk+1. First note that if k = 0 or k =

1 then line 1 is false exactly once (as there are no recursive calls) and min{R(1),R(0)} ≥
1 = L(T,D). If k ∈ {3, 4}, then line 1 is false a constant number of times by Lemma 4.2.7
and let B be the minimal integer such that L(T,D) ≤ R(k) = BkρCk + 1 for both k = 3 and
4. Thus, we may now assume that k ≥ 5 and proceed by induction on k.

48

Let R′(α, k) = 2X0B2k((1−α)k)ρ(21/α∗)(1−α)k. Let α be defined as in line 8 of Algorithm
find-tree. We will consider the following two cases separately.

Case 1, α ≥ α∗: In this case we note that the following holds as k ≥ 2 and (1 − α) ≥
α. Note that we iterate the for-loops k2

02k+12 log2 k+2 ≤ X02k times in the derandomized
algorithm.

L(T,D) ≤ X02k × (R(αk) + R((1 − α)k))

≤ X02k × (2 · R((1 − α)k))

= R′(α, k).

By the definition of ρ we observe that (1 − α∗)ρ = 1/(2X0), which implies that the
following holds by the definition of C:

R′(α∗, k) = 2X0B2k((1 − α∗)k)ρ(21/α∗)(1−α∗)k = Bkρ(21/α∗)k = R(k).

Observe that

ln(R′(α, k)) = ln(2X0B) + ρ [ln(k) + ln(1 − α)] + k [ln(2) + ((1 − α)/α∗) ln(2)]

We now differentiate ln(R′(α, k)) which gives us the following:

∂(ln(R′(α,k)))
∂(α) = ρ −1

1−α −
k
α∗ ln(2).

Since k ≥ 0 we note that the above equality implies that R′(α, k) is a decreasing
function in α in the interval α∗ ≤ α ≤ 1/2. Therefore L(T,D) ≤ R′(α, k) ≤ R′(α∗, k) =
R(k), which proves Case 1.

Case 2, α < α∗: In this case we will specify the splitting vertex when we make
recursive calls using the larger of Uw and Ub (defined in line 5 of Algorithm find-tree).
Let α′ denote the α-value in such a recursive call. By Lemma 4.2.5 we note that the
following holds:

1
2
≥ α′ ≥ 1 − 2α

1 − α > α
∗.

Analogously to Case 1 (as R′(α′, (1 − α)k) is a decreasing function in α′ when 1/2 ≥
α′ ≥ α∗) we note that the L-values for these recursive calls are bounded by the following,
where β = 1−2α

1−α (which implies that (1 − α)(1 − β) = α):

49

R′(α′, (1 − α)k) ≤ R′ (β, (1 − α)k)

= 2X0B2(1−α)k((1 − β)(1 − α)k)ρ(21/α∗)(1−β)(1−α)k

= 2X0B2(1−α)k(αk)ρ(21/α∗)αk

= 2X02(1−α)kR(αk)

Thus, in the worst case we may assume that α′ = β = (1 − 2α)/(1 − α) in all the
recursive calls using the larger of Uw and Ub. The following now holds (as k ≥ 2).

L(T,D) ≤ X02k × (R(αk) + R′(α′, (1 − α)k))

≤ X02k ×
(
R(αk) + 2X02(1−α)kR(αk))

)
≤ X02k × R(αk) ×

(
1 + 2X02(1−α)k

)
≤ X02k × R(αk) × 3X02(1−α)k

Let R∗(α, k) denote the bottom right-hand side of the above equality (for any value of
α). By the definition of ρwe note that ρ = 2 ln(1/(2X0))

2 ln(1−α∗) =
ln(1/(4X2

0)
ln(α∗) , which implies that (α∗)ρ =

1/(4X2
0). By the definition of C and the fact that if α = α∗ then β = (1−2α∗)/(1−α∗) = α∗,

we obtain the following:

R∗(α∗, k) = X02k × R(α∗k) × 3X02(1−α∗)k

= 3X2
0 × B(α∗k)ρ(21/α∗)α

∗ × 2(2−α∗)k

= 3
4 Bkρ2(3−α∗)k

= 3
4 Bkρ(21/α∗)k

< R(k)

We will now simplify R∗(α, k) further, before we differentiate ln(R∗(α, k)).

R∗(α, k) = 3X2
0 B(αk)ρ2k(2+α/α∗−α)

Thus, we have the following:

ln(R∗(α, k)) = ln(3X2
0 B) + ρ(ln(k) + ln(α)) + k(2 +

α

α∗
− α) ln(2).

We now differentiate ln(R∗(α, k)) which gives us the following:

∂(ln(R∗(α,k)))
∂(α) =

ρ

α
+ k(1

α∗ − 1)

Since k ≥ 0 we note that the above equality implies that R∗(α, k) is an increasing
function in α in the interval 1/3 ≤ α ≤ α∗. Therefore L(T,D) ≤ R∗(α, k) ≤ R∗(α∗, k) <
R(k), which proves Case 2. �

Consequently we obtain the following.

50

Corollary 4.3.5. There is an O(n26.139k+o(k)) = O(n26.14k) time deterministic algorithm

that solves the k-Out-Tree problem.

51

Chapter 5

Directed Minimum Leaf Problem

In this chapter we study the Directed Minimum Leaf problem. Given a digraph D, the
Directed Minimum Leaf problem (MinLeaf) is the problem of finding an out-branching
with the minimum possible number of leaves in D. Denote this minimum by ℓmin(D).
When D has no out-branching, we write ℓmin(D) = 0. Notice that not every digraph D has
an out-branching. Nonetheless, we can easily decide whether D has an out-branching as
Lemma 2.1.1 in Chapter 2 indicates and thus we may often assume that ℓmin(D) > 0.

Since MinLeaf generalizes the hamiltonian directed path problem, MinLeaf is NP-
hard. We will consider three parameterizations of MinLeaf: (a) ℓmin(D) ≤ k (k ≥ 1), (c)
ℓmin(D) ≤ n/k (k ≥ 2), (d) ℓmin(D) ≤ n − k (k ≥ 1), where n is the number of vertices in D

and k is the parameter. We show that (a) and (b) are NP-complete for every value of the
parameter, and the parameterization (c) will be our major concern.

We first consider MinLeaf restricted to acyclic digraphs in Section 5.1 and give a
simple proof that MinLeaf can be solved in polynomial time in this case. In Section 5.2
we consider nearly acyclic digraphs and explore whether and how far the polynomial
solvability of MinLeaf on acyclic instances can be extended. In the following sections we
focus on the problem MinLeaf under the parameterization (c), which we call Directed
k-Internal. In Section 5.4, we describe a kernelization producing quadratic order kernel
for Directed k-Internal. Based on win/win strategy and the notion of tree decomposition,
an fpt-algorithm of Directed k-Internal with running time O(2O(k log k) + n6) is presented
in Section 5.5. Lastly we present an O(ck)-algorithm for Directed k-Internal which use
as a subroutine the fpt-algorithm for k-Out-tree from Chapter 4.

Throughout the chapter, the symbols n and m will denote the number of vertices and
arcs in the digraph under consideration.

52

5.1 MinLeaf on Acyclic Digraphs

Let D be an acyclic digraph. We may assume that D has a unique vertex, r, of in-degree
0 as, by Lemma 2.1.1, this is a necessary and sufficient condition for D to have an out-
branching. Let B be a bipartite graph with partite sets X = V(D) and X′ = {x′ : x ∈
V(D) \ {r′} and edge set E(B) = {xy′ : x ∈ X, y′ ∈ X′, xy ∈ A(D)}. Let m(B) denotes the
maximum size of a matching in B.

Lemma 5.1.1. We have ℓmin(D) = |X| − m(B).

Proof. A set N of edges of B is called nice if each vertex of X′ is incident to exactly one
edge in N and N contains an edge incident to r. Let T be an out-branching of D and let
f (T) = {xy′ : xy ∈ A(T)}. We will prove that f : T 7→ f (T) is a bijection between
all out-branchings of D and all nice edge sets of B. Indeed, if P is an out-branching,
then clearly f (P) is a nice edge set. Let N be a nice edge set and let Q be a spanning
subdigraph of D constructed as follows: xy ∈ A(Q) if and only if xy′ ∈ N. Since every
vertex of X′ is incident to exactly one edge of N, we have d−Q(z) = 1 for each z ∈ V(Q)\{r}.
Since Q is acyclic with a unique vertex of in-degree 0, Q is connected and, thus, Q is an
out-branching. Clearly, Q = f −1(N).

Let T be an out-branching of D and let B[f (T)] be the subgraph of B induced by the
set f (T). Observe that the number of leaves in T equals the number iv(B[f (T)]) of isolated
vertices in B[f (T)]. Let N be a nice edge set in B, let m(N) denote the maximum size of a
matching in B[N] and let H be a matching in B[N] of size m(N). Let y′ ∈ X′ be a vertex
of B not incident to an edge of H and let xy′ ∈ N. Since H is maximum, x is incident to
an edge of H. Thus, iv(B[N]) = |X| − m(N) and ℓmin(D) = |X| −max{m(N) : N is nice}.

Let M be a maximum matching in B and let M∗ be obtained from M by adding to it an
edge uv′ ∈ E(B) for each v′ not covered by M. Notice that r is covered by M. Indeed, there
exists a vertex u such that r is the only in-neighbor of u in D. Hence if r was not covered
by M then u′ would not be covered by M either, which means we could extend M by ru′, a
contradiction. Therefore, M∗ covers r and, by definition, every vertex of X′ is incident to
exactly one edge of M∗. Thus, M∗ is nice. Since m(B) = m(M∗) = max{m(N) : N is nice},
we conclude that ℓmin(D) = |X| − m(B). �

The correctness of the Algorithm 8 below follows from the proof of Lemma 5.1.1.
The algorithm inputs an acyclic digraph D and outputs a minimum leaf out-branching T ,
if it exists, and ‘NO’, otherwise.

Let us analyze the computational complexity of Algorithm 8. Let n and m be the
number of vertices and arcs in D. Each step of Algorithm 8 takes at most O(m) time
except for line 7. The computation time required to perform line 7 is the same as that of

53

Algorithm 7 Find a minimum leaf out branching on acyclic digraphs
1: if the number of vertices with in-degree 0 equals 1 then
2: r ← the vertex of in-degree 0
3: else
4: return ‘NO’
5: end if
6: Construct the bipartite graph B of D
7: find a maximum matching M in B and set M∗ ← M
8: for all y′ ∈ X′ not covered by M∗ do
9: M∗ ← M∗ ∪ {an arbitrary edge incident to y′}

10: end for
11: A(T)← ∅
12: for all xy′ ∈ M∗ do A(T)← A(T) ∪ {xy}
13: return T

solving the maximum cardinality matching problem on a bipartite graph. The last problem
can be solved in time O(|V(B)|1.5

√
|E(B)|/ log |V(B)|) [9]. Hence, the algorithm requires

at most O(m + n1.5
√

m/ log n) time.
Thus, we have the following:

Theorem 5.1.2. Let D be an acyclic digraph. Then the Algorithm 8 returns a minimum

leaf out-branching if one exists, or returns ‘NO’ otherwise in time O(m + n1.5
√

m/ log n).

5.2 MinLeaf on Near-Acyclic Digraphs

In this section we investigate how far we can extend the polynomiality result for acyclic
digraphs. Notice that acyclic digraphs are the digraphs of directed path-width (directed
tree-width, DAG-width, respectively) 0. We prove that already for digraphs of directed
path-width (directed tree-width, DAG-width, respectively) 1, MinLeaf is NP-hard. This
is in sharp contrast to the fact that the Hamilton path problem (the most important special
case of MinLeaf) is polynomial time solvable for digraphs of bounded directed path-width
(directed tree-width, DAG-width, respectively).

On the other hand, the hardness of MinLeaf on near-acyclic digraphs does not exclude
the possibility of MinLeaf, the problem of checking if there is an out-branching with at
most k leaves, being polynomial-time solvable for fixed k. We shall subsequently show
that for digraphs of bounded directed tree-width (directed path-width, DAG-width, respec-
tively) and a fixed integer k, the problem of checking whether there is an out-branching
with at most k leaves is polynomial time solvable.

54

In this section, we use the following linkage problem and its algorithm from [76]. Let

σ = (s1, t1, s2, t2, . . . , sp, tp)

be a sequence of 2p vertices of a digraph D, (vertices in σ are not necessarily distinct).
A hamiltonian σ-linkage of D is a collection of p directed paths P1, P2, . . . , Pp such that
V(P1) ∪ . . . ∪ V(Pp) = V(D), Pi starts at si and terminates at ti, 1 ≤ i ≤ p, and (V(Pi) \
{si, ti}) ∩ (V(P j) \ {s j, t j}) = ∅ for all 1 ≤ i < j ≤ p. In the hamiltonian linkage problem,
given σ we are to check whether there is a hamiltonian σ-linkage of D.

The following lemma is well-known [14, 16, 76, 96] and easy to prove using just the
definitions above.

Lemma 5.2.1. Let D be a digraph. For d ∈ {dag, dt, dp}, we have dw(D) = 0 if and only

if D is acyclic.

Lemma 5.2.2. For a digraph D, we have dtw(D) ≤ dpw(D).

Proof: Let Y1,Y2, . . . ,Yk be the bags in a DPD of D. We may assume that all bags are
distinct. Define an arboreal decomposition of D, where the arborescence is the directed
path 12 . . . k, as follows: W1 = Y1, Wi = Yi \Yi−1 for each i = 2, 3, . . . , k and if e = (i, i+1)
we let Xe = Yi ∩ Yi+1. This arboreal decomposition is of the same width as the DPD and
we are done. �

5.2.1 Hardness Result

Here we give a proof that MinLeaf is NP-hard for digraphs of directed path-width (di-
rected tree-width, DAG-width, respectively) 1. If P is a directed path and vertices a, b are,
in that order, on P, then we denote the a − b-segment of P by P[a, b], and by P[b, ∗] we
mean the b − t-segment of P, where t is the terminal vertex of P.

Theorem 5.2.3. MinLOB is NP-hard for digraphs of directed path-width (directed tree-

width, DAG-width, respectively) 1.

Proof: We prove the theorem by reduction of 3SAT to MinLOB. We use the fol-
lowing gadget H, the digraph with vertex set V(H) = {x1, y1, z1, x2, y2, z2} and arc set
A(H) = {x1y1, y1z1, z1x1, x1x2, y1y2, z1z2, x2z2, z2y2, y2x2}. It is easy to verify that H has the
following properties:

(i) there exists a hamiltonian (x1, x2)-linkage Px of H,
(ii) there exists a hamiltonian (x1, x2, y1, y2)-linkage of H,
(iii) there exists an hamiltonian (x1, x2, y1, y2, z1, z2)-linkage of H,

55

z 1

y 1

X1

z 2

X2

y 2

u2

x

uk

u1

x

x

x

¬x

¬x

gadget H

for clause C=(x+y+z)

graph D=D(I)

corresponding to the variables in each clause.

in the picture with vertices

A copy of H replaces each square box

Figure 5.1: The gadget H and construction of D = D(I) from 3-SAT instance.

(iv) if Px is a hamilton path of H starting at x1 then Px ends in x2,
(v) if Px and Py are vertex disjoint paths in H starting at x1 and y1, respectively, which go
through all vertices of H, then either Px ends in x2 and Py ends in y2, or Px ends in y2 and
Py ends in z1.

Analogous statements hold for each permutation of x, y, z.
Consider an instance I of 3SAT with variables v1, v2, . . . , vk and clauses C1,C2, . . . ,Cp.

Construct a digraph D = D(I) as follows: For each clause C j let H j be a copy of
H. If C = α + β + γ, where α, β, and γ are literals, denote the vertices of H j by
α1(H j), β1(H j), γ1(H j), α2(H j), β2(H j), γ2(H j). (Occasionally, when we do not wish to
specify the variables α, β, γ, we denote the vertices simply by x1(H j), . . . , z2(H j).) We
also introduce a vertex ui for each variable vi and a root vertex r. So

V(D) = {r, u1, u2, . . . , uk} ∪
p∪

j=1

V(H j),

and D is a graph of order 6p + k + 1.
The arc set of D consists of

∪p
j=1 E(H j), arcs rui for i = 1, 2, . . . , k and the arcs in

the sets Arc(v1),Arc(v1), . . . ,Arc(vk),Arc(vk) defined as follows. Consider a variable
vi. Let C j1 ,C j2 , . . . ,C js , with j1 < j2 < . . . < js, be the clauses containing vi as lit-
eral. Then the set Arc(vi) contains the arcs uivi

1(H j1), vi
2(H j1)v

i
1(H j2), vi

2(H j2)v
i
1(H j3), . . . ,

vi
2(H js−1)v

i
1(H js). Similarly let Ch1 ,Ch2 , . . . ,Cht , with h1 < h2 < . . . < ht, be the clauses

containing vi as literal. Then the set Arc(vi) contains the arcs uivi
1(Hh1), vi

2(Hh1)vi
1(Hh2),

vi
2(Hh2)vi

1(Hh3),. . . , vi
2(Hht−1)vi

1(Hht). This completes the construction of D.

56

We prove that
dtw(D) = dagw(D) = dpw(D) = 1 (5.1)

Since D is not acyclic, by Lemma 5.2.1, every width parameter in (5.1) is positive and,
by Lemma 5.2.2, it is enough to show that dpw(D) ≤ 1. It can be easily checked that the
following bags form a DPD of D of width 1:

{r}, {u1}, {u2}, . . . , {uk},

{z1(H1), y1(H1)}, {y1(H1), x1(H1)}, {x2(H1), y2(H1)}, {y2(H1), z2(H1)},

. . . , {z1(Hp), y1(Hp)}, {y1(Hp), x1(Hp)}, {x2(Hp), y2(Hp)}, {y2(Hp), z2(Hp).

We now show that D has an out-branching with exactly k leaves if and only if I is satisfi-
able.

Given a valid truth assignment to v1, . . . , vk we construct an out-branching B of D with
k leaves as follows. Root B at r. Let ru1, ru2, . . . , ruk ∈ E(B). If variable vi has truth
value TRUE then add all arcs in Arc(vi) to A(B). Then these arcs, together with suitably
(i.e., according to properties (i), (ii) and (iii) of H) chosen vi

1(H j) − vi
2(H j) paths through

those H j which correspond to the C j containing vi as a literal, yield a path P(vi) starting
at ui. Similarly, if variable vi has truth value FALSE then add all arcs in Arc(vi) and
suitably chosen vi

1(H j)− vi
2(H j) paths to A(B) and obtain a path P(vi) starting at ui. Since

these k paths, attached to the vertices u1, . . . , uk, go through all vertices in V(D), B is an
out-branching of D with exactly k leaves.

Given an out-branching B with exactly k leaves of D, we derive an assignment of truth
values to the variables v1, . . . , vk that satisfies each clause C j and thus I. We note that B

must be rooted at r since d−D(r) = 0 and that rui ∈ A(B) for i = 1, 2, . . . , k since d−D(ui) = 1.
So d+T (r) = k, hence the subtree of T rooted at ui is a path Pi for i = 1, 2, . . . , k.

Consider a subgraph H j of D. A path Pi that intersects with H j is said to be H j-
compatible if Pi enters H j at x1 and leaves at x2, or it enters H j at y1 and leaves at y2,
or it enters H j at z1 and leaves at z2. We now show that B can be modified, without
changing the number of leaves, so that whenever a path Pi and a gadget H j intersect, Pi is
H j-compatible. Consider a fixed H j. First assume that Pi is the only path that intersects
H j. By property (iv) Pi is H j-compatible. Next assume that two paths, Ph and Pi say,
intersect H j and that they enter H j in, say, x1 and y1, respectively. By property (v) either
Ph and Pi are H j-compatible, or Pi ends in z1 and Ph ends in y2. In the latter case let
P′h be the union of Ph[uh, x1] and the path x1, x2, and let P′i be the union of Pi[ui, y1], the
path y1, z1, z2, y2 and Ph[y2, ∗], and replace Ph and Pi by P′h and P′i . Finally assume that
three paths Pg, Ph, Pi intersect H j. Then a similar construction yields H j-compatible paths

57

P′g, P
′
h and P′i . Clearly, replacing Pg, Ph, Pi by P′g, P

′
h, P

′
i if necessary does not change

the number of leaves of B, nor does it create any incompatibilities. Hence repeating this
step for all H j eventually yields an out-branching in which every path Pi that intersects a
gadget H j is H j-compatible.

Note that vertex ui has two out-neighbors in D, vi
1(H j1) and vi

1(Hh1), where C j1 (Ch1)
is the first clause to contain vi (vi) as a literal, and that T contains at most one of these
arcs. If the first arc of Pi is uivi

1(H j1) then we assign the value TRUE to vi, if the first arc
of Pi is uivi

1(Hh1) then we assign the value FALSE to vi, and if Pi has no arc we assign an
arbitrary truth value to vi. It remains to show that this satisfies I.

Fix an arbitrary clause C j and consider H j. There is at least one path Pi of the out-
branching B that intersects with H j. Assume that the first arc of Pi is, say, uivi

1(H j1) (for
uivi

1(Hh1) the proof is analogous) and that P passes through H j1 ,H j2 , . . . before reaching
H j. Since Pi is compatible with H j1 ,H j2 , . . . ,H j, it enters H j1 ,H j2 , . . . ,H j in vi

1(H j1),
vi

1(H j2), . . . , v
i
1(H j). Hence clauses C j1 ,C j2 , . . . ,C j contain vi as a literal. But since we

assigned the value TRUE to vi, clause C j is satisfied. Since C j was arbitrary, all clauses
and thus I are satisfied. �

5.2.2 Polynomial Algorithm For Fixed Number of Leaves

We need the following theorem for our polynomiality result in this subsection.

Theorem 5.2.4. [76] For every fixed positive integer p and every fixed nonnegative integer

w the hamiltonian linkage problem with input sequence σ of 2p vertices for digraphs of

directed tree-width at most w is polynomial time solvable.

Theorem 5.2.5. Let d ∈ {dag, dt, dp}. For every fixed positive integer k and every fixed

nonnegative integer w, we can check, in polynomial time, whether a digraph D with

dw(D) ≤ w has an out-branching with at most k leaves.

Proof: Let D be a digraph. By Lemma 5.2.2, if dpw(D) ≤ w then dtw(D) ≤ w. It is
shown in [16] that if dagw(D) ≤ w then dtw(D) ≤ 3w + 1.

Thus, we may assume that D is of directed tree-width at most w, for some integer w,
and let B be an out-branching in D with at most k leaves. Let X(B) be the set consisting
of the root, the leaves and the branching vertices of B. It is not difficult to show that
|X(B)| ≤ 2k. Now contract each directed path of B between two vertices of X(B) into an
arc (between the vertices of X(B)) and observe that we have obtained an out-tree B′ with
exactly |X(B)| vertices. We call B′ the contraction of B.

Now let Y ⊆ V(D), |Y | ≤ 2k, and let T be an out-branching constructed on the vertices
of D[Y] with arcs A(T) = {(s1, t1), (s2, t2), . . . , (s|Y |−1, t|Y |−1)}. Notice here that the arcs of

58

A(T) may be not present in the digraph D. Using the algorithm of Theorem 5.2.4 with
input (s1, t1, s2, t2, . . . , s|Y |−1, t|Y |−1), we can check, in polynomial time, whether D contains
an out-branching B∗ whose contraction is T .

Thus, to find an out-branching in D with the minimum number of leaves, we can use
the following procedure. We generate all subsets of V(D) with at most 2k vertices and,
for each such subset Y , we generate all out-branchings T in D[Y]. For each T we use the
algorithm of Theorem 5.2.4 to verify whether D has an out-branching whose contraction is
T . Finally, we find a minimum leaf out-branching among all the outputs of the algorithm
if one with at most k leaves exists.

Observe that for each Y , by Cayley’s formula on the number of spanning trees in a
complete graph, there are at most |Y ||Y |−1 out-branchings of D[Y] and that there are less
than |V(D)|2k+1 sets Y with |Y | ≤ 2k. Thus, in our procedure, we use the algorithm of
Theorem 5.2.4 less than |V(D)|2k+1 · (2k)2k−1 times, which shows that the running time of
the procedure is polynomial. �

5.3 Three Parameterizations of MinLeaf

The following is a natural way to parameterize the problem MinLeaf.

MinLeaf Parameterized Naturally
Instance: A digraph D.
Parameter: A positive integer k.
Question: Is ℓmin(D) ≤ k ?

Clearly, this problem is NP-complete already for k = 1 as for k = 1 it is equiva-
lent to the hamiltonian directed path problem. Let v be an arbitrary vertex of D. Trans-
form D into a new digraph Dk by adding k vertices v1, v2, . . . , vk together with the arcs
vv1, vv2, . . . , vvk. Observe that D has a hamiltonian directed path terminating at v if and
only if ℓmin(Dk) ≤ k. Since the problem is NP-complete of checking whether a digraph
has a hamiltonian directed path terminating at a prescribed vertex, we conclude that under
the standard parameterization the problem MinLeaf is NP-complete for every fixed k.

Let us denote by K⃗1,p−1 the star digraph of order p, i.e., the digraph with vertices
1, 2, . . . , p and arcs 12, 13, . . . , 1p. We consider a slightly weaker parameterization of
MinLeaf.

MinLeaf Parameterized Strongly Below Guaranteed Value
Instance: A digraph D of order n with ℓmin(D) > 0.
Parameter: An integer k ≥ 2.
Question: Is ℓmin(D) ≤ n/k ?

59

Under this parameterization the problem MinLeaf is still NP-complete for every fixed
k ≥ 2. To prove this consider a digraph D of order n and a digraph H obtained from D

by adding to it the star digraph K⃗1,p−1 on p = ⌊n/(k − 1)⌋ vertices (V(D) ∩ V(K⃗1,p−1) = ∅)
and appending an arc from vertex 1 of K⃗1,p−1 to an arbitrary vertex y of D. Observe
that ℓmin(H) = p − 1 + ℓmin(D, y), where ℓmin(D, y) is the minimum possible number of
leaves in an out-branching rooted at y, and that 1

k |V(H)| = p + ε, where 0 ≤ ε < 1.
Thus, ℓmin(H) ≤ 1

k |V(H)| if and only if ℓmin(D, y) = 1. Hence, the hamiltonian directed
path problem with fixed initial vertex (vertex y in D) can be reduced to this MinLeaf
parameterized strongly below guaranteed value for every fixed k ≥ 2 and, therefore, it is
NP-complete for every k ≥ 2.

Consider the following parameterizations of MinLeaf.

MinLeaf Parameterized Below Guaranteed Value Directed k-Internal
Instance: A digraph D of order n with ℓmin(D) > 0.
Parameter: A positive integer k.
Question: Is ℓmin(D) ≤ n − k ?
Solution: An out-branching B of D with at most n − k leaves or the answer
‘NO’ to the above question.

In the rest of the chapter we will consider this last parameterization of MinLeaf. Ob-
serve that we can equivalently state MinLeaf under the last parameterization as the prob-
lem of finding an out-branching with at least k internal vertices, if one exists. Henceforth,
MinLeaf parameterized below guaranteed value will be denoted as Directed k-Internal.

5.4 Quadratic Kernel for Directed k-Internal

In this section we introduce a reduction rule for the Directed k-Internal problem. Us-
ing the reduction rule we present a polynomial time algorithm that either yields an out-
branching with at most n − k leaves or produces a kernel whose order is bounded by a
quadratic function of k.

Let T be an out-branching of a given digraph D and let (u, v) ∈ A(D)\A(T). We define
the 1-change for (u, v) as the operation to add the arc (u, v) to T and remove the existing
arc (p(v), v) from T , where p(v) is the parent (i.e. in-neighbor) of v in T . We say an out-
branching is minimal if no 1-change for an arc of A(D) \ A(T) leads to an out-branching
with more internal vertices, or equivalently, less leaves. For two vertices x, y, we write
x ≤T y if there is a path from x to y in T and especially when x , y, we write x <T y. An
arc (y, x) ∈ A(D) \ A(T) is T -backward if x <T y. The following is a simple observation
on a minimal out-branching.

60

Lemma 5.4.1. Let T be an out-branching of D. Then T is minimal if and only if for

every arc (u, v) ∈ A(D) \ A(T) which is not T-backward arc, the vertex u is internal or

d+(p(v)) = 1.

Proof. Suppose the 1-change for (u, v) ∈ A(D) \ A(T) yields an out-branching with less
leaves. It is easy to see that (u, v) is not T -backward, u is a leaf and d+(p(v)) ≥ 2.
Conversely if there is an arc (u, v) ∈ A(D) \ A(T) which is not T -backward, u is a leaf
and d+(p(v)) ≥ 2 then 1-change for (u, v) produces an out-branching in which the number
number of leaves is strictly decreased. �

Lemma 5.4.2. Given a digraph D, we can either build a minimal out-branching T with

at most n − k leaves or obtain a vertex cover of size at most 2k − 2 in O(n2m) time.

Proof. Let T be a minimal out-branching. If T has at most n − k leaves, we are done.
Suppose it is not. We claim that the set U = {u ∈ V(D) : u is internal in T }∪ {u ∈ V(D) : u

is a leaf in T and d+(p(u)) = 1} is a vertex cover of D. Since the set of internal vertices
cover all arcs which are not between the leaves, it suffices to show that every arc (u, v)
between two leaves u and v is covered by U. The last statement follows from the fact that
T is minimal and Lemma 5.4.1. What remains is to observe that the number of internal
vertices is at most k − 1 and the number of leaves which is the only child of its parent is
at most k − 1 as well.

Now we consider the time complexity of the algorithm. The construction of an out-
branching T of D takes O(n + m) time. Whether T is minimal can be checked in O(nm)
time since for every arc (u, v) ∈ A(D) \ A(T) we test the conditions of Lemma 5.4.1. Let
L be the list of arcs (u, v) ∈ A(D) \ A(T) which violates the minimality of T , i.e. such
that u is a leaf and d+(p(v)) ≥ 2. Whenever L , ∅, choose (u, v) ∈ L and transform T by
replacing the arc (p(v), v) by (u, v). Accordingly we update the list L as follows: (1) erase
all arcs whose tail is u, which takes O(m) time (2) erase all arcs whose head is v, which
takes O(m) time (3) add to L arcs of the form (x, y) where x is a leaf of the subtree rooted
at v and y is a vertex with d+(p(y)) ≥ 2 on the unique path from the root of T to p(v). This
takes O(nm) time. The validation of the update with (1)-(3) can be easily verified. Since
any out -branching has at least one leaf and we decrease the number of leaves of T by 1
at each transformation, after at most n such transformations we obtain an out-branching
where no further transformation can be done. This will be our minimal out-branching.
When the minimal out-branching has more than n − k leaves, we can construct the vertex
cover U as above in O(n) time. �

It follows from Lemma 5.4.2 that we can find either an out-branching which certifies
a positive answer for the Directed k-Internal problem or a vertex cover of D of size at

61

most 2k − 2. In the second case, we can remove some redundant vertices from the large
independent set of size at least n − (2k − 2) and obtain an instance of smaller size. The
crown structure plays the fundamental role in this reduction.

Definition 5.4.3. A crown in a graph G is a pair (H,C), where H ⊆ V(G) and C ⊆ V(G)
with H ∩C = ∅ such that the following conditions hold:

(a) The set of neighbors of vertices in C is precisely H, i.e. H = N(C),
(b) C = Cm ∪Cu is an independent set, and

(c) There is a perfect matching between Cm and H.

A crown structure is a relatively new idea that allows us to have powerful reduction
rules.

Given a digraph D, let U be a vertex cover of D. Modify U by adding to it the vertex
of in-degree 0 if one exists. Let W = V(D) \ U and observe that W is an independent set.
We define the internal number of D as the largest possible number of internal vertices of
an out-branching of D.

In order to accommodate a crown structure to Directed k-Internal we create an aux-
iliary model. Given a directed graph D with U and W as above, we build the (undirected)
bipartite graph B as follows.

• V(B) = U′ ∪W, where U′ = N−(W) ∪ (U × U).

• E(B) = {{xy,w} : xy ∈ U × U,w ∈ W, (x,w) ∈ A(D), (w, y) ∈ A(D)} ∪ {{x,w} : x ∈
U,w ∈ W, (x,w) ∈ A(D)}

Observe that N−(W) ⊆ U as U is a vertex cover of D and that no vertex of W in B is
isolated since every vertex of W is of in-degree at least one in D.

Lemma 5.4.4. If B contains a crown (H,C = Cm ∪ Cu) with C ⊆ W and Cu , ∅, then the

internal number of D equals the internal number of D −Cu.

Proof. We can extend an out-branching T of D − Cu by appending an arc (x,w) ∈ A(D),
where w ∈ Cu and x is any in-neighbor of w. The attachment of such an arc does not
decrease the number of internal vertices of T . This shows that the internal number of D is
not smaller than that of D −Cu.

Let a crown (H,C = Cm ∪ Cu) with C ⊆ W and a perfect matching M between H and
Cm are given. We start with the following claim.

Claim 1. Let croot be the root of T . If croot ∈ C, we can modify the perfect matching M

into M′ between H and C′m ⊆ C so that croot ∈ C′m and {ux, croot} ∈ M′ for some pair vertex
ux ∈ U × U.

62

Proof of Claim 1. Suppose this is not the case. Recall that croot is of in-degree at least 1
since we excluded any vertex of in-degree 0 from W. Let u be an in-neighbor of croot in D
and x be a child of croot in T . Note that {u, croot}, {ux, croot} ∈ E(B) and thus u, ux ∈ H.

There are two cases and for each case we can obtain a new perfect matching as follows.
Firstly if croot ∈ Cu, simply exchange it with a vertex c ∈ Cm which is matched to the pair
vertex ux by M. This exchange is justified since {ux, croot} ∈ E(B). Secondly suppose
croot ∈ Cm but it is matched to a vertex u ∈ N−(W). Since (u, croot), (croot, x) ∈ A(D),
we have the pair vertex ux in U′ and moreover it is in H. Hence we can find c ∈ Cm

which is matched to the pair vertex ux and by exchanging it with croot we have a new
perfect matching. This is possible as we have {ux, croot} ∈ E(B) and (u, c) ∈ A(D), thus
{u, c} ∈ E(B). �

Due to Claim 1, when croot ∈ C we may always assume that croot ∈ Cm and furthermore
that {ux, croot} ∈ M for some pair vertex ux ∈ (U × U). Notice that x is not necessarily a
child of croot in T .

We shall show that the internal number of D − Cu is not smaller than the internal
number of D. To see this suppose T is an out-branching of D and consider the subgraph
F = T − C obtained from T by deleting the vertices of C. Obviously F is a union of out-
trees, say F1, . . . , Fl. We will add the vertices of Cm and a set of arcs so that we obtain an
out-branching of D −Cu with as many internal vertices as in T at the end of this process.

Recalling that C ⊆ W is an independent set, it is straightforward to see any vertex
c ∈ C falls into one of the three types: (a) c is a leaf in T hanging to some vertex of F (b)
c is an internal vertex in T which has both a parent and children in F (c) c is the root croot

of T and it has at least one in-neighbor in V(D).
Let c1, . . . , ct ∈ C be the vertices that are of type (b) in T . For each ci, 1 ≤ i ≤ t, let

Hi = { fp fq ∈ U ×U : (fp, ci) ∈ A(T), (ci, fq) ∈ A(T)}. We denote
∪

1≤i≤t Hi by Hint. For the
vertex croot ∈ C, let Hroot = { fpx ∈ U ×U : (fp, croot) ∈ A(D) \ A(T), (croot, x) ∈ A(T)}. We
set Hroot = ∅ if croot < C. Note that both Hint and Hroot belong to H.

The following procedure defines how to construct an out-tree T ′′ from F. We initialize
T ′ ← F and Cint ← ∅.

1. For every fp fq ∈ Hint

1.1 let Hi be the unique set containing fp fq.
1.2 let cpq ∈ Cm be the vertex with { fp fq, cpq} ∈ M

1.3 T ′ ← T ′ + cpq + (fp, cpq) + (cpq, fq).
1.4 Cint ← Cint ∪ {cpq}.

2. T ′′ ← T ′.

3. If croot < C, return T ′′.

63

4. If croot < Cint

4.1 T ′′ ← T ′′ + croot.
4.2 for each child x of croot in T , T ′′ ← T ′′ + (croot, x).
4.3 return T ′′.

5. Otherwise
5.1 let fp fq ∈ Hint be the vertex with { fp fq, croot} ∈ M.
5.2 let x be the child of croot in T with x ≤T ′′ fp.
5.3 let cx ∈ Cm be the vertex with { fpx, cx} ∈ M.
5.4 T ′′ ← T ′′ + cx + (cx, x).
5.5 for each child y , x of croot in T (if any)
5.5.1 let cy ∈ Cm be the vertex with { fpy, cy} ∈ M

5.5.2 T ′′ ← T ′′ + cy + (fp, cy) + (cy, y).
5.6 return T ′′

Claim 2. Step 1 is valid and T ′ at step 2 is a union of out-trees.

Proof of Claim 2. For each fp fq ∈ Hint, the vertex fq ∈ V(F) appears as the second element
of the pair vertex in Hint at most once. The uniqueness of Hi ∋ fp fq then follows (step 1.1).
Moreover by the construction of Hi, { fp fq, ci} ∈ E(B) and thus fp fq ∈ N(C) = H, where
the last equality follows by the definition of crown. Hence fp fq is uniquely matched to a
vertex cpq ∈ Cm by M (step 1.2). Also { fp fq, cpq} ∈ E(B) implies (fp, cpq), (cpq, fq) ∈ A(D),
which implies that T ′ can be properly constructed (step 1.3).

Now observe that any second element fq of a pair vertex fp fq ∈ Hint is a root of an
out-tree in F. Thus for each component Fq of F, T ′ contains at most one arc entering into
its root. Moreover, fp <T ′ fq if and only if fp <T fq, which means there is no directed
cycle in T ′. Witnessing that all the other vertices have at most one arc entering into it, we
conclude T ′ at step 2 is a union of out-trees. �

We claim that the above procedure returns an out-tree T ′′

Claim 3. Steps 3-5 are valid and T ′′ is an out-tree.

Proof of Claim 3. First consider the case when T ′′ is returned at step 3. With Claim 2, it
is enough to show that T ′ is connected. Let two components Fp and Fq in F be connected
by ci in T . Since croot < C, the vertex ci is of type (b) and thus there exist fp ∈ Fp and
the root fq of Fq such that (fp, ci) ∈ A(T), (ci, fq) ∈ A(T). By the construction of Hint, we
have fp fq ∈ Hi ⊆ Hint and the vertex cpq ∈ Cm with { fp fq, cpq} ∈ M connects Fp and Fq in
T ′ during the performance of step 1. Hence T ′ is connected.

If T ′′ is not returned at step 3, we have croot ∈ C. It is important to observe that in this
case, the roots of the out-trees in T ′ at step 2 are exactly the children of croot in T . This is

64

because the root of an out-tree in F has an incoming arc in T ′ if and only if its parent in
T is of type (b).

Secondly suppose that T ′′ is returned at step 4. Then croot does not participate in T ′

and croot in T ′′ is of in-degree 0. By the observation in the second paragraph, T ′′ is an
out-tree.

Thirdly suppose that T ′′ is returned at step 5. In this case croot has been included as an
internal vertex to connect two out-trees in step 1, and the arcs (fp, croot) and (croot, fq) have
been included in T ′, where fp fq is the pair vertex found in step 5.1. We want to check
that cx and the arc (cx, x) in line 5.3 can be properly picked up. Indeed, the pair vertex fpx

belongs to Hroot ⊆ H and there exists a vertex cx which is matched to the pair fpx. By the
construction of B, the arc (cx, x) exists as well. Hence at the end of step 5.4, T ′′ is a union
of out-trees whose roots are cx and the children of croot in T other than x.

If d+T (croot) = 1, T ′′ consists of a single out-tree whose root is cx. Else if d+T (croot) ≥
2, let y be a child of croot in T and y , x. Since (fp, croot), (croot, y) ∈ A(D), we have
the pair vertex fpy in Hroot ⊆ H and fpy is uniquely matched to a vertex cy. The edge
{ fpy, cy} implies the existence of the two arcs (fp, cy), (cy, y), hence we can perform step
5.5 properly. Since the vertex fp is contained in the out-tree rooted at cx ∈ Cm, the addition
of these arcs does not create a cycle. As a result we start at the step 5.5 with |d+T (croot)|
out-trees in the beginning and each time we carry out step 5.5.2, the number of out-trees
in T ′′ decreases by 1. Therefore at the end of step 5.5, we end up with a single out-tree
T ′′ rooted at cx. �

During the construction of T ′′, we added at least one vertex cpq for each internal vertex
ci of type (b) as an internal vertex of T ′′. Also we added at least one vertex as the root or
an internal vertex of T ′′ if croot ∈ C. Hence the number of internal vertices in C for T ′′

is at least as large as the number of internal vertices in C for T . Therefore what remains
is to see that every vertex f of F which is internal in T can be made to remain internal.
The only case we need to consider is a vertex f ∈ V(F) whose children in T are leaves
and all belong to C. Suppose f is a leaf in T ′. Since f ∈ N(C) = H, we can uniquely
determine a vertex c f ∈ Cm such that { f , c f } belongs to the perfect matching M. By the
construction of T ′′ in the above argument, the vertex c f is not contained in T ′′ for each
such vertex f ∈ V(F) and thus, we may add c f and an arc (f , c f) to T ′′ while keeping T ′′

as an out-tree. After this procedure each such vertex f is an internal vertex in T ′′, and
thus T ′′ has as many internal vertices as T .

For any vertex c of Cm which does not participate in T ′ constructed so far, we simply
add it to T ′′ with the arc (f , c) ∈ A(D). Therefore T ′′ is an out-branching of D − Cu with
as many internal vertices as T . This completes the proof. �

65

In light of Lemma 5.4.4, we have a reduction rule below.

Reduction Rule 1. Given a digraph D with a vertex cover U of D and W = V(D) \ U,

construct the associated bipartite graph B. If B has a crown (H,C = Cm∪Cu) with Cu , ∅,
remove the vertices of Cu from D.

We need the following theorem to prove our kernelization lemma.

Theorem 5.4.5. [52] Any graph G with an independent set I, where |I| ≥ 2n
3 , has a crown

(H,C), where H ⊆ N(I), C ⊆ I and Cu , ∅, that can be found in time O(nm) given I.

Lemma 5.4.6 (Kernelization Lemma). Let D be irreducible. If |V(D)| > 8k2 + 6k then D

has an out-branching with at least k internal vertices.

Proof. Suppose that D is reduced with |V(D)| > 8k2+6k, and that D does not have an out-
branching with at least k internal vertices. Since the internal number of D is the same as
the internal number of the original digraph, we may assume that D has an out-branching
T .

For |U | < 2k, we have |W | = |V(D) \ U | > 8k2 + 4k and |U′| = |N−(W) ∪ (U × U)| <
2k + 4k2. Then |W | ≥ 2|V(B)|

3 which means we have a crown (H,C = Cm ∪ Cu) of D with
C ⊆ W and Cu , ∅ by Theorem 5.4.5. This is a contradiction to that D is reduced. �

Proceeding from what has been discussed above, we give a polynomial time algorithm
which computes a quadratic order kernel for Directed k-Internal.

KERNELIZATION

1. Build an out-branching T rooted at r by depth-first search.

2. Transform T into a minimal out-branching using 1-change.

3. If the number of leaves of T is at most n − k, return ’YES’.

4. Otherwise Reduce by Rule 1 if possible. If this is not possible, return
the instance (it is irreducible).
Let T be the new out-branching obtained by the construction in the proof
of Lemma 5.4.4.
Transform T into a minimal out-branching using 1-change.
Go to line 3.

Step 1-3 take O(n2m) time by Lemma 5.4.2. At step 4, we can construct the bipartite
graph B in time O(n3), and V(B) and E(B) are bounded by n + 2k + 4k2 = O(n2) and

66

m + 4k2n = O(n3) respectively. Due to Theorem 5.4.5, in O(n5) time we can reduce the
instance by Rule 1 or declare the instance irreducible. Since the size of an instance is
strictly decreased at each step of the reduction, we conclude that the algorithm KERNEL-
IZATION runs in O(n6) time.

5.5 FPT-algorithm for Directed k-Internal

The quadratic kernel in the previous section suggests a trivial fpt-algorithm based on
exhaustive search. In order to achieve a better running time we provide an alternative way
of showing the fixed-parameter tractability of the Directed k-Internal problem based on
the notion of tree decomposition.

Theorem 5.5.1. There is a polynomial time algorithm that, given an instance (D, k) of the

Directed k-Internal problem, either finds a solution or establishes a tree decomposition

of D of width at most 2k − 2.

Proof. By Lemma 5.4.2, there is a polynomial time algorithm which either finds a solution
or specifies a vertex cover C of D of size at most 2k − 2. Let I = {v1, . . . , vs} = V(D) \ C.
Consider a star U with nodes x0, x1, . . . , xs and edges x0x1, x0x2, . . . , x0xs. Let X0 = C

and Xi = X0 ∪ {vi} for i = 1, 2, . . . , s and let X j be the bag corresponding to x j for every
j = 0, 1, . . . , s. Observe that ({X0, X1, . . . , Xs},U) is a tree decomposition of D and its
width is at most 2k − 2. �

Theorem 5.5.1 shows that an instance (D, k) of the Directed k-Internal can be re-
duced to another instance with treewidth O(k). Using standard dynamic programming
techniques we can solve this instance in time 2O(k log k)nO(1) [3, 28].

We can further accelerate the solution procedure using kernelization. If we first find
the kernel and then establish the tree decomposition, the resulting algorithm will run in
time O(2O(k log k) + n6). Now we have the following result.

Theorem 5.5.2. The Directed k-Internal problem can be solved by an additive FPT

algorithm of running time O(2O(k log k) + n6).

5.5.1 Dynamic Programming on Graphs with Bounded Treewidth

In this subsection, we give a description1 of the dynamic programming for MinLeaf on
(directed) graphs of treewidth w of running time O(2O(w log w). We assume that the given

1The standard dynamic programming is used for the maximum leaf problem [3, 28] on graph with
bounded treewidth. Up to the best of the author’s knowledge, however, no description of the dynamic
programming can be found in known literatures. We also acknowledge the early discussion with Paul
Bonsma on this topic.

67

tree decomposition is nice, see the notion in Section 2.1.
In the following exposition, we follow the notion of [22]. Let (X,T) be a nice tree

decomposition of D of width w. We reserve ni to denote the number of elements in the
bag Xi. For a node i ∈ V(T), let Di = (Vi, Ai, Xi) be the subdigraph of D. The vertex set
is Vi =

∪
j∈V(Ti) X j, where Ti be the subtree of T rooted at i, and the arc set Ai contains

all arcs whose both endpoints lie inside Vi. Here are more notions we shall use in our
exposition.

• A solution of MinLeaf is an out-branching in D.

• A partial solution F on Vi is a spanning out-forest on Vi which can be extended to
an out-branching in D.

• An extension F′ on V ′ of a partial solution F on V is a spanning out-forest such
that F′[V] = F, i.e., a spanning out-forest of V ′ from which the deletion of V ′ − V

vertices leads to F. F is said to be a restriction of F′ on V .

• The configuration of a partial solution F on Vi is the information on F we need in
order to decide it can be extended into a solution.
Suppose we’re dealing with Introduce Node i and its descendant j. For MinLeaf,
given a new vertex x < V j, we need to know the followings: (1) in case x is to be
attached to y ∈ V j as a parent, y should be a root in a partial solution F on V j. (2) in
case x is to be attached as a child, any vertex y ∈ V j can be its parent, but we choose
exactly one. (3) in case x is attached as a parent to y (or more such vertices) and as
a child to y′, we need to make sure that y and y′ belong to different components of
f . Indeed we need to know which vertices are leaves in order to keep track of them.
In summary, the information we need about F is, whether F ∈ V j is a root or not,
a leaf or not, and which component it belongs to. It turns out that these are also
sufficient to perform our dynamic programming.

To simplify the description of our dynamic programming algorithm, we will consider
the alternative problem of rooted MinLeaf, in which we want to find an out-branching
with minimum number of leaves rooted at a specified vertex r. Once we prescribe the root
r, it is not difficult to rearrange the given nice tree decomposition (X, T) so that the root
node of T contains r. We assume this without loss of generality. This assumption is useful
due to the following lemma.

Lemma 5.5.3. Let (X,T) be a nice tree decomposition such that r is contained in the bag

of the root node of T . For any out-branching F of D, its restriction F[Vi] on Vi has all the

roots in Xi.

68

Proof. Observe that the restriction F[Vi] is obtained by deleting the vertices in V(D)−Vi.
Since Xi is a cut and its removal from D disconnects D[Vi − Xi] and V(D)−Vi, there is no
incoming arc from V(D) − Vi to Vi − Xi. Now the claim follows. �

For a partial solution Fi on Vi and for each vertex x ∈ Xi, the information we need
are the followings (1) whether or not x is a root in Fi, (2) whether or not x is a leaf, (3)
the root of the component of Fi to which x belongs. By Lemma 5.5.3, the vertex of (3)
always appear in Xi. Therefore, for each bag Xi, the size of the table does not exceed
(2 · 2 · ni)ni ≤ (4w)w. Let f root, f lea f and f comp denote the mappings for (1),(2) and (3)
respectively. That is:

1. f root : Xi → {0, 1}. We set f root(x) = 1 if and only if x is a root in the corresponding
partial solution Fi on Vi.

2. f lea f : Xi → {0, 1}. We set f lea f (x) = 1 if and only if x is a leaf in the corresponding
partial solution Fi on Vi.

3. f comp : Xi → Xi. We set f comp(x) = z if z is the root of the component x belongs to.

We call a vector f ∈ {{0, 1}×{0, 1}×Xi}ni a configuration and the first, second and third
field of f (x) each represents f root(x), f lea f (x) and f comp(x). For a given partial solution F,
a vector f ∈ {{0, 1} × {0, 1} × Xi}ni is said to be the configuration of F, denoted as c(F),
if it satisfies the above three conditions. We may consider a restriction of a configuration
on a subset S and in this case we say c(F) is the configuration of F on S . For two
configurations f ′, f ′′ on disjoint sets S ′, S ′′ respectively, the concatenation of f ′ and f ′′

is denoted f ′ ⊕ f ′′.
For a configuration f , the value ℓ(f) denotes the minimum number of leaves in a par-

tial solution Fi on Vi whose configuration is f . The number #lea f (f) := |{x ∈ Xi : f lea f (x) =
1}| denotes the number of vertices in Xi which are assigned as a leaf in the configuration
f . Notice that it is possible that some configuration f is infeasible in the sense that no
partial solution exists with such a configuration. If f is an infeasible configuration, we set
ℓ(f) := ∞.

Some obvious conditions for feasibility are (a) if f root(x) = 1, then f comp(x) = x, (b) if
f comp(x) = z then f root(z) = 1. Whether f satisfies the conditions (a) and (b) can checked
easily and we assume that the dynamic programming do this as a preprocessing in every
computation of the table as a part of preprocessing. Now we present the detail of the
dynamic programming. Regarding the running time of each step, we hide the polynomial
factor.

Leaf Node

69

For each leaf node i of T , we initialize the table for Xi by enumerating all possible config-
urations and checking the feasibility of each configuration. For each configuration f for
Xi, We set:

ℓ(f) :=

 |(f lea f)−1(1)| if f is feasible
∞ otherwise

In order check the feasibility of a configuration f , we execute a simple procedure. First,
we delete all outgoing from the vertex set (f lea f)−1(1) and all incoming arcs into the vertex
set (f root)−1(1). As the mapping f comp partitions Xi into predeterminate components, we
consider each component and examine whether there is an out-branching with the desired
leaves and the root. Let S (z) = {x ∈ Xi : f comp = z} be the set of vertices in Xi which con-
sists the component rooted at z. With D[S (z)], we perform the polynomial-time algorithm
introduced in Section 5.1 for every acyclic ordering of S (z). If there is an out-branching
F(z) of S (z) for some acyclic ordering with lea f (F(z)) = (f lea f)−1(1) ∩ S (z), and if this is
true for every component S (z) induced by f , then obviously f is a feasible configuration.
Conversely, we can find an out-branching F(z) for each component S (z) for some acyclic
ordering if f is a feasible configuration. We call this procedure FeasibilityCheck. This
procedure will be used to update the table at a join node.

For each configuration f , computing the value ℓ(f) amounts to checking the feasibility
of f . Observe that the running time of FeasibilityCheck is O(w!) ≈ O(2O(w log w)).

Forget Node

Let i be a forget node, j be its child and Xi = X j − {x}. For each configuration fi ∈
{{0, 1} × {0, 1} × Xi}ni , we set

ℓ(fi) := min
all configurations f for X j

{ℓ(f) : fi = f |Xi and f root(x) = 0}.

Put in another way, we consider every configuration f whose restriction on Xi is fi and in
which x is not appointed as a root. By Lemma 5.5.3, no partial solution F with c(F) = f

can be extended into a full partial solution if f root(x) = 0. This is why we only consider f

with f root(x) = 0.
For each fi, comparing with the configurations f in the table X j takes O(n j) time and

the total running time to build the table for Xi is O(ni · (4w)w) ≈ O(ni · 2O(w log w)). It is clear
that ℓ(fi) is finite if and only if f is a feasible configuration, and the value ℓ(f) correctly
represent the number of leaves in a partial solution on Vi with the configuration f .

Introduce Node

70

Let i be an introduce node, j be its child and Xi = X j ∪ {x}. Then for each configuration
fi ∈ {{0, 1} × {0, 1} × Xi}ni , we set the value ℓ(fi) as follows.

If f root
i (x) = 1, we set:

ℓ(fi) :=

 min ℓ(f) + 1 if f lea f
i (x) = 1

min ℓ(f) otherwise

If f root
i (x) = 1 and f comp

i (x) = z for some z ∈ X j, we set:

ℓ(fi) :=

∞ if @y ∈ N−(x) with f comp

i (y) = z

min ℓ(f) + 1 if ∃y ∈ N−(x) with f comp
i (y) = z, f lea f

i (y) = 0
min ℓ(f) if f lea f

i (y) = 1, ∀y ∈ N−(x) with f comp
i (y) = z

Here the minimum is taken over all configurations f such that

f = fi|X j

in case of f lea f
i (x) = 1. In case of f lea f

i (x) = 0, the minimum is taken over all configura-
tions f such that

∀y < Y f (y) = fi(y)

∀y ∈ Y

 f lea f (y) = f lea f
i (y)

f comp(y) ∈ (N+(x) ∩ Y)(∪{z} if f comp
i (x) = z)

where Y = {y ∈ X j : f comp
i (y) = f comp

i (x)}.
Considering the four possible root/leaf configurations of x, it is not difficult to check

that the above assignments are correct and the computation requires O(2O(w log w) time.

Join Node

Let i be a join node, j and k be its children with Xi = X j = Xk. For each configuration
f ∈ {{0, 1} × {0, 1} × Xi}ni , we want to compute the value ℓ(f) using the tables for X j and
Xk. Give a partial solution F on Vi, we observe that

|lea f (F)| = |lea f (F j)| + |lea f (Fk)| − #lea f (c(F j)) − #lea f (c(Fk)) + #lea f (c(F) (5.2)

where F j = F[V j] and Fk = F[Vk]. In other words, the set lea f (Fi) is the disjoint union
of the sets lea f (F) ∩ (V j − Xi), lea f (F) ∩ Xi and lea f (F) ∩ (Vk − Xi).

71

Take a configuration f for Xi. By definition, we have

ℓ(f) :=

 minall partial solutions F with c(F) = f |lea f (F)| if f is feasible
∞ otherwise.

(5.3)

We can evaluate ℓ(f) using the values ℓ(f j), ℓ(fk) in the already processed tables and
avoid the hassle of going over all partial solutions of arbitrary size. For this, we introduce a
notion of f -consistent pair. Let f j and fk be a configuration for X j and Xk each. Roughly
speaking, a pair (f j, fk) is f -consistent if any partial solutions F j and Fk with c(F j) =
f j, c(Fk) = fk can be combined into a partial solution F with c(F) = f , possibly after
adding some arcs in Xi. We defer the definition of f -consistent pair. Once we present
the definition, we will also give the algorithm ConPairs which generates all f -consistent
pairs. The update of the table for Xi is based on the following equation.

ℓ(f) =

minall f -consistent pairs (f j, fk) ℓ(f j) + ℓ(fk) − #lea f (f j) − #lea f (fk) + #lea f (f)

if f is feasible
∞ otherwise.

(5.4)

Let F be a partial solution on Vi. Every vertex of F belongs to exactly one of the three
parts, i.e. V j − Xi, Vk − Xi and Xi. Let Y j = V j − Xi and Yk = Vk − Xi. We say a vertex
x of Xi is a boundary vertex if it is adjacent with a vertex of Y j or Yk, and let B be the
set of all boundary vertices. From F, we obtain a spanning out-forest F′, which we call
the B-trim of F, by deleting all arcs between Xi and B. Notice that they include all arcs
between vertices of B. Here is the definition of f -consistent pair.

• Let F be a partial solution on Vi, F′ be the B-trim of F. We take F j := F′[V j] and
Fk := F′[Vk]. The two configurations f j := c(F j) and fk := c(Fk) are called an
F-consistent pair.

• Given a configuration f for Xi, we say two configurations f j and fk (for X j and Xk

respectively) are an f -consistent pair if it is an F-consistent pair for some a partial
solution F on Vi with c(F) = f .

Notice that by definition, the F-consistent pair for a given partial solution F is uniquely
decided. Also, there exists an f -consistent pair if and only if f is a feasible configuration.
Observe that we can reconstruct the original partial solution F from F′[V j] and F′[Vk],
where F′ is the F-trim of F, by adding the deleted arc set F − F′. In fact, if we replace
F′[V j] and F′[Vk] by different partial solutions with the same configurations, we can ob-
tain a partial solution on Vi by adding the arc set F − F′. Notice that we construe an
out-forest as a set of arcs.

72

Lemma 5.5.4. Let F be a partial solution on Vi, F′ be the B-trim of F, and f j and fk be the

F-consistent pair. Then, for any partial solution F j on V j and Fk on Vk with c(F j) = f j,

c(Fk) = fk, the graph Fi obtained as

F j[Y j ∪ B] ∪ Fk[Yk ∪ B] ∪ (exactly one of F j[Xi − B] and Fk[Xi − B]) ∪ (F − F′)

is a partial solution on Vi whose configuration on Xi is exactly f .

Proof. It is sufficient to check that (a) every vertex x of Vi has exactly on incoming arc
in Fi, (b) Fi is acyclic, and (c) the set of roots in Fi is exactly (f root)−1(1) and the set of
leaves contained Xi, i.e. lea f (Fi) ∩ Xi, is exactly (f lea f)−1(1).

Let F′′ be the subgraph F j[Y j∪B]∪Fk[Yk∪B]∪ (exactly one of F j[Xi−B]), to which
we did not add the set F′−F yet. We shall show that (a), (b) is true for F′′. Then we show
that adding the arc set does not violate (a),(b) and the resulting graph Fi satisfies (c).

For every vertex x ∈ Y j ∪ Yk and x ∈ Xi − B, the condition (a) is obviously true.
Consider a vertex x ∈ B and suppose it has an incoming arc in each of F j[Y j ∪ B] and
Fk[Yk∪B]. It is implied that x has an incoming arc in each of F j and Fk, and thus we have
f root

j (x) = f root
k (x) = 0. Since we define f j := c(F′[V j]) and fk := c(F′[Vk]), this implies

that x has an incoming arc in each of F′[V j] and F′[Vk]. Recalling that there is no arc
between vertices of B, the incoming arcs into x should be distinct in F′[V j] and F′[Vk],
contradiction to the fact that F′ is an out-forest. Therefore, (a) is true for x ∈ B.

To see the condition (b), suppose there exists a directed cycle in F′′. Since there is
no arc between Xi − B and B in F′′, the only possibility that a cycle may occur is in the
graph F j[Y j ∪ B] ∪ Fk[Yk ∪ B]. However, due to the fact that c(F j) = f j = c(F′[V j]) and
c(Fk) = fk = c(F′[Vk]), the existence of a cycle in F j[Y j ∪ B] ∪ Fk[Yk ∪ B] implies the
existence of a cycle in F′[Y j ∪ B] ∪ F′[Yk ∪ B], a contradiction.

Now we consider the graph Fi := F′′∪ (F −F′). Without loss of generality we choose
F j[Xi − B]. Observe that for any arc xy ∈ F − F′, y is a root in F′ and thus f root

j (y) =
f root
k (y) = 1. Therefore the condition (a) is not violated by the addition of F − F′. The

condition (b) is valid as well. Indeed, c(F j) = c(F′[v j]) and c(Fk[Yk ∪ B]) = F′[Yk ∪ B]).
Observing that F′′ = F j ⊎ Fk[Yk ∪ B], F′ = F′[V j]∪ F′[Yk ∪ B] and Fi − F′′ = F − F′, the
existence of a cycle in Fi implies the existence of a cycle in F, which is impossible.

Lastly we look at the condition (c). As F′′ and F′ has the same set of roots and leaves
in Xi, it remains to observe the obvious fact that adding F−F′ to F′ satisfies the condition
(c).

�

Concerning the validity of the assignment (5.4), we have the following lemma.

Lemma 5.5.5. The assignments of (5.4) is correct.

73

Proof. We claim that the right-hand side of (5.4) gives a lower bound on ℓ(f). If f is not
feasible, this is trivially true, hence we assume that f is feasible. Take a partial solution F

with c(F) = f attaining the minimum ℓ(f) in (5.3), and replace |lea f (F)| by the equation
(5.2). Let F′ be the B-trim of F. Since f j := c(F′[V j]) and fk := c(F′[Vk]) is an F-
consistent pair, and thus an f -consistent pair, it follows that the right-hand side of (5.4)
does not exceed ℓ(f).

For the other direction, suppose f j and fk is a f -consistent pair attaining the minimum
in the right-hand side of (5.4). By definition, they form an F-consistent pair for some
partial solution F on Vi and let F′ be the B-trim of F. We take partial solutions F j on V j

and Fk on Vk with c(F j) = f j and c(Fk) = fk, which attains the minimum ℓ(f j) and ℓ(fk)
respectively. Let Fi be a partial solution obtained from F j and Fk in the way described
in Lemma 5.5.4. Then Equation (5.2) means that the right-hand side of (5.4) counts the
number of leaves in a partial solution Fi and bviously ℓ(f) provides a lower bound on this
value. This establishes the equation (5.4). �

The remaining question is how to generate all f -consistent pairs. The observation in
the following lemma is crucial to design the algorithm ConPairs.

Lemma 5.5.6. Let F′ be the B-trim of a partial solution F on Vi. We take Fs := F′[Xi −
B], F∗j := F′[Y j ∪ B] and F∗k := F′[Yk ∪ B] and let fs, f ∗j and f ∗k respectively be the

configurations of Fs on Xi − B, F∗j on B and F∗k on B. Then the F-consistent pair f j, fk is

given by f j = fs ⊕ f ∗j and fk = fs ⊕ f ∗k .

Proof. By definition of F-consistent pair, f j = c(F′[V j]) and fk = c(F′[Vk]). As B-trim
deletes all arcs between B and Xi, we have F′[V j] = Fs ⊎ F∗j and F′[Vk] = Fs ⊎ F∗k , where
⊎ denotes the disjoint union operation. The claim follows. �

With Lemma 5.5.6, the first step to generate f -consistent pair is to guess the boundary
vertex set B, and then guess fs on Xi − B, and f ∗j , f ∗k on B. When we do this, any two
vertices should be assigned to distinct components in these these configurations whenever
they belong to distinct components in f . Moreover, a vertex should be assigned as a root
(respectively, leaf) whenever it is assigned as a root (respectively, leaf) in f .

• Given a configuration f for Xi, we say f ′ is an f -consistent configuration if, for
every vertex x ∈ Xi, (a) f ′root(x) = 1 whenever f root(x) = 1, (b) f ′lea f (x) = 1
whenever f lea f (x) = 1, and for every x, y ∈ Xi (c) f ′comp(x) , f ′comp(y) whenever
f comp(x) , f comp(y).

In addition, f ∗j and f ∗k on B should satisfy (f ∗j)root(x) = 1 or (f ∗k)root(x) = 1 for every x ∈
B since otherwise x has two incoming arcs. Also fs should be feasible w.r.t Xi−B. In other

74

words, the configuration fs should represent a spanning out-branching on Xi − B since fs

represents the components of the B-trim in Xi−B after deleting arcs adjacent with vertices
in B. The feasibility of fs can be checked using the procedure FeasibilityCheck described
in Leaf Node part. Another important condition is that no directed cycle structure is
induced by the triple configurations. To clarify this point, let us introduce an auxiliary
graph P.

We build a pattern graph P using the information of the given (f , B)-distillation triple
(fs, f ∗j , f ∗k). At the beginning, P consists of the vertices Xi, which are independent. For
each of fs, f ∗j , f ∗k , we do the following. For every component in the configuration, we
make a directed path which starts from the root of the component and traversing every
non-leaf vertices of the component. The leaves of the components is attached to the last
vertex of the path.

We summarize the conditions of the triple discussed so far.

• Given a configuration f for Xi, let B be a subset of Xi. The configurations fs on Xi−
B, f ∗j and f ∗k on B is called an (f , B)-distillation triple if they satisfy the followings.

1. Each of them are f -consistent.

2. fs is feasible w.r.t Xi − B.

3. (f ∗j)root(x) = 1 or (f ∗k)root(x) = 1 for every x ∈ B.

4. The pattern graph P does not have a cycle.

It is not difficult to see that if (f j, fk) is an f -consistent pair, then fs := f j|Xi−B, f ∗j := f j|B
and f ∗k := fk|B form an (f , B)-distillation triple. Hence, by examining all (f , B)-distillation
triple for every subset B, we do not miss any f -consistent pair. Not all of them, however,
lead to an f -consistent pair. In order to check whether a given pair f j = fs⊕ f ∗j , fk = fs⊕ f ∗k
is consistent, we add a set R of arcs whose one endpoint belongs to B. More specifically,
we say R is complementary if

1. every arc lies between Xi − B and B,

2. the set of all head vertices in R is exactly the union of (f root
s)−1(1) − (f root)−1(1) and

[(f root
j)−1(1) ∩ (f root

k)−1(1)] − (f root)−1(1) without duplication, and

3. R contains at least one outgoing arc from x for every x ∈ (f lea f
s)−1(1) − (f lea f)−1(1)

and every x ∈ [(f lea f
j)−1(1) ∩ (f lea f

k)−1(1)] − (f lea f)−1(1).

4. R does not induce a directed cycle when added to the pattern graph P.

75

Algorithm 8 Compute the value ℓ(f).
Require: A configuration f for Xi.
Ensure: Output ℓ(f).

1: Initialize ℓ(f) := ∞
2: for all B ⊆ Xi do
3: for all (f , B)-distillation triple (fs, f ∗j , f ∗k) do
4: for all complementary subsets R do
5: f j := fs ⊕ f ∗j and fk := fs ⊕ f ∗k
6: ℓ(f) := min{ℓ(f), ℓ(f j) + ℓ(fk) − #lea f (f j) − #lea f (fk) + #lea f (f)}
7: end for
8: end for
9: end for

10: if no pair was output then return ”NO”

Now we are ready to present the algorithm ConPairs. It is not difficult to check that
the running time of the algorithm is O(2O(w log w)).

The correctness of ConPairs follows from the following lemma.

Lemma 5.5.7. Let f be a configuration for Xi. Then f is feasible if and only if there exists

a subset B ⊆ Xi, an (f , B)-distillation triple and a complementary set R w.r.t to the triple

such that each of f j := fs ⊕ f ∗j and fk := fs ⊕ f ∗k is feasible.

Proof. The sufficiency of the condition is easy to see. For feasible f , there exists a partial
solution F with c(F) = f . Take the boundary vertices as B, construct the triple (fs, f ∗j ,
f ∗k) as explained in Lemma 5.5.6 and let R := F − F′, where F′ is the B-trim. Clearly the
triple is (f , B)-distillation and R is complementary.

For the other direction, we first note that P + R, the graph on Xi obtained by adding R

to P has the configuration f . Since f j and fk are feasible, there are partial solutions F j on
V j and Fk on Vk. Let F be a graph on Vi obtained as

F j[Y j ∪ B] ∪ Fk[Yk ∪ B] ∪ (exactly one of F j[Xi − B] and Fk[Xi − B]) ∪ R.

It remains to observe that F is a partial solution on Vi with c(F) = f . �

5.6 Improved FPT-algorithm for Directed k-Internal

In this section we describe an fpt-algorithm for Directed k-Internal which repeatedly
solves the k-Out-Tree problem introduced in Chapter 4. The basic idea behind the new
algorithm is that we can embed an out-tree with k internal vertices whenever there is an
out-branching with k internal vertices and that we can effectively bound the number of

76

vertices in such an embedded out-tree by a function of k. Now we produce all possi-
ble forms of embedded out-trees of bounded size and check whether the given digraph
contains a fixed out-tree for each of them.

A k-internal out-tree is an out-tree with at least k internal vertices. We call a k-internal
out-tree minimal if none of its proper subtrees is a k-internal out-tree, or minimal k-tree in
short.

Lemma 5.6.1. Let T be a k-internal out-tree. Then T is minimal if and only if |Int(T)| = k

and every leaf u ∈ Leaf(T) is the only child of its parent N−(u).

Proof. Assume that T is minimal. It cannot have more than k internal vertices, because
otherwise by removing any of its leaves, we obtain a subtree of T with at least k internal
vertices. Thus |Int(T)| = k. If there are sibling leaves u and w, then removing one of them
provides a subtree of T with |Int(T)| internal vertices.

Now, assume that |Int(T)| = k and every leaf u ∈ Leaf(T) is the only child of its parent
N−(u). Observe that every subtree of T can be obtained from T by deleting a leaf of T ,
a leaf in the resulting out-tree, etc. However, removing any leaf v from T decreases the
number of internal vertices, and thus creates subtrees with at most k − 1 internal vertices.
Thus, T is minimal. �

By definition a minimal k-tree is also a k-internal out-tree. Due to the following simple
observation, a digraph D has a k-internal out-tree rooted at r if and only if it has a minimal
k-tree rooted at r.

Lemma 5.6.2. Any k-internal out-tree rooted at r contains a minimal k-tree rooted at r as

a subdigraph.

Moreover, combined with Lemma 2.1.1, the next lemma attributed to folklore shows
that in order to see whether there is an out-branching with at least k internal vertices it
suffices to check the existence of a minimal k-tree rooted at r for all r ∈ S . Here S is
the unique strong connectivity component of D without incoming arcs. Recall that by
Lemma 2.1.1 more than one strong component of D without incoming arcs implies there
is no out-branching at all.

Lemma 5.6.3. Suppose a given digraph D has an out-branching rooted at vertex r. Then

any minimal k-tree rooted at r can be extended to a k-internal out-branching rooted at r

in time O(m + n).

So far we have reduced the problem Directed k-Internal into the problem of finding a
minimal k-tree rooted at r. The latter problem is essentially as difficult as the former one,
but fortunately the size of any minimal k-tree is effectively bounded by a small function

77

of k as we shall see. In fact, Lemma 5.6.1 can be used to generate all non-isomorphic
minimal k-trees. First, build an (arbitrary) out-tree T 0 with k vertices. Then extend T 0 by
adding a vertex x′ for each leaf x ∈ Leaf(T 0) with an arc (x, x′). The resulting out-tree T ′

satisfies the properties of Lemma 5.6.1. Conversely, by Lemma 5.6.1, any minimal k-tree
can be constructed in this way. A minimal k-tree has the maximum number of vertices
when T 0 is a star, and this number is 2k − 1.

Generating Minimal k-Tree (GMT) Procedure
a. Generate a k-vertex out-tree T 0 and a set T ′ := T 0.

b. For each leaf x ∈ Leaf(T ′), add a new vertex x′ and an arc (x, x′) to T ′.

Our algorithm for Directed k-Internal on a digraph D runs in two stages. In the first
stage, we generate all minimal k-trees. We use the GMT procedure described above to
achieve this. At the second stage, for each r ∈ S and each minimal k-tree T , we check
whether D contains an out-tree rooted at r and isomorphic to T using the algorithm from
Chapter 4. We return TRUE if and only if we succeed in finding an out-tree H of D rooted
at r ∈ S which is isomorphic to a minimal k-tree.

In the literature, mainly rooted (undirected) trees and not out-trees are studied. How-
ever, every rooted tree can be made an out-tree by orienting every edge away from the
root and every out-tree can be made a rooted tree by disregarding all orientations. Thus,
rooted trees and out-trees are equivalent and we can use results obtained for rooted trees
for out-trees.

Otter [100] showed that the number of non-isomorphic out-trees on k vertices is
tk = O∗(2.95k). We can generate all non-isomorphic rooted trees on k vertices using the
algorithm of Beyer and Hedetniemi [17] of runtime O(tk). Using the GMT procedure we
generate all minimal k-trees. We see that the first stage of the algorithm can be completed
in time O∗(2.95k).

In the second stage, we try to find a copy of a minimal k-tree T in D using the deter-
ministic algorithm for k-Out-Tree from Chapter 4. The running time of this subroutine is
O∗(6.14k). Since the number of vertices of T is bounded from above by 2k− 1, the overall
running time for the second stage of the algorithm is O∗(2.95k ·6.142k−1). Thus, the overall
time complexity of the algorithm is O∗(2.95k · 6.142k−1) = O∗(112k).

We can reduce the complexity with a more refined analysis of the algorithm. The
major contribution to the large constant 112 in the above simple analysis comes from
the running time of the iterative subroutines executed to find an isomorphic copy of a
minimal k-tree. There we use the upper bound on the number of vertices in a minimal
k-tree. However, most of the minimal k-trees have less than k − 1 leaves, which implies
that the upper bound 2k − 1 on the order of a minimal k-tree is too big for the majority of

78

the minimal k-trees. Let T (k) be the running time. Then we have

T (k) = O∗
 ∑

k+1≤k′≤2k−1

(# of minimal k-trees on k′ vertices) × (6.14k′)

 (5.5)

A minimal k-tree T ′ on k′ vertices has k′ − k leaves, and thus the out-tree T 0 from
which T ′ is constructed has k vertices of which k′ − k are leaves. Hence the number of
minimal k-trees on k′ vertices is the same as the number of non-isomorphic out-trees on
k vertices with k′ − k leaves. Here an interesting counting problem arises. Let g(k, l) be
the number of non-isomorphic out-trees on k vertices with l leaves. Enumerate g(k, l). To
our knowledge, such a function has not been studied yet. Leaving it as a challenging open
question, here we give an upper bound on g(k, l) and use it for a better analysis of T (k).
In particular we are interested in the case when l ≥ k/2.

Consider an out-tree T 0 on k ≥ 3 vertices which has αk internal vertices and (1 − α)k
leaves. We want to obtain an upper bound on the number of such non-isomorphic out-
trees T 0. Let T c be the subtree of T 0 obtained after deleting all its leaves and suppose that
T c has βk leaves. Assume that α ≤ 1/2 and notice that αk and βk are integers. Clearly
β < α.

Each out-tree T 0 with (1 − α)k leaves can be obtained by appending (1 − α)k leaves
to T c so that each of the vertices in Leaf(T c) has at least one leaf appended to it. Imagine
that we have βk = |Leaf(T c)| and αk − βk = |Int(T c)| distinct boxes. Then what we are
looking for is the number of ways to put (1 − α)k balls into the boxes so that each of the
first βk boxes is nonempty. Again this is equivalent to putting (1 − α − β)k balls into αk

distinct boxes. It is an easy exercise to see that this number equals
(

k−βk−1
αk−1

)
.

Note that the above number does not give the exact value for the non-isomorphic out-
trees on k vertices with (1−α)k leaves. This is because we treat an out-tree T c as a labeled
one, which may lead to us to distinguishing two assignments of balls even though the two
corresponding out-trees T 0’s are isomorphic to each other.

A minimal k-tree obtained from T 0 has (1 − α)k leaves and thus (2 − α)k vertices.
With the upper bound O∗(2.95αk) on the number of T c’s by [100], by (7.2) we have the

79

following:

T (k) = O∗
 ∑
α≤1/2

∑
β<α

2.95αk

(
k − βk − 1
αk − 1

)
(6.14)(2−α)k

 + O∗
 ∑
α>1/2

2.95αk(6.14)(2−α)k

≤ O∗

 ∑
α≤1/2

∑
β<α

2.95αk

(
k
αk

)
(6.14)(2−α)k

 + O∗
(
2.95k(6.14)3k/2

)
≃ O∗

 ∑
α≤1/2

(
2.95α

1
αα(1 − α)1−α (6.14)(2−α)

)k
 + O∗(44.9k)

The term in the sum over α ≤ 1/2 above is maximized when α = 2.95
2.95+6.14 , which yields

T (k) = O∗(55.8k). Thus, we conclude with the following theorem.

Theorem 5.6.4. The problem Directed k-Internal is solvable in time O∗(55.8k).

80

Part II

CSPs Parameterized Above Tight
Lower Bounds

81

Chapter 6

Strictly Above/Below Expectation
Method

In this chapter we introduce a probabilistic approach for kernelization called the Strictly

Above/Below Expectation method, SABEM in short. Combining simple probabilistic ar-
guments, this method turns out to be a powerful tool to prove fixed-parameter tractability
of maximization (minimization, respectively) problems parameterized above (or below,
respectively) tight lower (upper, respectively) bounds.

Let us briefly sketch how SABEM works for optimization problems parameterized
above/below their tight bounds. Typically, we first apply some reduction rules to reduce
the given problem Π to its special case Π′. Then we introduce a random variable X such
that the answer to Π′ is Yes if and only if X takes with positive probability a value greater
or equal to the parameter κ. Choosing such a random variable is not always feasible, the
Betweenness as an example. In that case, we introduce X with a weaker property.

Suppose we have a random variable X with the desired property. Under reasonable
assumptions, we can show that with positive probability X takes a value large enough,
say larger than

√
E(X2). The remaining task is to exhibit a lower bound on E(X2) in

terms of the given instance size m. If E(X2) ≥ m, it is implied that X takes a value larger
than m with positive probability. Then we can conclude that if the given instance size is
sufficiently large in comparison to k the instance is yes, and thus the size of no-instances
is bounded by a function of k. In many cases, we obtain problem kernels of polynomial
size.

Although the scheme of SABEM is simple, yet its application to concrete problems
are not straightforward. For one thing, one needs to figure out a proper set of data re-
duction rules to reduce the given problem. Introducing an appropriate random variable
X is nontrivial as well since X itself carries a lot of information on the structure of the
problem as we shall see later. Another difficulty lies in the computation of E(X2) or its

82

lower bound.
In the subsequent sections, we introduce some probabilistic inequalities that are used

for SABEM and present some kernelization results obtained via SABEM. The list of
problems we tackle include (1) Linear Ordering, (2) Three special cases of Max-Lin2,
(3) Betweenness, (4) Max-r-SAT and (5) (general) Boolean CSPs.

In this chapter all random variables are real. A random variable is discrete if its distri-
bution function has a finite or countable number of positive increases. P(·) and E[·] denote
probability and expectation, respectively.

6.1 Probabilistic Inequalities

A random variable X is symmetric if −X has the same distribution function as X. If X is
discrete, then X is symmetric if and only if P(X = a) = P(X = −a) for each real a. Let X

be a symmetric variable for which the first moment E(X) exists. Then E(X) = E(−X) =
−E(X) and, thus, E(X) = 0.

If X happens to be a symmetric random variable then the following simple inequality
can be useful [106].

Lemma 6.1.1. If X is a symmetric random variable and E(X2) is finite, then

P(X ≥
√
E(X2)) > 0.

If X is not symmetric then the following lemma can be used instead.

Lemma 6.1.2. Let X be a real random variable and suppose that its first, second and

fourth moments satisfy E[X] = 0, E[X2] = σ2 > 0 and E[X4] ≤ cσ4, respectively, for

some constant c. Then P(X > σ
2
√

c) > 0.

Showing that a random variable X meets the conditions of Lemma 6.1.2 involves com-
puting the first, second and fourth moments of X. As the computation of higher moments
get trickier, the following result from harmonic analysis is very useful.

Lemma 6.1.3 (Hypercontractive Inequality [25, 64]). Let f = f (x1, . . . , xn) be a poly-

nomial of degree r in n variables x1, . . . , xn each with domain {−1, 1}. Define a random

variable X by choosing a vector (ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting

X = f (ε1, . . . , εn). Then E[X4] ≤ 9rE[X2]2.

If f = f (x1, . . . , xn) is a polynomial in n variables x1, . . . , xn each with domain {−1, 1},
then it can be written as f =

∑
S⊆[n] cS

∏
i∈S xi, where [n] = {1, . . . , n} and cS is a real for

each S ⊆ [n]. The following dual, in a sense, form of the Hypercontractive Inequality is
proved in Section 6.3 (see an explanation after Lemma 6.3.3).

83

Theorem 6.1.4. Let f = f (x1, . . . , xn) be a polynomial in n variables x1, . . . , xn each with

domain {−1, 1} such that f =
∑

S⊆[n] cS
∏

i∈S xi. Suppose that no variable xi appears in

more than ρ ≥ 2 monomials of f . Define a random variable X by choosing a vector

(ε1, . . . , εn) ∈ {−1, 1}n uniformly at random and setting X = f (ε1, . . . , εn). Then E[X4] ≤
2ρ2E[X2]2.

6.2 Linear Ordering

Let D = (V, A) be a digraph with no loops or parallel arcs in which every arc i j has a
positive weight wi j. The problem of finding an acyclic subdigraph of D of maximum
weight is known as Linear Ordering. Let n = |V | and consider a bijection α : V →
{1, . . . , n}. Observe that the subdigraphs (V, { i j ∈ A : α(i) < α(j) }) and (V, { i j ∈ A : α(i) >
α(j) }) are acyclic. Since the two subdigraphs contain all arcs of D, at least one of them
has weight at least W/2, where W =

∑
i j∈A wi j, the weight of D. Thus, W/2 is a lower

bound on the maximum weight of an acyclic subdigraph of D. Consider a digraph D

where for every arc i j of D there is also an arc ji of the same weight. Each maximum
weight subdigraph of D has weight exactly W/2. Hence the lower bound W/2 is tight.

We consider the following parameterized version of Linear Ordering.

Linear Ordering Above Tight Lower Bound (Linear Orderingtlb for short)

Instance: A digraph D = (V, A), each arc i j has an integral positive weight
wi j, and a positive integer k.

Parameter: The integer k.

Question: Is there an acyclic subdigraph of D of weight at least W/2 + k,
where W =

∑
i j∈A wi j ?

In this section we will show that Linear Orderingtlb admits a kernel with O(k2) arcs;
consequently the problem is fixed-parameter tractable. Note that if we allow weights to
be positive reals, then we can show, similarly to the NP-completeness proof given in the
next section, that Linear Orderingtlb is NP-complete already for k = 1.

Data Reduction Rules

Consider the following reduction rule:

Reduction Rule 2. Assume D has a directed 2-cycle i ji; if wi j = w ji delete both arcs, if

wi j > w ji delete the arc ji and replace wi j by wi j − w ji, and if w ji > wi j delete the arc i j

and replace w ji by w ji − wi j.

84

It is easy to check that the answer to Linear Orderingtlb for a digraph D is yes if and
only if the answer to Linear Orderingtlb is yes for a digraph obtained from D using the
reduction rule as long as possible. Note that applying Rule 2 as long as possible results in
an oriented graph.

Kernelization

Let D = (V, A) be an oriented graph, let n = |V | and W =
∑

i j∈A wi j. Consider a
random bijection: α : V → {1, . . . , n} and a random variable X(α) = 1

2

∑
i j∈A εi j(α),

where εi j(α) = wi j if α(i) < α(j) and εi j(α) = −wi j, otherwise. It is easy to see that
X(α) =

∑{wi j : i j ∈ A, α(i) < α(j) } −W/2. Thus, the answer to Linear Orderingtlb is yes
if and only if there is a bijection α : V → {1, . . . , n} such that X(α) ≥ k. Since E(εi j) = 0,
we have E(X) = 0.

Let W (2) =
∑

i j∈A w2
i j. We will prove the following:

Lemma 6.2.1. E(X2) ≥ W (2)/12.

Proof. Let N+(i) and N−(i) denote the sets of out-neighbors and in-neighbors of a vertex
i in D. By the definition of X,

4 · E(X2) =
∑
i j∈A

E(ε2
i j) +

∑
i j,pq∈A

E(εi jεpq), (6.1)

where the second sum is taken over ordered pairs of distinct arcs. Clearly,
∑

i j∈A E(ε2
i j) =

W (2). To compute
∑

i j,pq∈A E(εi jεpq) we consider the following cases:

Case 1: {i, j}∩{p, q} = ∅. Then εi j and εpq are independent and E(εi jεpq) = E(εi j)E(εpq) =
0.

Case 2a: |{i, j} ∩ {p, q}| = 1 and i = p. Since the probability that i < min{ j, q} or i >

max{ j, q} is 2/3, εi jεiq = wi jwiq with probability 2
3 and εi jεiq = −wi jwiq with probability

1
3 . Thus, for every i ∈ V we have

∑
i j,iq∈A E(εi jεiq) = 1

3

∑{wi jwiq : j , q ∈ N+(i) } =
1
3 (

∑
j∈N+(i) wi j)2 − 1

3

∑
j∈N+(i) w2

i j.

Case 2b: |{i, j}∩{p, q}| = 1 and j = q. Similarly to Case 2a, we obtain
∑

i j,p j∈A E(εi jεp j) =
1
3 (

∑
i∈N−(j) wi j)2 − 1

3

∑
i∈N−(j) w2

i j.

Case 3a: |{i, j} ∩ {p, q}| = 1 and i = q. Since εi jεpi = wi jwpi with probability 1
3 and

εi jεpi = −wi jwpi with probability 2
3 , we obtain

∑
i j,pi∈A E(εi jεpi) = −1

3

∑{wi jwpi : j ∈
N+(i), p ∈ N−(i) } = − 1

3

∑
j∈N+(i) wi j

∑
p∈N−(i) wpi.

85

Case 3b: |{i, j}∩{p, q}| = 1 and j = p. Similarly to Case 3a, we obtain
∑

i j, jq∈A E(εi jε jq) =
− 1

3

∑
i∈N−(j) wi j

∑
q∈N+(j) w jq.

Equation (6.1) and the subsequent computations imply that 4 ·E(X2) = W (2)+ 1
3 (Q−R),

where

Q =
∑
i∈V

(∑
j∈N+(i)

wi j
)2 −

∑
j∈N+(i)

w2
i j +

(∑
j∈N−(i)

w ji
)2 −

∑
j∈N−(i)

w2
ji

 ,
and

R = 2 ·
∑
i∈V

(∑
j∈N+(i)

wi j
)(∑

j∈N−(i)

w ji
)
.

By the inequality of arithmetic and geometric means, for each i ∈ V , we have

(∑
j∈N+(i)

wi j
)2
+

(∑
j∈N−(i)

w ji
)2 − 2

(∑
j∈N+(i)

wi j
)(∑

j∈N−(i)

w ji
) ≥ 0.

Therefore,
Q − R ≥ −

∑
i∈V

∑
j∈N+(i)

w2
i j −

∑
i∈V

∑
j∈N−(i)

w2
ji = −2W (2),

and 4 · E(X2) ≥ W (2) − 2W (2)/3 = W (2)/3, implying E(X2) ≥ W (2)/12. �

Now we can prove the main result of this section.

Theorem 6.2.2. The problem Linear Orderingtlb admits a kernel with O(k2) arcs.

Proof. Let H be a digraph. We know that the answer to Linear Orderingtlb for H is yes
if and only if the answer to Linear Orderingtlb is yes for a digraph D obtained from H

using Reduction Rule 2 as long as possible. Observe that D is an oriented graph. Let
B be the set of bijections from V to {1, . . . , n}. Observe that f : B → B such that
f (α(v)) = |V |+ 1−α(v) for each α ∈ B is a bijection. Note that X(f (α)) = −X(α) for each
α ∈ B. Therefore, P(X = a) = P(X = −a) for each real a and, thus, X is symmetric. Thus,
by Lemmas 6.1.1 and 6.2.1, we have P(X ≥

√
W (2)/12) > 0. Hence, if

√
W (2)/12 ≥ k,

there is a bijection α : V → {1, . . . , n} such that X(α) ≥ k and, thus, the answer to
Linear Orderingtlb (for both D and H) is yes. Otherwise, |A| ≤ W (2) < 12 · k2. �

We close this section by outlining how Theorem 6.2.2 can be used to actually find a solu-
tion to Linear Orderingtlb if one exists. Let (D, k) be an instance of Linear Orderingtlb
where D = (V, A) is a directed graph with integral positive arc-weights and k ≥ 1 is an
integer. Let W be the total weight of D. As discussed above, we may assume that D is an
oriented graph. If |A| < 12k2 then we can find a solution, if one exists, by trying all subsets
A′ ⊆ A, and testing whether (V, A′) is acyclic and has weight at least W/2 + k; this search

86

can be carried out in time 2O(k2). Next we assume |A| ≥ 12k2. We know by Theorem 6.2.2
that (D, k) is a yes-instance; it remains to find a solution.

For a vertex i ∈ V let dD(i) denote its unweighted degree in D, i.e., the number of arcs
(incoming or outgoing) that are incident with i. Consider the following reduction rule:

Reduction Rule 3. If there is a vertex i ∈ V with |A| − 12k2 ≥ dD(i), then delete i from D.

Observe that by applying the rule we obtain again a yes-instance (D − i, k) of Linear
Orderingtlb since D − i has still at least 12k2 arcs. Moreover, if we know a solution D′i of
(D− i, k), then we can efficiently obtain a solution D′ of (D, k): if

∑
j∈N+(i) wi j ≥

∑
j∈N−(i) wi j

then we add i and all outgoing arcs i j ∈ A to D′i ; otherwise, we add i and all incoming arcs
ji ∈ A to D′i . After multiple applications of Rule 3 we are left with an instance (D0, k) to
which Rule 3 cannot be applied. Let D0 = (V0, A0). We pick a vertex i ∈ V0 arbitrarily. If
i has a neighbor j with dD0(j) = 1, then |A0| ≤ 12k2, since |A0| − dD0(j) < 12k2. On the
other hand, if dD0(j) ≥ 2 for all neighbors j of i, then i has less than 2 · 12k2 neighbors,
since D0 − i has less than 12k2 arcs; thus |A0| < 3 · 12k2. Therefore, as above, time 2O(k2) is
sufficient to try all subsets A′0 ⊆ A0 to find a solution to the instance (D0, k). Let n denote
the input size of instance (D, k). Rule 3 can certainly be applied in polynomial time nO(1),
and we apply it less than n times. Hence, we can find a solution to (D, k), if one exists, in
time nO(1) + 2O(k2).

Recall that a kernelization reduces in polynomial time an instance (I, k) of a parame-
terized problem to a decision-equivalent instance (I′, k′), its problem kernel, where k′ ≤ k

and the size of I′ is bounded by a function of k. Solutions for (I, k) and solutions for
(I′, k′) are possibly unrelated to each other. We call (I′, k′) a faithful problem kernel if
from a solution for (I′, k′) we can construct a solution for (I, k) in time polynomial in |I|
and k. Clearly the above (D0, k) is a faithful kernel.

6.3 Max-Lin2

Consider a system of m linear equations e1, . . . , em in n variables z1, . . . , zn over GF(2),
and suppose that each equation e j has a positive integral weight w j, j = 1, . . . ,m. The
problem Max-Lin2 asks for an assignment of values to the variables that maximizes the
total weight of the satisfied equations. Let W = w1 + · · · + wm.

To see that the total weight of the equations that can be satisfied is at least W/2, we
merely observe that a uniform random assignment of values to the variables will satisfy
any equation with probability .5. Thus there exists an assignment of values such that the
total weight of satisfied equations is at least W/2. To see that the lower bound W/2 is tight,
consider a system consisting of pairs of equations of the form

∑
i∈I zi = 1 and

∑
i∈I zi = 0

where both equations have the same weight.

87

The uniform random assignment procedure can be derandomized via conditional ex-
pectation as is described in [74]. We assign values to the variables z1, . . . , zn one by one
and simplify the system after each assignment. When we wish to assign 0 or 1 to zi, we
consider all equations reduced to the form zi = b, for a constant b. Let W ′ be the total
weight of all such equations. We set zi := 0, if the total weight of such equations is at
least W ′/2, and set zi := 1, otherwise. If there are no equations of the form zi = b, we set
zi := 0.

Henceforth, we consider the following parameterized version of Max-Lin2.

Max-Lin2 Parameterized Above Tight Lower Bound (Max-Lin2tlb for short)

Instance: A system S of m linear equations e1, . . . , em in n variables z1, . . . , zn

over GF(2), each equation ei with a positive integral weight wi, i = 1, 2, . . . ,m,
and a positive integer k. Each equation e j can be written as

∑
i∈I j

zi = b j, where
∅ , I j ⊆ {1, . . . , n}.

Parameter: The integer k.

Question: Is there an assignment of values to the variables z1, . . . , zn such
that the total weight of the satisfied equations is at least W/2 + k, where W =∑m

i=1 wi?

Let r j be the number of variables in equation e j, and let r(S) = maxm
i=1 r j. We are not able

to determine whether Max-Lin2tlb is fixed-parameter tractable or not, but we can prove
that the following three special cases are fixed-parameter tractable:

1. there is a set U of variables such that each equation contains an odd number of
variables from U

2. there is a constant r such that r(S) ≤ r

3. there is a constant ρ such that any variable appears in at most ρ equations

Notice that in our formulation of Max-Lin2tlb it is required that each equation has a
positive integral weight. In a relaxed setting in which an equation may have any positive
rational number as its weight, the problem is NP-complete even for k = 1 and each r j = 2.
Indeed, let each linear equation be of the form zu + zv = 1. Then the problem is equivalent
to MaxCut, the problem of finding a cut of total weight at least L in an undirected graph
G, where V(G) is the set of variables, E(G) contains (zu, zv) if and only if there is a linear
equation zu + zv = 1, and the weight of an edge (zu, zv) equals the weight of the corre-
sponding linear equation. The problem MaxCut is a well-known NP-complete problem.

88

Let us transform an instance I of MaxCut into an instance I′ of the “relaxed” Max-Lin2tlb
by replacing the weight wi by w′i := wi/(L − W/2). We may assume that L − W/2 > 0
since otherwise the instance is immediately seen as a yes-instance. Observe that the new
instance I′ has an assignment of values with total weight at least W ′/2 + 1 if and only if I

has a cut with total weight at least L. We are done.

Data Reduction Rules

Let A be the matrix of the coefficients of the variables in S . It is well-known that
the maximum number of linearly independent columns of A equals rankA, and such a
collection of columns can be found in time polynomial in n and m, using, e.g., the Gaus-
sian elimination on columns [21]. We have the following reduction rule and supporting
lemma.

Reduction Rule 4. Let A be the matrix of the coefficients of the variables in S , let t =

rankA and let columns ai1 , . . . , ait of A be linearly independent. Then set all variables not

in {zi1 , . . . , zit} to 0 and simplify the equations of S .

Lemma 6.3.1. Let T be obtained from S by Rule 4. Then T is a yes-instance if and only

if S is a yes-instance. Moreover, T can be obtained from S in time polynomial in n and

m.

Proof. If t = n, set T := S , so assume that t < n. The remark before the lemma immedi-
ately implies that T can be obtained from S in time polynomial in n and m. Let S ′ be a
system of equations from S and let T ′ be the corresponding system of equations from T .
It is sufficient to prove the following claim:

There is an assignment of values to z1, . . . , zn satisfying all equations in S ′ and falsi-

fying the rest of equations in S if and only if there is an assignment of values to zi1 , . . . , zit

satisfying all equations in T ′ and falsifying the rest of equations in T .

Let an assignment z0 of values to z = (z1, . . . , zn) satisfy all equations of S ′ and falsify
the equations of S ′′, where S ′′ = S \ S ′. This assignment satisfies all equations of R, the
system obtained from S by replacing the right hand side b j of each equation in S ′′ by
1 − b j. Note that R has the same matrix A of coefficients with columns a1, . . . , an. Let a
column ai < {ai1 , . . . , ait}. Then, by definition of ai1 , . . . , ait , ai = λ1ai1 + · · ·+λtait for some
numbers λ j ∈ {0, 1}. Knowing the numbers λ j, we may eliminate a variable zi from R by
replacing ai with the sum of all columns from {ai1 , . . . , ait} for which λ j = 1 and carrying
out the obvious simplification of the system. Thus, we may eliminate from R all variables
zi < {zi1 , . . . , zit} and get yi1a

i1 + · · · + yita
it = b′, where b′ is the right hand side of R and

each y j ∈ {0, 1}. Now replace, in the modified R, the right hand side b′j of each equation
corresponding to an equation in S ′′ by 1 − b′j obtaining T . Clearly, (yi1 , . . . , yit) satisfies
all equations of T ′ and falsifies all equations in T ′′ = T \ T ′.

89

Suppose now that (yi1 , . . . , yit) satisfies all equations of T ′ and falsifies all equations
in T ′′. Then (y1, . . . , yn), where y j = 0 if j < {i1, . . . , it}, satisfies all equations of S ′ and
falsifies all equations in S ′′. Thus, the claim has been proved. �

Consider the following reduction rule for Max-Lin2tlb.

Reduction Rule 5. If we have, for a subset I of {1, 2, . . . , n}, the equation
∑

i∈I zi = b′ with

weight w′, and the equation
∑

i∈I zi = b′′ with weight w′′, then we replace this pair by one

of these equations with weight w′ + w′′ if b′ = b′′ and, otherwise, by the equation whose

weight is bigger, modifying its new weight to be the difference of the two old ones. If the

resulting weight is 0, we omit the equation from the system.

If Rule 5 is not applicable to a system we call the system reduced under Rule 5. Note
that the problem Max-Lin2tlb for S and the system obtained from S by applying Rule 5
as long as possible have the same answer.

Kernelization

Let I j ⊆ {1, . . . , n} be the set of indices of the variables participating in equation e j,
and let b j ∈ {0, 1} be the right hand side of e j. Define a random variable X =

∑m
j=1 X j,

where X j = (−1)b jw j
∏

i∈I j
εi and all the εi are independent uniform random variables on

{−1, 1} (X was first introduced in [74]). We set zi = 0 if εi = 1 and zi = 1, otherwise, for
each i. In other words, εi = (−1)zi . Then zi are independent uniform random variables on
{0, 1} and observe that X j = w j if e j is satisfied and X j = −w j, otherwise. Note that the
relation εi = (−1)zi is well-known for Fourier expansions of pseudo-boolean functions,
i.e., functions f : {−1,+1}n → R, see, e.g., [97, 44].

Lemma 6.3.2. Let S be reduced under Rule 5. The weight of the satisfied equations is at

least W/2 + k if and only if X ≥ 2k. We have E(X) = 0 and E(X2) =
∑m

j=1 w2
j .

Proof. Observe that X is the difference between the weights of satisfied and falsified equa-
tions. Therefore, the weight of the satisfied equations equals (X +W)/2, and it is at least
W/2 + k if and only if X ≥ 2k. Since εi are independent, E(

∏
i∈I j
εi) =

∏
i∈I j
E(εi) = 0.

Thus, E(X j) = 0 and E(X) = 0 by linearity of expectation. Moreover,

E(X2) =
m∑

j=1

E(X2
j) +

∑
1≤ j,q≤m

E(X jXq) =
m∑

j=1

w2
j > 0

as E(
∏

i∈I j
εi ·

∏
i∈Iq
εi) = E(

∏
i∈I j∆Iq

εi) = 0 implies E(X jXq) = 0, where I j∆Iq is the
symmetric difference between I j and Iq (I j∆Iq , ∅ due to Rule 5). �

Lemma 6.3.3. Let S be reduced under Rule 5 and suppose that no variable appears in

more than ρ ≥ 2 equations of S . Then E(X4) ≤ 2ρ2(E(X2))2.

90

Proof. Observe that
E(X4) =

∑
(p,q,s,t)∈[m]4

E(XpXqXsXt), (6.2)

where [m] = {1, . . . ,m}. Note that if the product XpXqXsXt contains a variable εi in only
one or three of the factors, then E(XpXqXsXt) = A · E(εi) = 0, where A is a polynomial
in random variables εl, l ∈ {1, . . . , n} \ {i}. Thus, the only nonzero terms in (6.2) are those
for which either (1) p = q = s = t, or (2) there are two distinct integers j, l such that each
of them coincides with two elements in the sequence p, q, s, t, or (3) |{p, q, s, t}| = 4, but
each variable εi appears in an even number of the factors in XpXqXsXt. In Cases 1 and 2,
we have E(XpXqXsXt) = w4

p and E(XpXqXsXt) = w2
jw

2
l , respectively. In Case 3,

E(XpXqXsXt) ≤ wpwqwswt ≤ (w2
pw2

q + w2
sw

2
t)/2.

Let 1 ≤ j < l ≤ m. Observe that E(XpXqXsXt) = w2
jw

2
l in Case 2 for

(
4
2

)
= 6 4-tuples

(p, q, s, t) ∈ [m]4. In Case 3, we claim that j, l ∈ {p, q, s, t} for at most 4 · (ρ − 1)2 4-tuples
(p, q, s, t) ∈ [m]4. To see this, first note that w2

pw2
q and w2

sw
2
t appear in our upper bound on

E(XpXqXsXt) (with coefficient 1/2). Therefore, there are only four possible ways for w2
jw

2
l

to appear in our upper bound, namely the following: (i) j = p, l = q, (ii) l = p, j = q, (iii)
j = s, l = t, and (iv) l = s, j = t. Now assume, without loss of generality, that j = p and
l = q. Since S is reduced under Rule 5, the product X jXl must have a variable εi of degree
one. Thus, εi must be in Xs or Xt, but not in both (two choices). Assume that εi is in Xs.
Observe that there are at most ρ − 1 choices for s. Note that X jXlXs must contain contain
a variable εi′ of odd degree. Thus, εi′ must be in Xt and, hence, there are at most ρ − 1
choices for t.

Therefore, we have

E(X4) ≤
m∑

j=1

w4
j + (6 + 4(ρ − 1)2)

∑
1≤ j<l≤m

w2
jw

2
l < 2ρ2

 m∑
j=1

w2
j

2

.

Thus, by Lemma 6.3.2, E(X4) ≤ 2ρ2(E(X2))2. �

Observe that Lemma 6.3.3 and the relation εi = (−1)zi , described before Lemma
6.3.2 between weighted systems of linear equations on GF(2) and n-variate polynomi-
als with domain {−1, 1}n, imply immediately Theorem 6.1.4 (essentially Theorem 6.1.4
and Lemma 6.3.3 are equivalent via the relation).

Now we can prove the following:

Theorem 6.3.4. Let S be reduced under Rule 5. The following three special cases of

Max-Lin2tlb are fixed-parameter tractable: (1) there is a set U of variables such that

91

each equation contains an odd number of variables from U, (2) there is a constant r such

that r(S) ≤ r, (3) there is a constant ρ, such that any variable appears in at most ρ

equations. In each case, there exists a kernel with O(k2) equations and variables.

Proof. Case 1. Due to the relation εi = (−1)zi we may consider X as a random variable
depending on random variables z1, . . . , zn. Let z0 = (z0

1, . . . , z
0
n) ∈ {0, 1}n be an assignment

of values to the variables z1, . . . , zn, and let −z0 = (z′1, . . . , z
′
n), where z′i = 1 − z0

i if zi ∈ U

and z′i = z0
i , otherwise, i = 1, . . . , n. Observe that f : z0 7→ −z0 is a bijection on the set of

assignments and X(−z0) = −X(z0). Thus, X is a symmetric random variable. Therefore,
by Lemmas 6.1.1 and 6.3.2, P(X ≥

√
m) ≥ P(X ≥

√∑m
j=1 w2

j) > 0. Hence, if
√

m ≥ 2k,
the answer to Max-Lin2tlb is yes. Otherwise, m < 4k2 and after applying Rule 4, we
obtain a kernel with O(k2) equations and variables.

Case 2. Since X is a polynomial of degree at most r, it follows by Lemma 6.1.3 that
E(X4) ≤ 9rE(X2)2. This inequality and Lemma 6.3.2 show that the conditions of Lemma
6.1.2 are satisfied and, thus,

P

X >

√∑m
j=1 w2

j

2 · 3r

 > 0, implying P

(
X >

√
m

2 · 3r

)
> 0.

Consequently, if 2k − 1 ≤
√

m/(2 · 3r), then there is an assignment of values to the
variables z1, . . . , zn which satisfies equations of total weight at least W/2 + k. Otherwise,
2k − 1 >

√
m/(2 · 3r) and m < 4(2k − 1)29r. After applying Rule 4, we obtain the required

kernel.

Case 3. If ρ = 1, it is easy to find an assignment to the variables that satisfies all equations
of S . Thus, we may assume that ρ ≥ 2. To prove that there exists a kernel with O(k2)
equations, we can proceed as in Case 2, but use Lemma 6.3.3 rather than Lemma 6.1.3.

�

Case 1 of Theorem 6.3.4 is of interest since its condition can be checked in polynomial
time due to the following:

Proposition 6.3.5. We can check, in polynomial time, whether there exists a set U of

variables such that each equation of S contains an odd number of variables from U.

Proof. Observe that such a set U exists if and only if the unweighted system S ′ of linear
equations over GF(2) obtained from S by replacing each b j with 1 has a solution. Indeed,
if U exists, set z j = 1 for each z j ∈ U and z j = 0 for each z j < U. This assignment
is a solution to S ′. If a solution to S ′ exists, form U by including in it all variables z j

92

which equal 1 in the solution. We can check whether S ′ has a solution using the Gaussian
elimination or other polynomial-time algorithms, see, e.g., [37]. �

Remark 1. Note that even if S does not satisfy Case 2 of the theorem, T , the system
obtained from S using Rule 4, may still satisfy Case 2. However, we have not formulated
the theorem for S reduced under Rule 4 as the reduced system depends on the choice of a
maximum linear independent collection of columns of A.

6.4 Betweenness

We study the one-dimensional ordinal embedding of partial orders that specify the maxi-
mum edge for some triangles. This problem has been studied under the name of Between-
ness, which takes a set V of variables and a set C of betweenness constraints of the form
“vi is between v j and vk” for distinct variables vi, v j, vk ∈ V . Such a constraint will be writ-
ten as (vi, {v j, vk}). The objective is to find a bijection α from V to the set {1, . . . , |V |} that
“satisfies” the maximum number of constraints from C, where a constraint (vi, {v j, vk}) is
satisfied by α if either α(v j) < α(vi) < α(vk) or α(vk) < α(vi) < α(v j) holds. We also refer
to α as a linear arrangement of V .

Notice that a uniformly random permutation of the variables in V satisfies one-third of
the constraints in expectation and thus |C|/3 is a lower bound on any optimal solution. On
the other hand, for a set C of constraints containing all three possible constraints on each
3-set of variables, no more than |C|/3 of the constraints in C can be satisfied in any linear
arrangement. Hence the lower bound of one-third on the fraction of satisfiable constraints
is tight, in the sense that it is attained by an infinite family of instances.

So the right question to ask is whether there exists a linear arrangement that satisfies
at least |C|/3 + κ of the constraints as given below.

Betweenness Above Tight Lower Bound (Betweennesstlb)

Instance: a set C of betweenness constraints over variables V and an integer
κ ≥ 0.

Parameter: The integer κ.

Question: Is there a bijection α : V → {1, . . . , |V |} that satisfies at least |C|/3+
κ constraints from C, that is, for at least |C|/3 + κ constraints (vi, {v j, vk}) ∈ C
we have either α(v j) < α(vi) < α(vk) or α(vk) < α(vi) < α(v j)?

Data Reduction Rule

93

For a constraint C of C let vars(C) denote the set of variables in C. We call a triple
A, B,C of distinct betweenness constraints complete if vars(A) = vars(B) = vars(C).

Consider the following reduction rule: if C contains a complete triple of constraints,
delete these constraints from C and delete from V any variable that appears only in the
triple. Since for every linear arrangement exactly one constraint in each complete triple is
satisfied we have the following:

Lemma 6.4.1. Let (V,C) be an instance of Betweennesstlb and let (V ′,C′) be obtained

from (V,C) by applying the reduction rule as long as possible. Then (V,C) is a Yes-
instance of Betweennesstlb if and only if so is (V ′,C′).

An instance (V,C) of Betweennesstlb is irreducible if it does not contain a complete
triple. Observe that using Lemma 6.4.1 we can transform any instance into an irreducible
one and it will take no more than O(m3) time.

Kernelization

Consider an instance (V,C), for a set V of variables and a set C = {C1, . . . ,Cm} of
betweenness constraints, and a random function ϕ : V → {0, 1, 2, 3}. (The reason we con-
sider a random function ϕ : V → {0, 1, 2, 3} rather than a random function ϕ : V → {0, 1}
is given in the end of this section.) Let ℓi(ϕ) be the number of variables in V mapped by ϕ
to i for i = 0, 1, 2, 3. Now obtain a bijection α : V → {1, . . . , |V |} by randomly assigning
values 1, . . . , ℓ0(ϕ) to all α(v) for which ϕ(v) = 0, and values

∑ j−1
i=0 ℓi(ϕ) + 1, . . . ,

∑ j
i=0 ℓi(ϕ)

to all α(v) for which ϕ(v) = j for every j = 1, 2, 3. We call such a linear arrangement α
a ϕ-compatible bijection. It is easy to see that α obtained in this two stage process is, in
fact, a random linear arrangement, but this fact is not going to be used here.

Now assume that a function ϕ : V → {0, 1, 2, 3} is fixed and consider a constraint
Cp = (vi, {v j, vk}) ∈ C. Let α be a random ϕ-compatible bijection and νp(α) = 1 if Cp

is satisfied and 0, otherwise. Let the weights w(Cp, ϕ) = E(νp(α)) − 1/3 and w(C, ϕ) =∑m
p=1 w(Cp, ϕ).

Lemma 6.4.2. If w(C, ϕ) ≥ κ then (V,C) is a Yes-instance of Betweennesstlb.

Proof. By linearity of expectation, w(C, ϕ) ≥ κ implies E(
∑m

p=1 νp(α)) ≥ m/3 + κ. Thus,
if w(C, ϕ) ≥ κ then there is a ϕ-compatible bijection α that satisfies at least m/3 + κ
constraints. �

Let X = w(C, ϕ) and Xp = w(Cp, ϕ), p = 1, . . . ,m. Observe that if ϕ is a random
function from V to {0, 1, 2, 3} then X, X1, . . . , Xm are random variables. Recall that X =∑m

p=1 Xp.

Lemma 6.4.3. We have E[X] = 0.

94

|{ϕ(vi), ϕ(v j), ϕ(vk)}| Relation Value of Xp Prob.
1 ϕ(vi) = ϕ(v j) = ϕ(vk) 0 1/16
2 ϕ(vi) , ϕ(v j) = ϕ(vk) −1/3 3/16
2 ϕ(vi) ∈ {ϕ(v j), ϕ(vk)} 1/6 6/16
3 ϕ(vi) is between ϕ(v j) and ϕ(vk) 2/3 2/16
3 ϕ(vi) is not between ϕ(v j) and ϕ(vk) −1/3 4/16

Table 6.1: Distribution of Xp.

Proof. Let Cp = (vi, {v j, vk}) ∈ C. Let us first find the distribution of Xp. It is easy to
check that the probability that ϕ(vi) = ϕ(v j) = ϕ(vk) equals 1/16 and Xp = 0 in such a
case. The probability that ϕ(vi) , ϕ(v j) = ϕ(vk) equals 3/16 and Xp = −1/3 in such a
case. The probability that ϕ(vi) equals one of the non-equal ϕ(v j), ϕ(vk) is equal to 6/16
and Xp = 1/6 in such a case. Now suppose that ϕ(vi), ϕ(v j) and ϕ(vk) are all distinct.
The probability that ϕ(vi) is between ϕ(v j) and ϕ(vk) is 2/16 and Xp = 2/3 in such a case.
Finally, the probability that ϕ(vi) is not between ϕ(v j) and ϕ(vk) is 4/16 and Xp = −1/3 in
such a case. Now we can give the distribution of Xp in the following table.

Using this distribution, it is easy to see that E[Xp] = 0 and, thus, E[X] =
∑m

p=1 E[Xp] =
0. �

Lemma 6.4.4. The random variable X can be expressed as a polynomial of degree 6 in

independent uniformly distributed random variables with values −1 and 1.

Proof. Consider Cp = (vi, {v j, vk}) ∈ C. Let εi
1 = −1 if ϕ(vi) = 0 or 1 and εi

1 = 1,
otherwise. Let εi

2 = −1 if ϕ(vi) = 0 or 2 and εi
2 = 1, otherwise. Similarly, we can define

ε
j
1, ε

j
2, ε

k
1, ε

k
2. Now εi

1ε
i
2 can be seen as a binary representation of a number from the set

{0, 1, 2, 3} and εi
1ε

i
2ε

j
1ε

j
2ε

k
1ε

k
2 can be viewed as a binary representation of a number from

the set {0, 1, . . . , 63}, where −1 plays the role of 0.
We can write Xp as the following polynomial:

1
64

63∑
q=0

(−1)sqwq · (εi
1 + ciq

1)(εi
2 + ciq

2)(ε j
1 + c jq

1)(ε j
2 + c jq

2)(εk
1 + ckq

1)(εk
2 + ckq

2),

where ciq
1 ciq

2 c jq
1 c jq

2 ckq
1 ckq

2 is the binary representation of q, sq is the number of digits equal
−1 in this representation, and wq equals the value of Xp for the case when the binary
representations of ϕ(vi), ϕ(v j) and ϕ(vk) are ciq

1 ciq
2 , c jq

1 c jq
2 and ckq

1 ckq
2 , respectively. The actual

values for Xp for each case are given in the proof Lemma 6.4.3. The above polynomial is
of degree 6. It remains to recall that X =

∑m
p=1 Xp. �

95

Lemma 6.4.5. For an irreducible instance (V,C) of Betweennesstlb we have E[X2] ≥
11
768m.

Proof. First, observe that E[X2] =
∑m

l=1 E[X2
l]+

∑
1≤l,l′≤m E[XlXl′]. We will compute E[X2

l]
and E[XlXl′] separately.

Using the distribution of Xl given in Table 1, it is easy to see that E[X2
l] = 11/96 =

88/768. It remains to show that

∑
1≤l,l′≤m

E[XlXl′] ≥ −
77

768
m. (6.3)

Indeed, (7.2) and E[X2
l] = 88/768 imply that

E[X2] =
m∑

l=1

E[X2
l] +

∑
1≤l,l′≤m

E[XlXl′] ≥
88

768
m − 77

768
m =

11
768

m,

In the remainder of this proof we show that (7.2) holds. Let Cl,Cl′ be a pair of dis-
tinct constraints of C. To evaluate E[XlXl′], we consider several cases. A simple case is
when the sets vars(Cl) and vars(Cl′) are disjoint: then Xl and Xl′ are independent random
variables and, thus, E[XlXl′] = E[Xl]E[Xl′] = 0. Let U = {(l, l′) | Cl,Cl′ ∈ C, l , l′} be the
set of all ordered index pairs corresponding to distinct constraints in C. We will classify
subcases of this case by considering some subsets of U. Let

S 1(u) = {(l, l′) ∈ U : Cl = (u, {a, b}),Cl′ = (u, {c, d}), a, b, c, d ∈ V},
S 2(u) = {(l, l′) ∈ U : Cl = (a, {u, b}),Cl′ = (c, {u, d}), a, b, c, d ∈ V},
S 3(u) = {(l, l′), (l′, l) ∈ U : Cl = (u, {a, b}),Cl′ = (c, {u, d}), a, b, c, d ∈ V},

S 4(u, v) = {(l, l′) ∈ U : Cl = (u, {v, a}),Cl′ = (u, {v, b}), a, b ∈ V}
∪ {(l, l′) ∈ U : Cl = (v, {u, a}),Cl′ = (v, {u, b}), a, b ∈ V},

S 5(u, v) = {(l, l′) ∈ U : Cl = (a, {u, v}),Cl′ = (b, {u, v}), a, b ∈ V},
S 6(u, v) = {(l, l′), (l′, l) ∈ U : Cl = (u, {v, a}),Cl′ = (b, {u, v}), a, b ∈ V}

∪ {(l, l′), (l′, l) ∈ U : Cl = (v, {u, a}),Cl′ = (b, {u, v}), a, b ∈ V},
S 7(u, v) = {(l, l′), (l′, l) ∈ U : Cl = (u, {v, a}),Cl′ = (v, {u, b}), a, b ∈ V}

S 8(u, v,w) = {(l, l′) ∈ U : vars(Cl) = vars(Cl′) = {u, v,w}}.

Let u, v ∈ V be a pair of distinct variables. Observe that S 4(u, v) = (S 1(u) ∩ S 2(v)) ∪
(S 1(v)∩ S 2(u)), S 5(u, v) = S 2(u)∩ S 2(v), S 6(u, v) = (S 3(u)∩ S 2(v))∪ (S 3(v)∩ S 2(u)) and

96

Set Union/intersection Form |Set| 768E[XlXl′] 768w′

S 1(u) – b(u)(b(u) − 1) 12 = w1 12

S 2(u) – e(u)(e(u) − 1) 3 = w2 3

S 3(u) – b(u)e(u) + e(u)b(u) −6 = w3 −6

S 4(u, v) (S 1(u) ∩ S 2(v)) ∪ (S 1(v) ∩ S 2(u)) cu
v(cu

v − 1) + cv
u(cv

u − 1) 24 = w4 9

S 5(u, v) S 2(u) ∩ S 2(v) cuv(cuv − 1) 36 = w5 30

S 6(u, v) (S 3(u) ∩ S 2(v)) ∪ (S 3(v) ∩ S 2(u)) 2(cu
v + cv

u) · cuv −18 = w6 −15

S 7(u, v) S 3(u) ∩ S 3(v) 2cu
vcv

u −6 = w7 6

S 8(u, v,w) see (7.3) ≤ 2 −44 = w8 −11

Table 6.2: Data for sets S i(u), i = 1, 2, . . . , 8.

S 7(u, v) = S 3(u) ∩ S 3(v). Let u, v,w ∈ V be a triple of distinct variables. Observe that

S 8(u, v,w) = (S 3(u)∩ S 3(v)∩ S 2(w))∪ (S 3(v)∩ S 3(w)∩ S 2(u))∪ (S 3(w)∩ S 3(u)∩ S 2(v)).
(6.4)

For a variable u ∈ V , let b(u) = |{l : Cl = (u, {a, b}), a, b ∈ V}| and e(u) = |{l : Cl =

(a, {u, b}), a, b ∈ V}|. Observe that |S 1(u)| = b(u)(b(u) − 1), |S 2(u)| = e(u)(e(u) − 1) and
|S 3(u)| = 2b(u)e(u).

For a pair u, v ∈ V , let cu
v = |{l : Cl = (u, {v, a}), a ∈ V}| and cuv = |{l : Cl =

(a, {u, v}), a ∈ V}|. Observe that |S 4(u, v)| = cu
v(cu

v − 1)+ cv
u(cv

u − 1), |S 5(u, v)| = cuv(cuv − 1),
|S 6(u, v)| = 2(cu

v + cv
u) · cuv and |S 7(u, v)| = 2cu

vcv
u. Let u, v,w ∈ V be a triple of distinct

variables. SinceC is irreducible, the number of ordered pairs (Cl,Cl′) for which vars(Cl) =
vars(Cl′) = {u, v,w} is at most 2, i.e., |S 8(u, v,w)| ≤ 2.

We list the sets S i(·), their union/intersection forms (for i = 4, 5, 6, 7) and their sizes
in Table 2. If (l, l′) belongs to some S i but to no S j for j > i, then Table 2 also con-
tains the value 768 · E[XlXl′], in the row corresponding to S i. These values cannot be
easily calculated analytically as there are many cases to consider and we have calculated
them using computer. We will briefly describe how our program computes E[XlXl′] us-
ing as an example the case (l, l′) ∈ S 1(u), i.e., Cl = (u, {a, b}),Cl′ = (u, {c, d}). For each
(q1, q2, q3, q4, q5) ∈ {0, 1, 2, 3}5 the probability of (u, a, b, c, d) = (q1, q2, q3, q4, q5) is 4−5

and the corresponding value of XlXl′ can be found in Table 2.
We are now ready to compute a lower bound on the term

∑
1≤l,l′≤m E[XlXl′]. Define the

values w′i for i = 1, 2, . . . , 8 as it is done in Table 2. We will now show that the following
holds (note that the sets we sum over have to contain distinct elements).

97

∑
1≤l,l′≤m E[XlXl′] =

∑
u∈V

∑3
i=1 |S i(u)|w′i +

∑
{u,v}⊆V

∑7
i=4 |S i(u, v)|w′i

+
∑
{u,v,w}⊆V |S 8(u, v)|w′8

In order to show the above we consider the possible cases for (l, l′) ∈ U.

Case 1: |vars(Cl) ∩ vars(Cl′)| = 0. In this case E[XlXl′] = 0 and the corresponding (l, l′)
does not belong to any S i and therefore contributes zero to the right-hand side above.

Case 2: |vars(Cl)∩ vars(Cl′)| = 1. Each pair (l, l′) ∈ S 1(u) contributes 12
768 to both sides of

the above equation, as in this case (l, l′) does not belong to any S j with j > 1. Analogously
if (l, l′) ∈ S 2(u) then it contributes 3

768 to both sides of the above equation. Furthermore if
(l, l′) ∈ S 3(u) then it contributes − 6

768 .

Case 3: |vars(Cl) ∩ vars(Cl′)| = 2. Consider a pair (l, l′) ∈ S 4(u, v) and assume, without
loss of generality, that (l, l′) ∈ S 1(u) ∩ S 2(v). Note that (l, l′) contributes 24

768 to the left-
hand side of the equation and it contributes w′1 + w′2 + w′4 =

24
768 to the right-hand side (as

(l, l′) ∈ S 1(u) ∩ S 2(v) ∩ S 4(u, v)). Analogously if (l, l′) ∈ S 5(u, v) we get a contribution
of w5 =

36
768 = w′2 + w′2 + w′5 to both sides of the equation. If (l, l′) ∈ S 6(u, v) we get a

contribution of w6 = − 18
768 = w′3 +w′2 +w′6 to both sides of the equation. If (l, l′) ∈ S 7(u, v)

we get a contribution of w7 = − 6
768 = w′3 + w′3 + w′7 to both sides of the equation.

Case 4: |vars(Cl) ∩ vars(Cl′)| = 3. Assume, without loss of generality, that (l, l′) ∈
S 3(u) ∩ S 3(v) ∩ S 2(w) and note that (l, l′) ∈ S 7(u, v) ∩ S 6(u,w) ∩ S 6(v,w). Therefore we
get a contribution of w8 = − 44

768 = w′3 + w′3 + w′2 + w′7 + w′6 + w′6 + w′8 to both sides of the
equation.

Therefore the above equation holds, which implies the following:∑
1≤l,l′≤m E[XlXl′] =

∑
u∈V

(
|S 1(u)|w′1 + |S 2(u)|w′2 + |S 3(u)|w′3

)
+

∑
{u,v}⊆V

∑7
i=4 |S i(u, v)|w′i +

∑
{u,v,w}⊆V |S 8(u, v,w)|w′8

= 1
2·768

∑
u∈V

(
6(2b(u) − e(u))2 − 24b(u) − 6e(u)

)
+ 1

2·768

∑
{u,v}⊆V

(
15(cu

v + cv
u − 2cuv)2 + 12

(
cu

v−cv
u

2

)2
− 18(cu

v + cv
u) − 60cuv

)
+

∑
{u,v,w}⊆V |S 8(u, v,w)|w′8

To complete the proof of the lemma it remains to translate this sum into a function on
the number of constraints. In that respect, notice that

∑
u∈V b(u) = m and

∑
u∈V e(u) = 2m.

Further, each clause (u, {v,w}) contributes exactly one unit to each of cu
v and cu

w, as well
as exactly one unit to cvw. Hence

∑
{u,v}⊂V(cu

v + cv
u) = 2m and

∑
{u,v}⊂V cuv = m. Since C is

irreducible, the number of ordered pairs (Cl,Cl′) for which vars(Cl) = vars(Cl′) is at most

98

m/2 and, thus, ∑
{u,v,w}⊆V

|S 8(u, v,w)|w′8 ≤ m · w′8.

Together these bounds imply that

∑
1≤l,l′≤m

E[XlXl′] ≥ −
36

2 · 768
m − 96

2 · 768
m − 11

768
m = − 77

768
m

and (7.2) holds. �

We are now ready to prove the main result.

Theorem 6.4.6. Betweennesstlb has a kernel of size O(κ2).

Proof. Let (V,C) be an instance of Betweennesstlb. By Lemma 6.4.1, in time O(m3) we
can obtain an irreducible instance (V ′,C′) such that (V,C) is a Yes-instance if and only
if (V ′,C′) is a Yes-instance. Let m′ = |C′| and let X be the random variable defined
above. Then X is expressible as a polynomial of degree 6 by Lemma 6.4.4; hence it
follows from Lemma 6.1.3 that E[X4] ≤ 96E[X2]2. Consequently, X satisfies the condi-
tions of Lemma 6.1.2, from which we conclude in combination with Lemma 6.4.5 that
P
(
X > 1

2·93

√
11
768m′

)
> 0. By Lemma 6.4.2 if 1

2·93

√
11
768m′ ≥ κ then (V ′,C′) is a Yes-

instance for Betweennesstlb. Otherwise, we have m′ = O(κ2). This concludes the proof of
the theorem. �

We complete this section by answering the following natural question: why have we
considered functions ϕ : V → {0, 1, 2, 3} rather than functions ϕ : V → {0, 1}? The latter
would involve less computations and give a smaller degree of the polynomial representing
X. The reason is that our proof of Lemma 6.4.5 would not work for functions ϕ : V →
{0, 1} (we would only be able to prove that E[X2] ≥ ∑

{u,v}⊂V[cv
u + cu

v − 2cuv]2, which is not
enough).

6.5 MAX-r-SAT

We assume an infinite supply of propositional variables. A literal is a variable x or its
negation x. A clause is a finite set of literals not containing a complementary pair x and x.
A clause is of size r if it contains exactly r literals. For simplicity of presentation, we
will denote a clause by a sequence of its literals. For example, the clause {x, y} will be
denoted xy or equivalently yx. A CNF formula F is a finite multiset of clauses (a clause
may appear in the multiset several times). A variable x occurs in a clause if the clause
contains x or x, and x occurs in a CNF formula F if it occurs in some clause of F. Let

99

var(C) and var(F) denote the sets of variables occurring in C and F, respectively. A
CNF formula is an r-CNF formula if |C| = r for all C ∈ F. Thus we require that each
clause of a r-CNF formula contains exactly r different literals (some authors use for that
the term exact r-CNF). A truth assignment is a mapping τ : V → {−1, 1} defined on
some set V of variables. In order to obtain a ’normalized’ algebraic representation, we
use {−1, 1} instead of the usual {0, 1} binary symbols. We write 2V to denote the set of all
truth assignments on V . A truth assignment τ satisfies a clause C if there is some variable
x ∈ C with τ(x) = 1 or a negated variable x ∈ C with τ(x) = −1. We write sat(τ, F) for the
number of clauses of F that are satisfied by τ, and we write

sat(F) = max
τ∈2var(F)

sat(τ, F).

In the classic optimization problem Max-r-Sat, the task is to find a truth assignment
to the variables of a given r-CNF formula so as to satisfy as many clauses as possiblem.
We shall consider the following parameterized version of Max-r-Sat.

Max-r-Sat above Tight Lower Bound (or Max-r-Sattlb for short)

Instance: A pair (F, k) where F is a multiset of m clauses of size r and k is a
nonnegative integer.

Parameter: The integer k.

Question: Is sat(F) ≥ ((2r − 1)m + k)/2r?

In this section we first describe a polynomial-time data reduction that reduces an in-
stance of Max-r-Sattlb into an equivalent algebraically represented problem. The equiv-
alent algebraically represented problems is ’normalized’ in a sense, which enables us to
obtain a bound on the size of a given instance. Some results from probability theory and
hamonic analysis in boolean functions play a central role in proving such a bound. As
a result, we prove that Max-r-Sattlb is fixed-parameter tractability and in particular we
present a quadratic kernel using the notion of bikernelization introduced in the previous
section.

An Algebraic Representation of Max-r-Sattlb

Let F be an r-CNF formula with clauses C1, . . . ,Cm in the variables x1, x2, . . . , xn.
For F, consider

X =
∑
C∈F

[1 −
∏

xi∈var(C)

(1 + εixi)],

where εi ∈ {−1, 1} and εi = −1 if and only if xi is in C.

100

Lemma 6.5.1. For a truth assignment τ, we have X = 2r(sat(τ, F) − (1 − 2−r)m).

Proof. Observe that
∏

xi∈var(C)(1 + εixi) equals 2r if C is falsified and 0, otherwise. Thus,
X = m − 2r(m − sat(τ, F)) implying the claimed formula. �

After algebraic simplification X = X(x1, x2, . . . , xn) can be written as X =
∑

I∈S XI ,

where XI = cI
∏

i∈I xi, each cI is a nonzero integer and S is a family of nonempty subsets
of {1, . . . , n} each with at most r elements.

The question we address is that of deciding whether or not there are values xi ∈ {−1, 1}
so that X = X(x1, x2, . . . , xn) ≥ k. The idea is to use a probabilistic argument and show
that if the above polynomial has many nonzero coefficients, that is, if |S| is large, this is
necessarily the case, whereas if it is small, the question can be solved by checking all
possibilities of the relevant variables.

Kernelization

Theorem 6.5.2. The problem Max-r-Sattlb is fixed-parameter tractable and can be solved

in time O(m) + 2O(k2). Moreover, there exist (i) a polynomial-size bikernel from Max-r-
Sattlb to Max-Lin2tlb, and (ii) a polynomial-size kernel of Max-r-Sattlb. In fact, there are

such a bikernel and a kernel of size O(k2).

Proof. By Lemma 6.5.1 our problem is equivalent to that of deciding whether or not there
is a truth assignment to the variables x1, x2, . . . , xn, so that

X(x1, . . . , xn) ≥ k. (6.5)

Note that in particular this implies that if X is the zero polynomial, then any truth assign-
ment satisfies exactly a (1 − 2−r) fraction of the original clauses. By Lemma 6.1.2 and

Lemma 6.1.3, P(X ≥
√
E(X2)

2
√

b
) > 0, where b = 9r and E(X2) =

∑
I∈S c2

I ≥ |S|; the last in-

equality follows from the fact that each |cI | is a positive integer. Therefore P(X ≥
√
|S|

2·3r) > 0.
Now, if k ≤

√
|S|

2·3r then there are xi ∈ {−1, 1} such that (6.5) holds, and there is an assign-
ment for which the answer to Max-r-Sattlb is Yes. Otherwise, |S| = O(k2), and in fact
even

∑
I∈S |cI | ≤

∑
I∈S c2

I = O(k2), that is, the total number of terms of the simplified
polynomial, even when counted with multiplicities, is at most O(k2).

For any fixed r, the representation of a problem instance of m clauses as a polynomial,
and the simplification of this polynomial, can be performed in time O(m). If the number
of nonzero terms of this polynomial is larger than 4 ·32rk2, then the answer to the problem
is Yes. Otherwise, the polynomial has at most O(k2) terms and depends on at most O(k2)
variables, and its maximum can be found in time 2O(k2).

101

This completes the proof of the first part of the theorem. We next establish the second
part. Given the simplified polynomial X as above, define a problem in Max-Lin2tlb with
the variables z1, z2, . . . , zn as follows. For each nonzero term cI

∏
i∈I xi consider the linear

equation
∑

i∈I zi = b, where b = 0 if cI is positive, and b = 1 if cI is negative, and either
associate this equation with the weight wI = |cI |, or duplicate it |cI | times. It is easy to
check that this system of equations has an assignment zi satisfying at least [

∑
I∈S wI + k]/2

of the equations if and only if there are xi ∈ {−1, 1} so that X(x1, x2, . . . , xn) ≥ k. This is
shown by the transformation xi = (−1)zi . See also [74] and [68] for a similar discussion.
Since, as explained above, we may assume that

∑
I∈S |cI | = O(k2) (as otherwise we know

that the answer to our problem is Yes), this provides the required bikernel of size O(k2) to
Max-Lin2tlb.

It remains to prove the existence of a polynomial size kernel for the original problem.
One way to do that is to apply Lemma 2.4.1. Indeed, Max-Lin2tlb is in NP, and Max-r-
Sattlb is NP-complete, implying the desired result.

It is also possible to give a direct proof, which shows that the problem admits a kernel
of size at most O(k2). To do so, we replace each linear equation of at most r variables
by a set of 2r−1 clauses, so that if the variables zi satisfy the equation, the corresponding
Boolean variables xi = (−1)zi satisfy all these clauses, and if the variables zi do not satisfy
the equation, then the variables xi above satisfy only 2r−1−1 of the clauses. This is done as
follows. Consider, first, a linear equation with exactly r variables. After renumbering the
variables, if needed, a typical equation is of the form z1+z2+ · · ·+zr = b, where the sum is
over F2 and b ∈ {0, 1}. There are exactly 2r−1 Boolean assignments δ = (δ1, δ2, . . . , δr) for
the variables zi that do not satisfy the equation. For each such assignment δ let Cδ be the
clause consisting of r literals, where the literal number i is xi if δi = 0 and is xi if δi = 1.
Note that if the variables z1, z2, . . . , zr satisfy the above equation, then (z1, z2, . . . , zr) is not
one of the vectors δ considered, and hence each of the clauses Cδ constructed contains
at least one satisfied literal when xi = (−1)zi . Therefore, in this case all clauses are
satisfied. A similar argument shows that if the variables zi do not satisfy the equation, there
will be exactly one non-satisfied clause, namely the one corresponding to the vector δ =
(z1, z2, . . . , zr). The construction can be extended to equations with less than r variables.
Indeed, the only property used in the transformation above is that there are exactly 2r−1

Boolean assignments for the variables z1, z2, . . . , zr that do not satisfy the equation. If the
equation has only (1 ≤) s < r variables, add to these variables an arbitrary set of r − s

of the other variables, and consider the set of all Boolean assignments to this augmented
set of variables that do not satisfy the equation. Here, too, there are exactly 2r−1 such
assignments and we can thus repeat the construction above in this case as well.

The above procedure transforms a set of W linear equations over F2 into a multiset of

102

2r−1W clauses. Moreover, if some truth assignment does not satisfy exactly ℓ equations,
then the same assignment does not satisfy the same number, ℓ, of clauses. In particular,
there is an assignment satisfying all equations but (W−k)/2 of them, if and only if there is
an assignment satisfying all clauses but (W−k)/2 of them. This means that among the m =

2r−1W clauses, the number of satisfied ones is m− (W−k)/2 = [(2r−1)m+2r−1k]/2r. This
reduces an instance of Max-Lin2tlb with W equations and parameter k to an instance of
Max-r-Sattlb with 2r−1W clauses and parameter 2r−1k. Since r is a constant, this provides
the required kernel of size O(k2), completing the proof. �

Our algorithm for the problem Max-r-Sattlb can be easily modified to provide, effi-
ciently, for any given instance of m clauses to which there is a truth assignment satisfying
at least k/2r clauses above the average, an assignment for the variables with this prop-
erty. Indeed, the proof of Theorem 6.5.2 only requires that the variables xi are 4r-wise
independent, and there are known constructions of polynomial size sample spaces sup-
porting such random variables (see, e.g., [7], Chapter 16). Thus, if in the polynomial X,
√
|S|/(2 · 3r) ≥ k, then one can find an assignment satisfying at least as many clauses as

needed by going over all points in such a sample space, and if
√
|S|/(2 · 3r) < k, one can

solve the problem by an exhaustive search.

6.6 Boolean Constraint Satisfaction Problems

The fixed-parameter tractability result on Max-r-Sattlb can be easily extended to any fam-
ily of Boolean r-Constraint Satisfaction Problems. Here is an outline of the argument.

Let r be a fixed positive integer, let Φ be a set of Boolean functions, each involving
at most r variables, and let F = { f1, f2, . . . , fm} be a collection of Boolean functions,
each being a member of Φ, and each acting on some subset of the n Boolean variables
x1, x2, . . . , xn. The Boolean Max-r-Constraint Satisfaction Problem (corresponding to Φ),
which we denote by the Max-r-CSP problem, for short, when Φ is clear from the context,
is the problem of finding a truth assignment to the variables so as to maximize the total
number of functions satisfied. Note that this includes, as a special case, the Max-r-Sat
problem considered in the previous section, as well as many related problems. As most
interesting problems of this type are NP-hard, we consider their parameterized version,
where the parameter is, as before, the number of functions satisfied minus the expected
value of this number. Note, in passing, that the above expected value is a tight lower
bound for the problem, whenever the family Φ is closed under replacing each variable
by its complement, since if we apply any Boolean function to all 2r choices of literals
whose underlying variables are any fixed set of r variables, then any truth assignment to
the variables satisfies exactly the same number of these 2r functions.

103

For each Boolean function f of r(f) Boolean variables

xi1 , xi2 , . . . , xir(f) ,

define a random variable X f as follows. As in the discussion of the Max-r-Sat problem,
suppose each variable xi j attains values in {−1, 1}. Let V ⊆ {−1, 1}r(f) denote the set of all
satisfying assignments of f . Then

X f (x1, x2, . . . , xn) =
∑

v=(v1,...,vr(f))∈V
2r−r(f)[

r(f)∏
j=1

(1 + xi jv j) − 1].

This is a random variable defined over the space {−1, 1}n and its value at x = (x1, x2, . . . , xn)
is 2r − |V | ·2r−r(f) if x satisfies f , and is −|V | ·2r−r(f) otherwise. Thus, the expectation of X f

is zero. Define now X =
∑

f∈F X f . Then the value of X at x = (x1, x2, . . . , xn) is precisely
2r(s − a), where s is the number of the functions satisfied by the truth assignment x, and
a is the average value of the number of satisfied functions. Our objective is to decide if X

attains a value of at least k. As this is a polynomial of degree at most r with integer coeffi-
cients and expectation zero, we can repeat the arguments of Section 6.5 and prove that, for
every fixed r, the problem is fixed-parameter tractable. Moreover, our previous arguments
show that the problem admits a polynomial-size bikernel reducing it to an instance of
Max-Lin2tlb of size O(k2), and if the specific r-CSP problem considered is NP-complete,
then there is a polynomial size kernel. This is the case for most interesting choices of the
family Φ.

104

Chapter 7

Combinatorial Approaches

In Chapter 6, we considered several constraint satisfaction problems parameterized above
their tight lower bounds and exhibited the existence of polynomial kernels using Strictly
Above/Below Expectation Method. The method SABEM is generic as well as power-
ful, and yet a problem-specific approach is still valuable to achieve a better asymptotic
computational behavior. In this chapter, we discuss some of such efforts. We consider
the problems Max-2-Sat and a wide special case of Max-Lin2, and present kernelzations
whose sizes are smaller than those obtained using SABEM in the Chapter 6.

7.1 MAX-2-SAT

In this section we describe an alternative, more combinatorial, approach to the problem
Max-r-Sattlb for r = 2. Although this approach is somewhat more complicated than the
one discussed in Chapter 6, it provides an additional insight to this special case of the
problem, and allows us to obtain a kernel with a linear number of vertices for Max-2-
Sattlb.

Semicomplete Reduction We start with a simple reduction rule that applies to any
value of r. We say that a pair of distinct clauses Y and Z has a conflict if there is a literal
p ∈ Y such that p ∈ Z. We say that an r-CNF formula F is semicomplete if the number of
clauses is m = 2r and every pair of distinct clauses of F has a conflict. A semicomplete
r-CNF formula is complete if each clause is over the same set of variables. There are
r-CNF formulas that are semicomplete but not complete; consider for example {xy, xy,
xz, xz}. We have the following:

Lemma 7.1.1. Every truth assignment to a semicomplete r-CNF formula satisfies exactly

2r − 1 clauses.

105

Proof. Let S be a semicomplete r-CNF formula. To prove that no truth assignment satis-
fies all clauses of S we use the following simple counting argument from [75]. Observe
that every clause is not satisfied by exactly 2n−r truth assignments. However, each of
these assignments satisfies each other clause (due to the conflicts). So, we have exactly
2r · 2n−r truth assignments not satisfying S . But 2r · 2n−r = 2n, the total number of truth
assignments.

Now let τ be a truth assignment of S . By the above, τ does not satisfy a clause C of S .
However, τ satisfies any other clause of S as any other clause has a conflict with C. �

Consider the following data reduction procedure.
Given an r-CNF formula F that contains a semicomplete subset F′ ⊆ F, delete F′

from F and consider F \ F′ instead. Let FS denote the formula obtained from F by
applying this deletion process as long as possible. We say that FS is obtained from F by
semicomplete reduction.

We state the following two simple observations as a lemma.

Lemma 7.1.2. Let F be an r-CNF formula.

1. FS can be obtained from F in polynomial time.

2. sat(F) − sat(FS) = (1 − 2−r)(|F| − |FS |).

7.1.1 Kernelization

Let F be a 2-CNF formula. A variable x ∈ var(F) is insignificant if for each literal y

the numbers of occurrences of the two clauses xy and xy in F are the same. A variable
x ∈ var(F) is significant if it is not insignificant. A literal is significant or insignificant if
its underlying variable is significant or insignificant, respectively.

Theorem 7.1.3. Let F be a 2-CNF formula with F = FS (i.e., F contains no semicomplete

subsets) and let k ≥ 0 be an integer. If F has more than 3k − 2 significant variables, then

sat(F) ≥ (3|F| + k)/4.

The remainder of this section is devoted to the proof of Theorem 7.1.3 and its corol-
lary. Let F be a 2-CNF formula with m clauses and n variables and let k be an integer. We
assume that F contains no semicomplete subsets, i.e., F = FS .

For a literal x let c(x) denote the number of clauses in F containing x. Given a pair of
literals x and y, x , y, let c(xy) be the number of occurrences of clause xy in F.

Given a clause C ∈ F and a variable x ∈ var(F), let δC(x) be an indicator variable
whose value is set as δC(x) = 1 if x ∈ C, δC(x) = −1 if x ∈ C, and δC(x) = 0 otherwise.

106

Lemma 7.1.4. For each subset R = {x1, . . . , xq} ⊆ var(F) we have sat(F) ≥ (3m + kR)/4
for

kR =
∑

1≤i≤q

(c(xi) − c(xi)) +
∑

1≤i< j≤q

(
c(xix j) + c(xix j) − c(xix j) − c(xix j)

)
.

Proof. Take a random truth assignment τ ∈ 2var(F) such that τ(xi) = 1 for all i ∈ {1, . . . , q}
and P(τ(x) = 1) = 0.5 for all x ∈ var(F) \ R. A simple case analysis yields that the
probability that a clause C ∈ F is satisfied by τ is given by

P(τ satisfies C) = 1 − 1
4

∏
1≤i≤q

(1 − δC(xi)).

Observe that for any clause C and any three distinct variables x, y, z we have
δC(x)δC(y)δC(z) = 0 as var(C) contains exactly two variables. Hence we can determine
the expected number of clauses satisfied by τ as follows.

E(sat(τ, F)) =
∑
C∈F

P[τ satisfies C]

=
∑
C∈F

{
1 − 1

4

∏
1≤i≤q

(1 − δC(xi))
}

=
3
4

m +
1
4

∑
C∈F

{ ∑
1≤i≤q

δC(xi) −
∑

1≤i< j≤q

δC(xi)δC(x j)
}

=
3
4

m +
1
4
{ ∑

1≤i≤q

∑
C∈F

δC(xi) −
∑

1≤i< j≤q

∑
C∈F

δC(xi)δC(x j)
}

=
3
4

m +
1
4

kR. �

It is noteworthy that P(τ satisfies C) = 1− 1
4

∏
1≤i≤q(1−δC(xi)) in the proof of Lemma 7.1.4

is similar to a term of X defined in section 6.5. The term 1−∏
xi∈var(C)(1+εixi) of X returns

a fixed value on C for a given (fully determined) truth assignment, depending on whether
C is satisfied or not. Similarly, the term 1 − 1

4

∏
1≤i≤q(1 − δC(xi)) returns a probability of

C being satisfied for a given (partially determined) random truth assignment. The benefit
of having a probabilistic form of X is that we now have a way to ignore a large number
of variables, e.g., V \ R in Lemma 7.1.4, instead of searching for fully determined truth
assignment so as to compute X. For the case r = 2, this probabilistic form of X can be
immediately interpreted in a graph-theoretic language as will be shown below.

Due to Lemma 7.1.4, the task is now reduced into finding a subset R of variables
with kR ≥ k. These are variables which form the deterministic part of a partially random
truth assignment. Using a notion of switch defined later, we replace F by an equivalent
formula in which every variable of R is set to 1. To find R we use a graph-theoretical

107

approach introducing an auxiliary weighted graph in which we seek an induced subgraph
of weight at least k. In particular, we note that an ‘independent’ structure of an induced
subgraph ensures its weight to be above a certain bound growing with the size of the
induced subgraph. This means that if (F, k) is a No-instance, we do not have a large
‘independent’ structure. Combining Tutte-Berge formula with this fact reveals an upper
bound on the number of vertices in the auxiliary weighted graph.

We construct an auxiliary graph G = (V, E) from F by letting V = var(F) and xy ∈ E if
and only if there exists a clause C ∈ F with var(C) = {x, y} (equivalently, c(xy) + c(xy) +
c(xy) + c(xy) ≥ 1).

We assign a weight to each vertex x and edge xy of G = (V, E):

w(x) :=
∑
C∈F

δC(x) = c(x) − c(x),

w(xy) := −
∑
C∈F

δC(x)δC(y) = c(xy) + c(xy) − c(xy) − c(xy).

For subsets U ⊆ V and H ⊆ E, let w(U) =
∑

x∈U w(x) and w(H) =
∑

xy∈H w(xy). The
weight w(Q) of a subgraph Q = (U,H) is w(U) + w(H). Let G0 be the graph obtained
from G by removing all edges of weight zero.

Lemma 7.1.5. A variable x ∈ var(F) is insignificant if and only if x is an isolated vertex

in G0 and w(x) = 0.

Proof. Suppose x ∈ var(F) is insignificant. Choose an edge xy ∈ E (this is possible since
by construction G has no isolated vertices). Since x is insignificant, c(xy) = c(xy) and
c(xy) = c(xy) and thus w(xy) = 0. Therefore the edge xy does not appear in G0 and x is
isolated in G0. Observe that we have c(x) = c(x), which implies w(x) = 0.

Suppose x ∈ var(F) is an isolated vertex of G0 and w(x) = 0. Since G has no isolated
vertices, we have w(xy) = 0 for all xy ∈ E. In order to derive a contradiction, let us
suppose x is a significant variable of F. Consequently there is (i) either a clause xy ∈ F

such that c(xy) > c(xy), or (ii) there is a clause xy ∈ F such that c(xy) > c(xy). We
consider case (i) only, case (ii) can be treated analogously. With w(xy) = 0, we have
c(xy) > c(xy), and thus xy ∈ F.

Now the condition w(x) = c(x) − c(x) = 0 implies the existence of an edge xz ∈ E

with z , y such that for some z′ ∈ {z, z} we have xz′ ∈ F and c(xz′) > c(xz′). Without loss
of generality, assume that z′ = z. Since w(xz) = 0, we have xz ∈ F. However, the four
clauses xy, xy, xz, xz in F form a semicomplete 2-CNF formula, which contradicts our
assumption that F = FS . Hence x is indeed an insignificant variable. �

108

For a set X ⊆ var(F) we let FX denote the 2-CNF formula obtained from F by re-
placing x with x and x with x for each x ∈ X. We say that FX is obtained from F by
switching X.

The following lemma follows immediately from the definitions of switch and weights.

Lemma 7.1.6. The auxiliary graph GX corresponding to FX can be obtained from G =

(V, E) by reversing the signs of the weights of all vertices in X and all edges between X

and V \ X. Moreover, sat(F) = sat(FX).

To distinguish between weights in G and GX, we use wX(.) for weights of GX. Simi-
larly, we use cX(.) for FX.

It is sometimes convenient to stress that the set X we are switching induces a subgraph.
We can switch an induced graph Q by switching all the vertices of Q. Observe that by
switching an induced graph Q, we reverse the signs of weights on all vertices of Q and all
edges incident with exactly one vertex of Q, but the sign of each edge within Q remains
unchanged. This property will play a major role to show that a certain structure meets the
condition of the following lemma.

Lemma 7.1.7. If there exist a set X ⊂ V(G0) and an induced subgraph Q = (U,H) of G0

with wX(Q) ≥ k, then sat(F) ≥ (3m + k)/4.

Proof. We consider U = {x1, . . . , xq} as a subset of var(FX). By Lemmas 7.1.4 and 7.1.6,
sat(F) = sat(FX) ≥ (3m + kU)/4, where

kU =

q∑
i=1

(cX(xi) − cX(xi)) +
∑

1≤i< j≤q

(cX(xix j) + cX(xix j) − cX(xix j) − cX(xix j))

=

q∑
i=1

wX(xi) +
∑

1≤i< j≤q

wX(xix j) = wX(Q) ≥ k. �

To apply Lemma 7.1.7 in the proof of Theorem 7.1.3, we will focus on a special case
of induced subgraphs of G0. For a set U ⊆ V(G0), let G0[U] denote the subgraph of G0

induced by U. We call G0[U] an induced star with center x if x is a vertex of G0, I is an
independent set in the subgraph of G0 induced by the neighbors of x and U = {x} ∪ I. We
are interested in the induced star due to the following property.

Lemma 7.1.8. Let x be the center of an induced star Q = G0[U] and let I = U \ {x}. Then

there is a set X ⊆ U such that wX(Q) ≥ |I|.

Proof. Let H be the set of edges of Q. We may assume that w(xy) ≥ 0 for each y ∈ I

since otherwise we can switch y, and w(xy) is integral. By a random switch of Q, we
mean a switch of every vertex of Q with probability 0.5. Take a random switch R of Q.

109

Then we have E(wR(z)) = 0 for all z ∈ U. Note that the sign of each edge in H remains
positive. Hence we have E(wR(Q)) = w(H) ≥ |I| and thus there exists a set X ⊆ U for
which wX(Q) ≥ |I|. �

If we are given more than one induced star, a sequence of random switches gives us a
similar result.

Lemma 7.1.9. Let Q1 = (U1,H1), . . . ,Qm = (Um,Hm) be a collection of vertex-disjoint

induced stars of G0 with centers x1, . . . , xm, let U =
∪m

i=1 Ui, and let Q = G0[U]. Then

there is a set X ⊆ U such that wX(Q) ≥ ∑m
i=1 |Ii|, where Ii = Ui \ {xi}, i = 1, . . . ,m.

Proof. As in the proof of Lemma 7.1.8, we may assume that all the edges of Hi have
positive weights. Let H be the set of edges of Q. By a random switch of Q, we mean
a sequence of switches of Q1, . . . ,Qm each with probability 0.5. Take a random switch
R of Q. Then we have E(wR(x)) = 0 for all x ∈ U. Moreover, for the subgraph Q of
G0

R, it holds that E(wR(xy)) = 0 for all xy ∈ H \∪m
i=1 Hi since each choice of wR(xy) ≥ 0

and wR(xy) ≤ 0 is equally likely. By linearity of expectation and Lemma 7.1.8, we have
E(wR(Q)) = w(

∪m
i=1 Hi) ≥

∑m
i=1 |Ii| and thus there exists a set X ⊆ U for which wX(Q) ≥∑m

i=1 |Ii|. �

Note that we can derandomize the procedures suggested in the proofs of Lemma 7.1.8
and 7.1.9 using the standard technique of conditional expectation [7].

We are now in the position to complete the proof of Theorem 7.1.3.
Suppose that (F, k) is a no-instance, i.e., sat(F) < (3m + k)/4. Notice that a matching

can be viewed as a collection of induced stars of G0 for which |Ii| = 1. It follows by
Lemmas 7.1.7 and 7.1.9 that G0 has no matching of size k. The Tutte-Berge formula
[15, 26] states that the size of a maximum matching in G0 equals

min
S⊆V(G0)

1
2
{|V(G0)| + |S | − oc(G0 − S)}

where oc(G0 − S) is the number of odd components (connected components with an odd
number of vertices) in G0 − S . Hence there is a set S ⊆ V(G0) such that |V(G0)| + |S | −
oc(G0 − S) < 2k. It follows that

|V(G0)| ≤ oc(G0 − S) − |S | + 2k − 1. (7.1)

We will now classify odd components in G0−S . One obvious type of odd components
is an isolated vertex in G0 of weight zero, which corresponds to an insignificant variable by
Lemma 7.1.5. All the other odd components can be categorized into one of the following
two types:

110

1. Let Q1, . . . ,QL be the odd components of G0−S such that for all 1 ≤ i ≤ L we have
|Qi| = 1 and Qi is a significant variable.

2. Let Q′1, . . . ,Q
′
L′ be the odd components of G0 − S such that for all 1 ≤ i ≤ L′ we

have |Q′i | > 1.

We construct a collection of induced stars as follows. From each of Q′1, . . . ,Q
′
L′ we

choose an edge, which is an induced star with |I| = 1. Let us consider Q1, . . . ,QL. Each
vertex Qi is adjacent to at least one vertex of S . Thus, we can partition Q1, . . . ,QL into
|S | sets, some of them possibly empty, such that each partite set forms an independent set
in which every vertex is adjacent to the corresponding vertex xi of S . Each partite set,
together with xi, forms an induced star. Now observe that we have a collection of induced
stars and the total number of edges equals L+ L′. If L+ L′ ≥ k, Lemma 7.1.9 implies that
for some set X of vertices from the odd components wX(Q) ≥ k, which is impossible by
Lemma 7.1.7. Hence L + L′ ≤ k − 1.

Therefore, oc(G0 − S) − n′ = L + L′ ≤ k − 1, where n′ is the number of insignificant
variables. By (7.2), we have |V(G0)| − n′ ≤ k − 1 − |S | + 2k − 1 ≤ 3k − 2. It remains to
observe that |V(G0)| − n′ equals the number of significant variables of F. This completes
the proof of Theorem 7.1.3.

Corollary 7.1.10. The problem Max-2-Sattlb admits a (polynomial time) reduction to a

problem kernel with at most 3k − 1 variables.

Proof. Consider an instance (F, k) of the problem. First we apply the semicomplete re-
duction and obtain (in polynomial time) an instance (F′, k) with F′ = FS . We determine
(again in polynomial time) the set S ′ of significant variables of F′. If |S ′| > 3k − 2 then
(F′, k) is a yes-instance by Theorem 7.1.3, and consequently (F, k) is a yes-instance by
Lemma 7.1.2. Assume now that |S ′| ≤ 3k − 2.

Let z be a new variable not occurring in F. Since F′ = FS , no clause contains two
insignificant variables and, thus, each insignificant variable can be replaced by z without
changing the solution to (F′, k). Let us denote the modified F′ by F′′; F′′ has at most
3k − 1 variables.

Let p be the number of clauses in F′′. Observe that we can find a truth assignment
satisfying the maximum number of clauses of F′′ in time O(p8k). Thus, if p > 8k, we
can find the optimal truth assignment in the polynomial time O(p2) = O(m2). Thus, we
may assume that F′′ has at most 8k clauses. Therefore, F′′ is a kernel of the Max-2-Sattlb
problem. �

111

7.2 A Family of Special Cases of Max-Lin2

In the problem Max-Lin2, notice that maximizing the total weight of satisfied equations is
equivalent to maximizing the excess, which is the total weight of satisfied equations minus
the total weight of falsified equations. We investigate lower bounds for the maximum
excess. Using an algebraic approach, we prove the following main result: Let Az = b

be a Max Lin system such that rankA = n and no pair of equations has the same left-
hand side, let wmin be the minimum weight of an equation in Az = b, and let k ≥ 2. If
k ≤ m ≤ 2n/(k−1) − 2, then the maximum excess of Az = b is at least k ·wmin. Moreover, we
can find an assignment that achieves an excess of at least k · wmin in time mO(1).

Due to the data reduction rules 4 and 5 presented in Section 6.3, we may assume
that no two equations in Az = b have the same left-hand side and n = rankA. Using
our maximum excess results, we prove that, under these assumptions, (a) Max-Lin2tlb is
fixed-parameter tractable if m ≤ 2p(n) for an arbitrary fixed function p(n) = o(n), and (b)
Max-Lin2tlb has a polynomial-size kernel if m ≤ 2na

for an arbitrary a < 1. In addition,
we prove that Max-Lin2tlb is in XP (thus, Max-Lin2tlb is polynomial-time solvable for
every fixed k), and, moreover, it is in W[P].

Recall that Max-r-Lin2tlb is a special case of Max-Lin2tlb, where each equation has
at most r variables. Using our maximum excess results, we prove that for each fixed
r ≥ 2 Max-r-Lin2tlb has a kernel with O(k log k) variables and, thus, it can be solved
in time 2O(k log k) + mO(1). This improves a kernel with O(k2) variables for Max-r-Lin2tlb
obtained in Section 6.3 using the generic method SABEM. Similarly, we prove that for
each r ≥ 2 Max-r-Sattlb has a kernel with O(k log k) variables and it can be solved in
time 2O(k log k) + mO(1) improving a kernel with O(k2) variables for Max-r-Sattlb obtained
in Section 6.5. Note that while the kernels with O(k2) variables were obtained using a
probabilistic approach, our results are obtained using an algebraic approach.

In Fourier analysis, the Boolean domain is often assumed to be {−1,+1}n rather than
more usual {0, 1}n and we will follow this assumption in our work. Here we use the
following well-known and easy to prove fact [97] that each function f : {−1,+1}n → R
can be uniquely written as

f (x) =
∑
S⊆[n]

cS

∏
i∈S

xi, (7.2)

where [n] = {1, 2, . . . , n} and each cS is a real. Formula (7.2) is the Fourier expansion f ,
cS are the Fourier coefficients of f , and the monomials

∏
i∈S xi form an orthogonal basis

of (7.2) (thus, the monomials are often written as χS (x) but we will use only
∏

i∈S xi as it
is more transparent).

112

7.2.1 Results on Maximum Excess

We consider the two reduction rules 4 and 5 from Section 6.3. These rules are of interest
due to Lemma 7.2.1.

Reminder of Reduction Rule 4 Let t = rankA and let columns ai1 , . . . , ait of A be linearly

independent. Then delete all variables not in {zi1 , . . . , zit} from the equations of Az = b.

Reminder of Reduction Rule 5 If we have, for a subset S of [n], an equation
∑

i∈S zi = b′

with weight w′, and an equation
∑

i∈S zi = b′′ with weight w′′, then we replace this pair

by one of these equations with weight w′ + w′′ if b′ = b′′ and, otherwise, by the equation

whose weight is bigger, modifying its new weight to be the difference of the two old ones.

If the resulting weight is 0, we delete the equation from the system.

Lemma 7.2.1. Let A′z′ = b′ be obtained from Az = b by applying Rule 4 or 5. Then

the maximum excess of A′z′ = b′ is equal to the maximum excess of Az = b. Moreover,

A′z′ = b′ can be obtained from Az = b in time polynomial in n and m.

To see the validity of Rule 4, consider an independent set I of columns of A of car-
dinality rankA and a column a j < I. Observe that a j =

∑
i∈I′ ai, where I′ ⊆ I. Consider

an assignment z = z0. If z0
j = 1 then for each i ∈ I′ ∪ { j} replace z0

i by z0
i + 1. The new

assignment satisfies exactly the same equations as the initial assignment. Thus, we may
assume that z j = 0 and remove z j from the system. If we cannot change a weighted system
Az = b using Rules 4 and 5, we call it irreducible.

Consider the following algorithm that tries to maximize the total weight of satisfied
equations of Az = b. We assume that, in the beginning, no equation or variable in Az = b

is marked.

AlgorithmH
While the system Az = b is nonempty do the following:

1. Choose an arbitrary equation
∑

i∈S zi = b and mark zl, where
l = min{i : i ∈ S }.

2. Mark this equation and delete it from the system.

3. Replace every equation
∑

i∈S ′ zi = b′ in the system contain-
ing zl by

∑
i∈S zi +

∑
i∈S ′ zi = b + b′. (The weight of the

equation is unchanged.)

4. Apply Reduction Rule 5 to the system.

113

Note that algorithm H replaces Az = b with an equivalent system under the assump-
tion that the marked equations are satisfied; that is, for every assignment of values to the
variables z1, . . . , zn that satisfies the marked equations, both systems have the same excess.

The maximumH-excess of Az = b is the maximum possible total weight of equations
marked byH for Az = b taken over all possible choices in Step 1 ofH .

Lemma 7.2.2. The maximum excess of Az = b equals its maximumH-excess.

Proof. We first prove that the maximum excess of Az = b is not smaller than its maximum
H-excess.

Let K be the set of equations marked byH . A method first described in [39] can find
an assignment of values to the variables such that the equations in K are satisfied and, in
the remainder of the system, the total weight of satisfied equations is not smaller than the
total weight of falsified equations.

For the sake of completeness, we repeat the description here. By construction, for
any assignment that satisfies all the marked equations, exactly half of the non-marked
equations are satisfied. Therefore it suffices to find an assignment to the variables such
that all marked equations are satisfied. This is possible if we find an assignment that
satisfies the last marked equation, then find an assignment satisfying the equation marked
before the last, etc. Indeed, the equation marked before the last contains a (marked)
variable zl not appearing in the last equation, etc. This proves the first part of our lemma.

Now we prove that the maximum H-excess of Az = b is not smaller than its maxi-
mum excess. Let z = (z1, . . . , zn) be an assignment that achieves the maximum excess, t.
Observe that if at each iteration of H we mark an equation that is satisfied by z, then H
will mark equations of total weight t. �

Remark 7.2.3. It follows from Lemma 7.2.2 that the maximum excess of a (nonempty)
irreducible system Az = b with smallest weight wmin is at least wmin. If all weights are
integral, then the maximum excess of Az = b is at least 1.

Clearly, the total weight of equations marked byH depends on the choice of equations
to mark in Step 1. Below we consider one such choice based on the following theorem.
The theorem allows us to find a set of equations such that we can mark each equation in
the set in successive iterations of H . This means we can run H a guaranteed number of
times, which we can use to get a lower bound on theH-excess.

Theorem 7.2.4. Let M be a set in Fn
2 such that M contains a basis of Fn

2, the zero vector

is in M and |M| < 2n. If k is a positive integer and k + 1 ≤ |M| ≤ 2n/k then, in time |M|O(1),

we can find a subset K of M of k + 1 vectors such that no sum of two or more vectors of K

is in M.

114

Proof. We first consider the case when k = 1. Since |M| < 2n and the zero vector is in M,
there is a non-zero vector v < M. Since M contains a basis for Fn

2, v can be written as a
sum of vectors in M and consider such a sum with the minimum number of summands:
v = u1 + · · · + uℓ, ℓ ≥ 2. Since u1 + u2 < M, we may set K = {u1, u2}.We can find such a
set K in polynomial time by looking at every pair in M × M.

We now assume that k > 1. Since k + 1 ≤ |M| ≤ 2n/k we have n ≥ k + 1.
We proceed with a greedy algorithm that tries to find K. Suppose we have a set

L = {a1, . . . , al} of vectors in M, l ≤ k, such that no sum of two or more elements of L is
in M. We can extend this set to a basis, so a1 = (1, 0, 0, . . . , 0), a2 = (0, 1, 0, . . . , 0) and
so on. For every a ∈ M\L we check whether M\{a1, . . . , al, a} has an element that agrees
with a in all co-ordinates l + 1, . . . , n. If no such element exists, then we add a to the set
L, as no element in M can be expressed as a sum of a and a subset of L.

If our greedy algorithm finds a set L of size at least k + 1, we are done and L is our set
K. Otherwise, we have stopped at l ≤ k. In this case, we do the next iteration as follows.
Recall that L is part of a basis of M such that a1 = (1, 0, 0, . . . , 0), a2 = (0, 1, 0, . . . , 0),
We create a new set M′ in Fn′

2 , where n′ = n − l. We do this1 by removing the first l co-
ordinates from M, and then identifying together any vectors that agree in the remaining
n′ co-ordinates. We are in effect identifying together any vectors that only differ by a sum
of some elements in L. It follows that every element of M′ was created by identifying
together at least two elements of M, since otherwise we would have had an element in
M\L that should have been added to L by our greedy algorithm. Therefore it follows that
|M′| ≤ |M|/2 ≤ 2n/k−1. From this inequality and the fact that n′ ≥ n − k, we get that
|M′| ≤ 2n′/k. It also follows by construction of M′ that M′ has a basis for Fn′

2 , and that the
zero vector is in M′. (Thus, we have |M′| ≥ n′+1.) If n′ ≥ k+1 we complete this iteration
by running the algorithm on the set M′ as in the first iteration. Otherwise (n′ ≤ k), the
algorithm stops.

Since each iteration of the algorithm decreases n′, the algorithm terminates. Now we
prove that at some iteration, the algorithm will actually find a set K of k + 1 vectors. To
show this it suffices to prove that we will never reach the point when n′ ≤ k. Suppose this
is not true and we obtained n′ ≤ k. Observe that n′ ≥ 1 (before that we had n′ ≥ k + 1 and
we decreased n′ by at most k) and |M′| ≥ n′ + 1. Since |M′| ≤ 2n′/k, we have n′ + 1 ≤ 2n′/k,
which is impossible due to n′ ≤ k unless n′ = 1 and k = 1, a contradiction with the
assumption that k > 1.

It is easy to check that the running time of the algorithm is polynomial in |M|. �

Remark 7.2.5. It is much easier to prove a non-constructive version of the above result.

1For the reader familiar with vector space terminology: Fn′
2 is Fn

2 modulo span(L), the subspace of Fn
2

spanned by L, and M′ is the image of M in Fn′
2 .

115

In fact we can give a non-constructive proof that k + 1 ≤ |M| ≤ 2n/k can be replaced by
2k < |M| < 2n/k((k − 1)!)1/k. We will extend our proof above for the case k = 1. We may
assume that k ≥ 2. Observe that the number of vectors of Fn

2 that can be expressed as the
sum of at most k vectors of M is at most(

|M|
k

)
+

(
|M|

k − 1

)
+ · · · +

(
|M|
1

)
+ 1 ≤ |M|k/(k − 1)! for |M| > 2k.

Since |M| < 2n/k((k − 1)!)1/k we have |Fn
2| > |M|k/(k − 1)! and, thus, at least for one

vector a of Fn
2 we have a = m1 + · · · + mℓ, where ℓ is minimum and ℓ > k. Note that, by

the minimality of ℓ, no sum of two or more summands of the sum for a is in M and all
summands are distinct. Thus, we can set K = {m1, . . . ,mk+1}.

Theorem 7.2.6. Let Az = b be an irreducible system, let wmin be the minimum weight of

an equation in Az = b, and let k ≥ 2. If k ≤ m ≤ 2n/(k−1) − 2, then the maximum excess of

Az = b is at least k ·wmin. Moreover, we can find an assignment that achieves an excess of

at least k · wmin in time mO(1).

Proof. Consider a set M of vectors in Fn
2 corresponding to equations in Az = b as follows:

for each
∑

i∈S zi = bS in Az = b, the vector v = (v1, . . . , vn) ∈ M, where vi = 1 if i ∈ S

and vi = 0, otherwise. Add the zero vector to M. As Az = b is reduced by Rule 4 and
k ≤ m ≤ 2n/(k−1) − 2, we have that M contains a basis for Fn

2 and k ≤ |M| ≤ 2n/(k−1) − 1.
Therefore, using Theorem 7.2.4 we can find a set K of k vectors such that no sum of two
or more vectors in K belongs to M.

Now run Algorithm H choosing at each Step 1 an equation of Az = b corresponding
to a member of K, then equations picked at random until the algorithm terminates. Algo-
rithm H will run at least k iterations as no equation corresponding to a vector in K will
be deleted before it has been marked. Indeed, suppose that this is not true. Then there are
vectors w ∈ K and v ∈ M and a pair of nonintersecting subsets K′ and K′′ of K \ {v,w}
such that w +

∑
u∈K′ u = v +

∑
u∈K′′ u. Thus, v = w +

∑
u∈K′∪K′′ u, a contradiction with the

definition of K.

In fact, the above argument shows that no equation of Az = b corresponding to a
member of K will change its weight during the first k iterations of H . Thus, by Lemma
7.2.2, the maximum excess of Az = b is at least k ·wmin. It remains to observe that we can
once again use the algorithm given in the proof of Lemma 7.2.2 to find an assignment that
gives an excess of at least k · wmin. �

We now provide a useful association between weighted systems of linear equations
on Fn

2 and Fourier expansions of functions f : {−1,+1} → R. Let us rewrite (7.2), the

116

Fourier expansion of such a function, as

f (x) = c∅ +
∑
S∈F

cS

∏
i∈S

xi, (7.3)

where F = {∅ , S ⊆ [n] : cS , 0}.
Now associate the polynomial

∑
S∈F cS

∏
i∈S xi in (7.3) with a weighted system Az = b

of linear equations on Fn
2: for each S ∈ F , we have an equation

∑
i∈S zi = bS with weight

|cS |, where bS = 0 if cS is positive and bS = 1, otherwise. Conversely, suppose we
have a system Az = b of linear equations on Fn

2 in which each equation
∑

i∈S zi = bS is
assigned a weight wS > 0 and no pair of equations have the same left-hand side. This
system can be associated with the polynomial

∑
S∈F cS

∏
i∈S xi, where cS = wS , if bS = 0,

and cS = −wS , otherwise. The above associations provide a bijection between Fourier
expansions of functions f : {−1,+1} → R with c∅ = 0 and weighted systems of linear
equations on Fn

2. This bijection is of interest due to the following:

Proposition 7.2.7. An assignment z(0) = (z(0)
1 , . . . , z

(0)
n) of values to the variables of Az = b

maximizes the total weight of satisfied equations of Az = b if and only if x(0) = ((−1)z(0)
1 , . . . , (−1)z(0)

n)
maximizes f (x). Moreover, maxx∈{−1,+1}n f (x) − c∅ equals the maximum excess of Az = b.

Proof. The claims of this lemma easily follow from the fact that an equation
∑

i∈S zi = 0
is satisfied if and only if

∏
i∈S xi > 0, where xi = (−1)zi . �

7.2.2 Corollaries

This section contains a collection of corollaries of Theorem 7.2.6 establishing parameter-
ized complexity of special cases of Max-Lin2tlb, of Max-r-Sattlb, and of a wide class of
constraint satisfaction problems. In addition, we will prove that Max-Lin2tlb is in X[P]
and obtain a sharp lower bound on the maximum of a pseudo-boolean function.

Parameterized Complexity of Max-Lin2tlb

Corollary 7.2.8. Let p(n) be a fixed function such that p(n) = o(n). If m ≤ 2p(n) then Max-
Lin2tlb is fixed-parameter tractable. Moreover, a satisfying assignment can be found in

time g(k)mO(1) for some computable function g.

Proof. We may assume that m ≥ n > k > 1.Observe that m ≤ 2n/k implies m ≤ 2n/(k−1)−2.
Thus, by Theorem 7.2.6, if p(n) ≤ n/k, the answer to Max-Lin2tlb is yes, and there
is a polynomial algorithm to find a suitable assignment. Otherwise, n ≤ f (k) for some
function dependent on k only and Max-Lin2tlb can be solved in time 2 f (k)mO(1) by checking
every possible assignmen. �

117

Let ρi be the number of equations in Az = b containing zi, i = 1, . . . , n. Let ρ =
maxi∈[n] ρi and let r be the maximum number of variables in an equation of Az = b.
Crowston et al. [39] proved that Max-Lin2tlb is fixed-parameter tractable if either r ≤ r(n)
for some fixed function r(n) = o(n) or ρ ≤ ρ(m) for some fixed function ρ(m) = o(m).

For a given r = r(n), we have m ≤ ∑r
i=1

(
n
i

)
. By Corollary 23.6 in [77], m ≤ 2nH(r/n),

where H(y) = −y log2 y − (1 − y) log2(1 − y), the entropy of y. It is easy to see that if
y = o(n)/n, then H(y) = o(n)/n. Hence, if r(n) = o(n), then m ≤ 2o(n). By Corollary 23.5
in [77] (this result was first proved by Kleitman et al. [80]), for a given ρ = ρ(m) we have
m ≤ 2nH(ρ/m). Therefore, if ρ(m) = o(m) then m ≤ 2n·o(m)/m and, thus, m ≤ 2o(n) (as n ≤ m,
if n → ∞ then m → ∞ and o(m)/m → 0). Thus, both results of Crowston et al. [39]
follow from corollary 7.2.8.

Similarly to Corollary 7.2.8 it is easy to prove the following:

Corollary 7.2.9. Let 0 < a < 1 be a constant. If m < 2O(na) then Max-Lin2tlb has a kernel

with O(k1/(1−a)) variables.

By Corollary 7.2.8 it is easy to show that Max-Lin2tlb is in XP.

Proposition 7.2.10. Max-Lin2tlb can be solved in time O(mk+O(1)).

Proof. We may again assume m ≥ n > k > 1. As in the proof of Corollary 7.2.8, if
m ≤ 2n/k then the answer to Max-Lin2tlb is yes and a solution can be found in time mO(1).
Otherwise, 2n < mk and Max-Lin2tlb can be solved in time O(mk+2). �

In fact, it is possible to improve this result, as the next theorem shows.

Theorem 7.2.11. Max-Lin2tlb is in W[P].

To prove this theorem we make use of the following lemma from [55] (Lemma 3.8, p.
48). Here k(x) is the value of the parameter on an instance x ∈ Σ∗.

Lemma 7.2.12. A parameterized problem (Q, k) over the alphabet Σ is in W[P] if and only

if there are computable functions f , h : N→ N, a polynomial p(X), and a Y ⊆ Σ∗ × {0, 1}∗

such that:

(i) For all (x, y) ∈ Σ∗ × {0, 1}∗, it is decidable in time f (k(x)) · p(|x|) whether (x, y) ∈ Y.

(ii) For all (x, y) ∈ Σ∗ × {0, 1}∗, if (x, y) ∈ Y then |y| = h(k(x)) · ⌊log2 |x|⌋.

(iii) For every x ∈ Σ∗

x ∈ Q⇐⇒ there exists a y ∈ {0, 1}∗such that (x, y) ∈ Y.

118

Proof of Theorem 7.2.11. Recall from Lemma 7.2.2 that the maximum excess of Az = b

is at least k if and only if we can run algorithmH a number of times and get a total weight
of marked equations at least k.

Suppose we are given a sequence e1, . . . , el of equations to mark in each iteration ofH .
We can, at the i’th iteration ofH , mark equation ei as long as ei is still in the system. If we
are able to mark all the equations e1, . . . el, we can then check that the total weight of these
marked equations is at least k. If it is, then we know we have a yes-instance. Conversely, if
the system has a maximum excess of at least k, then there will be some sequence e1, . . . , el

that gives us a total weight of marked equations at least k. Furthermore, by integrality of
the weights, we may assume that l ≤ k. We use this idea to construct a set Y that satisfies
the conditions of Lemma 7.2.12.

Firstly we show that a sequence of l ≤ k equations can be encoded as a string y ∈
{0, 1}∗ of length 2k · ⌊log2 |x|⌋, where x is an instance of Max-Lin2tlb. Let the equations
be numbered from 1 to m, then we can express a sequence of equations e1, . . . el, as a
sequence of k integers between 0 and m (if l < k then we end the sequence with k − l

zeroes). Each integer between 0 and m can be expressed by a string in {0, 1}∗ of length at
most ⌈log2 m⌉ ≤ ⌈log2 |x|⌉, so certainly it can be expressed by a string of length 2⌊log2 |x|⌋.
Therefore we can express the k integers as a string of length 2k · ⌊log2 |x|⌋.

For an instance x of Max-Lin2tlb and a string y ∈ {0, 1}∗, let us call y a certificate for x

if |y| = 2k · ⌊log2 |x|⌋ and y encodes a sequence of k integers corresponding to a sequence
of equations e1, . . . , el in x, such that by marking each equation in turn in iterations ofH ,
we get a set of marked equations of weight at least k. It follows that x is a yes-instance
if and only if there exists a certificate for x. Furthermore we can check in polynomial
time whether y is a certificate of x by trying to convert y into a sequence of equations and
running algorithm H marking those equations. (This is in fact a stronger result than we
require for this proof - we only need that the algorithm is fixed-parameter tractable rather
than polynomial.)

We now let

Y = {(x, y) ∈ Σ∗ × {0, 1}∗|x is a yes-instance of Max-Lin2tlb and y is a certificate of x}

and let Q be the set of all yes-instances of Max-Lin2tlb. By definition of Y and the def-
inition of a certificate, conditions (ii) and (iii) of Lemma 7.2.12 are satisfied. As we can
determine in polynomial time whether y is a certificate for x, condition (i) is also satisfied.
Therefore, by Lemma 7.2.12, Max-Lin2tlb is in W[P].

�

119

Max-r-Lin2tlb, Max-r-Sattlb and Max r-CSP AA

Using Theorem 7.2.6 we can prove the following two results.

Corollary 7.2.13. Let r ≥ 2 be a fixed integer. Then Max-r-Lin2tlb has a kernel with

O(k log k) variables and can be solved in time 2O(k log k) + mO(1).

Proof. Observe that m ≤ nr and nr ≤ 2n/(k−1) − 2 if n ≥ c(r)k log2 k provided c(r) is
large enough (c(r) depends only on r). Thus, by Theorem 7.2.6, if n ≥ c(r)k log2 k

then the answer to Max-r-Lin2tlb is yes. Hence, we obtain a problem kernel with at
most c(r)k log2 k = O(k log k) variables and, therefore, can solve Max-r-Lin2tlb in time
2O(k log k) + mO(1). �

Corollary 7.2.14. Let r ≥ 2 be a fixed integer. Then there is a bikernel from Max-r-Sattlb
to Max-r-Lin2tlb with O(k log k) variables. Moreover, Max Exact r-SAT has a kernel

with O(k log k) variables and can be solved in time 2O(k log k) + mO(1).

Proof. Let F be an r-CNF formula with clauses C1, . . . ,Cm in the variables x1, x2, . . . , xn.
We may assume that xi ∈ {−1, 1}, where −1 corresponds to true. For F, following [5]
consider

g(x) =
∑
C∈F

[1 −
∏

xi∈var(C)

(1 + εixi)],

where var(C) is the set of variables of C, εi ∈ {−1, 1} and εi = 1 if and only if xi is in C.
It is shown in [5] that the answer to Max Exact r-SAT is yes if and only if there is a truth
assignment x0 such that g(x0) ≥ k.

Algebraic simplification of g(x) will lead us to Fourier expansion of g(x):

g(x) =
∑
S∈F

cS

∏
i∈S

xi, (7.4)

where F = {∅ , S ⊆ [n] : cS , 0, |S | ≤ r}. Thus, |F | ≤ nr. By Proposition 7.2.7,∑
S∈F cS

∏
i∈S xi can be viewed as an instance of Max r-Lin and, thus, we can reduce

Max Exact r-SAT into Max r-Lin in polynomial time (the algebraic simplification can
be done in polynomial time as r is fixed). By Corollary 7.2.13, Max r-Lin has a kernel
with O(k log k) variables. This kernel is a bikernel from Max Exact r-SAT to Max r-Lin.
Using this bikernel, we can solve Max Exact r-SAT in time 2O(k log k) + mO(1).

It remains to use the transformation described in [5] of a bikernel from Max Exact
r-SAT to Max r-Lin into a kernel of Max Exact r-SAT. This transformation gives us a
kernel with O(k log k) variables. �

In the Boolean Max-r-Constraint Satisfaction Problem (Max-r-CSP), we are given
a collection of Boolean functions, each involving at most r variables, and asked to find

120

a truth assignment that satisfies as many functions as possible. We will consider the
following parameterized version of Max-r-CSP. We are given a set Φ of Boolean func-
tions, each involving at most r variables, and a collection F of m Boolean functions, each
f ∈ F being a member of Φ, and each acting on some subset of the n Boolean variables
x1, x2, . . . , xn (each xi ∈ {−1, 1}). We are to decide whether there is a truth assignment to
the n variables such that the total number of satisfied functions is at least E + k2−r, where
E is the average value of the number of satisfied functions.

Corollary 7.2.15. Let r ≥ 2 be a fixed integer. Then there is a bikernel from Max-r-Sattlb
to Max-r-Lin2tlb with O(k log k) variables. Max r-CSP can be solved in time 2O(k log k) +

mO(1).

Proof. Following [6] for a boolean function f of r(f) ≤ r boolean variables xi1 , . . . , xir(f) ,

introduce a polynomial h f (x), x = (x1, x2, . . . , xn) as follows. Let V f ⊂ {−1, 1}r(f) denote
the set of all satisfying assignments of f . Then

h f (x) = 2r−r(f)
∑

(v1,...,vr(f))∈V f

[
r(f)∏
j=1

(1 + xi jv j) − 1].

Let h(x) =
∑

f∈F h f (x). It is easy to see (cf. [5]) that the value of h(x) at x0 is precisely
2r(s − E), where s is the number of the functions satisfied by the truth assignment x0, and
E is the average value of the number of satisfied functions. Thus, the answer to Max-r-
CSP is yes if and only if there is a truth assignment x0 such that h(x0) ≥ k. The rest of the
proof is similar to that of Corollary 7.2.14. �

121

Chapter 8

Future Work

In this thesis, we examined some digraph problems from parameterized perspective. We
also considered a new type of parameterization for constraint satisfaction problems and
investigated their parameterized complexity. As we wrap up the thesis, we propose some
open problems for future work.

Parameterized Digraph Problems

The O∗(3.72k)-algorithm in Chapter 3 is the current best for Directed k-Leaf and ob-
viously it can be improved. For undirected graphs, k-Leaf allows O∗(3.4575k)-algorithm
by Raible and Fernau [103]. Their algorithm employs the new paradigm of Measure
& Conquer to further develop the algorithm of [82]. Introducing non-standard measure
for sophisticated analysis of search-tree based algorithm, known as Measure & Conquer,
turned out to be a powerful approach. Although our algorithm for Directed k-Leaf uses
non-standard measure implicitly, this possibility can be pursued more aggressively. An-
other interesting question is whether the quadratic kernel for RootedDirected k-Leaf [42]
can be improved to a linear one. It seems that the quadratic order is inevitable with re-
spect to the reduction rules presented in [42]. We may need a new insight to answer this
question.

For the problems k-Path and k-Out-Tree, there is a significant gap between the best
randomized algorithm of running time O∗(2k) and deterministic algorithms of running
time O∗(4k) and O∗(6.14k). The randomized algorithm [107, 84] converts k-Path (and
other parameterized problems) into the problem of detecting a multilinear monomial in a
degree-k polynomial, which is represented as a canonical arithmetic circuit. Then, a suit-
able algebraic structure provides elements to the variables so that a k-multilinear mono-
mial is ’properly colored’ with good probability by a random assignment of elements.
To check whether some monomial is ’properly colored’, polynomial identity testing is

122

executed. The natural questions are whether such an algorithm can be made faster and
whether it can be derandomized. The answer is negative for both questions if one consid-
ers the approach as is suggested in [107, 84]. Their randomized algorithm is equipped with
polynomial identity testing, and polynomial-time derandomization of it implies strong cir-
cuit lower bounds [107]. Moreover, it is proved in [84] that essentially O∗(2k) cannot be
improved by choosing a different algebraic structure. The early O∗(23k/2)-algorithm of
[83] looks more amenable to derandomization as it does not come with polynomial iden-
tity testing.

On the other hand, the deterministic O∗(4k)-algorithm [31] and our O∗(6.14k)-algorithm
use divide-and-conquer strategy. In every step, the length of the path we want to find
halves and we explore (roughly) 2k possibilities that a k-path is shared by two disjoint
parts of the input graph. As a result, it seems inevitable to have constant of 4 within the
current frame of divide-and-conquer. For k-Out-Tree, the situation is similar except that
the size of the (out-)tree we want to find does not halve. With this difference in mind, 6.14
is essentially the best possible constant as well. As is pointed out in [83], one possibility
to improve the constant is to reduce the number 2k of trials in every step, but it would re-
quire a complicated re-usage of the computation. Even if this is possible, which we doubt,
the resulting running time would be O∗((2 + ε)k). To summarize, we believe that closing
the gap between the best randomized and deterministic algorithms would require a novel
idea. We also mention the recent breakthrough result by Björklund [19] for Hamiltonic-
ity Detection. The author presents a Monte Carlo algorithm of running time O∗(1.657n).
Inspired by this, obviously one can ask if 2k barrier is truly impregnable for k-Path and
k-Out-Tree.

The problem Directed k-Internal is much related to k-Out-Tree. The algorithm in
Chapter 4 also exploits this observation. Moreover, the recent result by Fomin et al. [58]
successfully extends the idea of divide-and-conquer developed for k-Path and k-Out-Tree
[31, 36] and applies it to Directed k-Internal, which allows them to avoid exponentially
many iterations of k-Out-Tree algorithm as we did in Section 5.6. It is quite likely that
a new idea and consequent algorithmic improvement for k-Path and k-Out-Tree will give
an initiative for a better algorithm on Directed k-Internal. On the other hand, aiming at
a sub-quadratic kernel for Directed k-Internal is indeed a worthwhile challenge. This
open problem is also motivated by the result of [56], which exhibited a 3k-kernel of the
problem k-Internal Spanning Tree for undirected graphs.

Parameterized Permutation CSPs Above Average

The problems Linear Ordering and Betweenness from Chapter 6 can be viewed as a
part of wider family of permutation constraint satisfaction problems. Let Sr be the set of

123

all permutations on {1, 2, . . . , r}. A permutation constraint satisfaction problem (permCSP)
of arity r is specified by a subset Π ⊆ Sr. An instance of permCSP consists of a set V

of n variables and a constraint set over V , which is a multiset of ordered r-tuples of V .
The goal of permCSP(Π) is to find a linear ordering α of V that maximizes the number of
Π-satisfied constraints. Here, a constraint C isΠ-satisfied by α if C follows a permutation
in Π under α.

Now Linear Ordering and Betweenness are the problem permCSP(Π), where Π are
{12} and {123, 321} respectively. Observe that the probability of a constraint to be Π-
satisfied by a random ordering α equals |Π |/r!. Hence, there is a linear ordering α sat-
isfying |Π |/r! fraction of the constraints. It is not known whether any polynomial-time
approximation for permCSP(Π) beyond this obvious threshold is attainable, and it’s con-
jectured to be approximation resistant, see [30]. In case of r ≤ 3, it is known that approx-
imating beyond the fraction |Π |/r! is Unique-Games hard [66, 30].

For the special case Π = {12} or {123, 321}, the parameterized problem to satisfy
k additional constraints beyond the average is fixed-parameter tractable by the result of
Chapter 6. The obvious next step is to extend the parameterized problem for general Π .
In other words, given a constraint set C, we ask if |Π |r! |C| + k constraints can be Π-satisfied
by some linear ordering and whether this problem is fixed-parameter tractable. For r = 3,
this problem is shown to be fixed-parameter tractable, and even to admit quadratic kernel
in [72]. Getting beyond r = 3 seems to be far from trivial extension of the result in [72].

Parameterized CSPs Above SDP-based Approximation

Another interesting direction for research is the parameterized constraint satisfaction
problems above the approximation guarantee by semi-definite programming (SDP) al-
gorithm. For many constraint satisfaction problems, SDP-based randomized rounding
algorithm provides the best known approximation ratio. Let us consider Max Cut as
an exemplary problem. This problem can be approximated within .878 of the optimum
in polynomial time by randomly rounding the optimal solution of its semi-definite pro-
gram formulation [62]. Since the work of [62], a vast body of literature has explored the
power of SDP-based approach for better approximation. It is worth noting that SDP-based
rounding algorithm guarantees an approximation ratio with respect to the SDP optimum.
That is, .878-approximation by Goemans and Williamson guarantees a cut of size at least
.878 · S DP for Max Cut, where SDP is the optimal solution of the semi-definite program
for Max Cut. As we can solve SDP up to optimality (or at least, as close to the optimum
as necessary for our purpose) in polynomial time, it is reasonable to ask how much does it
take to obtain a solution strictly larger than this approximation guarantee. More precisely,
we want to find a cut over which at least .878 · S DP + k edges cross, if one exists, and to

124

know whether this can be done in fpt-time. Observe that the same question can be asked
for general constraint satisfaction problems. A weaker version of the suggested parame-
terization has been studied by Kim and Williams [79], where we take the size OPT of an
optimal cut in replacement of S DP.

The .878 ratio is only tight when the maxcut is about 84.4% of all edges, and for any
other percentage, it is known that better approximations are possible. A series of works
has focused on calculating the precise tradeoff between the maximum cut value of a graph
and the achievable approximation ratio, culminating in an explicit determination of the
tradeoff for every possible fraction of the cut value, assuming Unique Game Conjecture:

Theorem 8.0.16 (O’Donnell and Wu [98]). For 1
2 ≤ s ≤ c ≤ 1, we call the pair (c, s) an

SDP gap if there exists a graph G with the SDP optimal value at least c and the size of a

maximum cut at most s. The SDP gap curve is defined by GapS DP(c) = inf{s : (c, s) is an

SDP gap}. Then there is a function S : [1
2 , 1]→ [1

2 , 1] such that GapS DP(c) = S (c) for all

c. Here, c and s respectively denote the fraction of SDP optimal value and maximum cut

in the sum of edge weights in G.

Let S : [1
2 , 1] → [1

2 , 1] be any function such that when we are given an m-edge graph
with an optimal SDP value of cm, it is possible to efficiently find a cut of size S (c)m using
some SDP rounding. Can we find a cut of size S (c)m + k, provided it exists? We believe
that this problem should be fixed-parameter tractable.

125

Bibliography

[1] N. Alon, M. Bădoiu, E. D. Demaine, M. Farach-Colton, M. Hajiaghayi, and
A. Sidiropoulos. Ordinal embeddings of minimum relaxation: general properties,
trees, and ultrametrics. ACM Trans. Algorithms, 4(4):Art. 46, 21, 2008.

[2] N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Better algorithms
and bounds for directed maximum leaf problems. In FSTTCS 2007: Foundations

of software technology and theoretical computer science, volume 4855 of Lecture

Notes in Comput. Sci., pages 316–327. Springer, Berlin, 2007.

[3] N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Parameterized al-
gorithms for directed maximum leaf problems. In ICALP, volume 4596 of Lecture

Notes in Comput. Sci., pages 352–362. Springer, Berlin, 2007.

[4] N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Spanning directed
trees with many leaves. SIAM J. Discrete Math., 23(1):466–476, 2008/09.

[5] N. Alon, G. Gutin, E. J. Kim, S. Szeider, and A. Yeo. Solving MAX-r-SAT above
a tight lower bound. In Algorithmica, volume To appear, 2010.

[6] N. Alon, G. Gutin, and M. Krivelevich. Algorithms with large domination ratio. J.

Algorithms, 50(1):118–131, 2004.

[7] N. Alon and J. H. Spencer. The probabilistic method. Wiley-Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons Inc., Hoboken, NJ,
third edition, 2008. With an appendix on the life and work of Paul Erdős.

[8] N. Alon, R. Yuster, and U. Zwick. Color-coding. J. Assoc. Comput. Mach.,
42(4):844–856, 1995.

[9] H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum cardinality
matching in a bipartite graph in time O(n1.5

√
m/ log n). Inform. Process. Lett.,

37(4):237–240, 1991.

126

[10] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the
truth of certain quantified Boolean formulas. Inform. Process. Lett., 8(3):121–123,
1979.

[11] A. S. Asratian, T. M. J. Denley, and R. Häggkvist. Bipartite graphs and their appli-

cations, volume 131 of Cambridge Tracts in Mathematics. Cambridge University
Press, Cambridge, 1998.

[12] M. Bădoiu, E. D. Demaine, M. Hajiaghayi, A. Sidiropoulos, and M. Zadimoghad-
dam. Ordinal embedding: Approximation algorithms and dimensionality reduc-
tion. In APPROX-RANDOM, pages 21–34, 2008.

[13] J. Bang-Jensen and G. Gutin. Digraphs. Springer Monographs in Mathematics.
Springer-Verlag London Ltd., London, second edition, 2009. Theory, algorithms
and applications.

[14] J. Barát. Directed path-width and monotonicity in digraph searching. Graphs

Combin., 22(2):161–172, 2006.

[15] C. Berge. Sur le couplage maximum d’un graphe. C. R. Acad. Sci. Paris, 247:258–
259, 1958.

[16] D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. DAG-width and parity games.
In STACS 2006, volume 3884 of Lecture Notes in Comput. Sci., pages 524–536.
Springer, Berlin, 2006.

[17] T. Beyer and S. M. Hedetniemi. Constant time generation of rooted trees. SIAM J.

Comput., 9(4):706–712, 1980.

[18] Y. Bilu and N. Linial. Monotone maps, sphericity and bounded second eigenvalue.
J. Combin. Theory Ser. B, 95(2):283–299, 2005.

[19] A. Björklund. Determinant sums for undirected hamiltonicity. In FOCS, page To
appear, 2010.

[20] J. Blum, M. Ding, A. Thaeler, and X. Cheng. Connected dominating set in sensor
networks and MANETs. In Handbook of combinatorial optimization. Supplement

Vol. B, pages 329–369. Springer, New York, 2005.

[21] T. S. Blyth and E. F. Robertson. Basic linear algebra. Springer Undergraduate
Mathematics Series. Springer-Verlag London Ltd., London, 1998. Revised reprint
of ıt Matrices and vector spaces [Chapman and Hall, New York, 1986; MR0866312
(89b:00001b)].

127

[22] H. L. Bodlaender. Treewidth: Algorithmic techniques and results. pages 19–36,
1997.

[23] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems
without polynomial kernels (extended abstract). In ICALP (1), pages 563–574,
2008.

[24] H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint cycles and
disjoint paths. In ESA, pages 635–646, 2009.

[25] A. Bonami. Étude des coefficients de Fourier des fonctions de Lp(G). Ann. Inst.

Fourier, 20(2):335–402, 1970.

[26] J. A. Bondy and U. S. R. Murty. Graph theory, volume 244 of Graduate Texts in

Mathematics. Springer, New York, 2008.

[27] P. S. Bonsma, T. Brueggemann, and G. J. Woeginger. A faster FPT algorithm
for finding spanning trees with many leaves. In Mathematical foundations of com-

puter science 2003, volume 2747 of Lecture Notes in Comput. Sci., pages 259–268.
Springer, Berlin, 2003.

[28] P. S. Bonsma and F. Dorn. An fpt algorithm for directed spanning k-leaf. CoRR,
abs/0711.4052, 2007.

[29] P. S. Bonsma and F. Dorn. Tight bounds and a fast fpt algorithm for directed max-
leaf spanning tree. In ESA, pages 222–233, 2008.

[30] M. Charikar, V. Guruswami, and R. Manokaran. Every permutation CSP of arity
3 is approximation resistant. In Computational Complexity, 2009. CCC ’09. 24th

Annual IEEE Conference on, pages 62–73, July 2009.

[31] J. Chen, J. Kneis, S. Lu, D. Mölle, S. Richter, P. Rossmanith, S.-H. Sze, and
F. Zhang. Randomized divide-and-conquer: improved path, matching, and packing
algorithms. SIAM J. Comput., 38(6):2526–2547, 2009.

[32] B. Chor, M. Fellows, and D. Juedes. Linear kernels in linear time, or how to save
k colors in O(n2) steps. In Graph-theoretic concepts in computer science, volume
3353 of Lecture Notes in Comput. Sci., pages 257–269. Springer, Berlin, 2004.

[33] B. Chor and M. Sudan. A geometric approach to betweenness. SIAM J. Discrete

Math., 11(4):511–523 (electronic), 1998.

128

[34] F. R. K. Chung. Separator theorems and their applications. In Paths, flows,

and VLSI-layout (Bonn, 1988), volume 9 of Algorithms Combin., pages 17–34.
Springer, Berlin, 1990.

[35] D. A. Cohen, M. C. Cooper, P. G. Jeavons, and A. A. Krokhin. The complexity of
soft constraint satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.

[36] N. Cohen, F. V. Fomin, G. Gutin, E. J. Kim, S. Saurabh, and A. Yeo. Algorithm for
finding k-vertex out-trees and its application to k-internal out-branching problem.
J. Comput. Syst. Sci., 76(7):650–662, 2010.

[37] D. Coppersmith. Solving linear equations over gf(2): block lanczos algorithm.
Linear Algebra and its Applications, 192:33 – 60, 1993.

[38] D. Cox, M. Burmeister, E. Price, S. Kim, and R. Myers. Radiation hybrid mapping:
a somatic cell genetic method for constructing high-resolution maps of mammalian
chromosomes. Science, 250(4978):245–250, 1990.

[39] R. Crowston, G. Gutin, and M. Jones. Note on max lin-2 above average. Inf.

Process. Lett., 110(11):451–454, 2010.

[40] R. Crowston, G. Gutin, M. Jones, E. J. Kim, and I. Z. Ruzsa. Systems of linear
equations over F2 and problems parameterized above average. In SWAT, pages
164–175, 2010.

[41] J. Daligault, G. Gutin, E. J. Kim, and A. Yeo. Fpt algorithms and kernels for the
directed k-leaf problem. J. Comput. Syst. Sci., 76(2):144–152, 2010.

[42] J. Daligault and S. Thomassé. On finding directed trees with many leaves. In
IWPEC, pages 86–97, 2009.

[43] P. Dankelmann, G. Gutin, and E. J. Kim. On complexity of minimum leaf out-
branching problem. Discrete Appl. Math., 157(13):3000–3004, 2009.

[44] R. de Wolf. A brief introduction to fourier analysis on the boolean cube. Theory of

Computing, Graduate Surveys, 1:1–20, 2008.

[45] A. Demers and A. Downing. Minimum leaf spanning tree. In US Patent, volume
6,105,018. 2000.

[46] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-
Verlag, Berlin, third edition, 2005.

129

[47] G. Ding, T. Johnson, and P. Seymour. Spanning trees with many leaves. J. Graph

Theory, 37(4):189–197, 2001.

[48] R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, New
York, 1999.

[49] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness.
I. Basic results. SIAM J. Comput., 24(4):873–921, 1995.

[50] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1:195–
207, 1971/72.

[51] V. Estivill-Castro, M. R. Fellows, M. A. Langston, and F. A. Rosamond. Fpt is
p-time extremal structure i. In ACiD, pages 1–41, 2005.

[52] M. Fellows, P. Heggernes, F. Rosamond, C. Sloper, and J. A. Telle. Finding k

disjoint triangles in an arbitrary graph. In Graph-theoretic concepts in computer

science, volume 3353 of Lecture Notes in Comput. Sci., pages 235–244. Springer,
Berlin, 2004.

[53] M. R. Fellows, C. McCartin, F. A. Rosamond, and U. Stege. Coordinatized ker-
nels and catalytic reductions: an improved FPT algorithm for max leaf spanning
tree and other problems. In FST TCS 2000: Foundations of software technology

and theoretical computer science (New Delhi), volume 1974 of Lecture Notes in

Comput. Sci., pages 240–251. Springer, Berlin, 2000.

[54] H. Fernau, F. V. Fomin, D. Lokshtanov, D. Raible, S. Saurabh, and Y. Villanger.
Kernel(s) for problems with no kernel: On out-trees with many leaves. In STACS,
pages 421–432, 2009.

[55] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.

[56] F. V. Fomin, S. Gaspers, S. Saurabh, and S. Thomassé. A linear vertex kernel for
maximum internal spanning tree. In ISAAC, pages 275–282, 2009.

[57] F. V. Fomin, F. Grandoni, and D. Kratsch. Solving connected dominating set faster
than 2n. Algorithmica, 52(2):153–166, 2008.

[58] F. V. Fomin, D. Lokshtanov, F. Grandoni, and S. Saurabh. Sharp separation and
applications to exact and parameterized algorithms. In LATIN, pages 72–83, 2010.

[59] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with 0(1)
worst case access time. J. ACM, 31(3):538–544, 1984.

130

[60] G. Galbiati, A. Morzenti, and F. Maffioli. On the approximability of some maxi-
mum spanning tree problems. Theoret. Comput. Sci., 181(1):107–118, 1997. Latin
American Theoretical INformatics (Valparaı́so, 1995).

[61] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theoret. Comput. Sci., 1(3):237–267, 1976.

[62] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM,
42(6):1115–1145, 1995.

[63] S. Goss and H. Harris. New methods for mapping genes in human chromosomes.
Nature, 255:680–684, 1975.

[64] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math., 97:1061–1083, 1975.

[65] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization.
SIGACT News, 38(1):31–45, 2007.

[66] V. Guruswami, R. Manokaran, and P. Raghavendra. Beating the random ordering is
hard: Inapproximability of maximum acyclic subgraph. In FOCS, pages 573–582,
2008.

[67] G. Gutin, E. J. Kim, M. Mnich, and A. Yeo. Betweenness parameterized above
tight lower bound. J. Comput. Syst. Sci., To appear, 2010.

[68] G. Gutin, E. J. Kim, S. Szeider, and A. Yeo. A probabilistic approach to problems
parameterized above or below tight bounds. J. Comput. Syst. Sci., To appear, 2010.

[69] G. Gutin, A. Rafiey, S. Szeider, and A. Yeo. The linear arrangement problem pa-
rameterized above guaranteed value. Theory Comput. Syst., 41(3):521–538, 2007.

[70] G. Gutin, I. Razgon, and E. J. Kim. Minimum leaf out-branching and related prob-
lems. Theoret. Comput. Sci., 410(45):4571–4579, 2009.

[71] G. Gutin, S. Szeider, and A. Yeo. Fixed-parameter complexity of minimum profile
problems. Algorithmica, 52(2):133–152, 2008.

[72] G. Gutin, L. van Iersel, M. Mnich, and A. Yeo. All ternary permutation constraint
satisfaction problems parameterized above average have polynomial kernels. Tech.
Report at http://arxiv.org/abs/1004.1956, 2010.

[73] J. Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

131

[74] J. Håstad and S. Venkatesh. On the advantage over a random assignment. Random

Structures Algorithms, 25(2):117–149, 2004.

[75] K. Iwama. Cnf satisfiability test by counting and polynomial average time. SIAM

J. Comput., 18(2):385–391, 1989.

[76] T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed tree-width. J.

Comb. Theory, Ser. B, 82(1):138–154, 2001.

[77] S. Jukna. Extremal combinatorics. Texts in Theoretical Computer Science. An
EATCS Series. Springer-Verlag, Berlin, 2001. With applications in computer sci-
ence.

[78] M. Karpinski and W. Schudy. Approximation schemes for the between-
ness problem in tournaments and related ranking problems. Tech. Report at
http://arxiv.org/abs/0911.2214, 2009.

[79] E. J. Kim and R. Williams. Improved parameterized algorithms for constraint sat-
isfaction. Tech. Report at http://arxiv.org/abs/1008.0213, 2010.

[80] D. J. Kleitman, J. Shearer, and D. Sturtevant. Intersections of k-element sets. Com-

binatorica, 1(4):381–384, 1981.

[81] D. J. Kleitman and D. B. West. Spanning trees with many leaves. SIAM J. Discrete

Math., 4(1):99–106, 1991.

[82] J. Kneis, A. Langer, and P. Rossmanith. A new algorithm for finding trees with
many leaves. In ISAAC, pages 270–281, 2008.

[83] I. Koutis. Faster algebraic algorithms for path and packing problems. In ICALP

(1), pages 575–586, 2008.

[84] I. Koutis and R. Williams. Limits and applications of group algebras for parame-
terized problems. In ICALP (1), pages 653–664, 2009.

[85] S. Kreutzer and S. Ordyniak. Digraph decompositions and monotonicity in digraph
searching. In WG, pages 336–347, 2008.

[86] A. Krokhin, P. Jeavons, and P. Jonsson. Constraint satisfaction problems on inter-
vals and lengths. SIAM J. Discrete Math., 17(3):453–477 (electronic), 2004.

[87] M. Lampis, G. Kaouri, and V. Mitsou. On the algorithmic effectiveness of digraph
decompositions and complexity measures. In ISAAC, pages 220–231, 2008.

132

[88] N. Linial and D. Sturtevant. Unpublished result. 1987.

[89] H.-I. Lu and R. Ravi. Approximating maximum leaf spanning trees in almost linear
time. J. Algorithms, 29(1):132–141, 1998.

[90] M. Mahajan and V. Raman. Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms, 31(2):335–354, 1999.

[91] M. Mahajan, V. Raman, and S. Sikdar. Parameterizing above or below guaranteed
values. J. Comput. System Sci., 75(2):137–153, 2009.

[92] Y. Makarychev. Simple linear time approximation algorithm for betweenness.
Technical Report MSR-TR-2009-74, Microsoft Research New England, June 2009.

[93] M. Naor, L. J. Schulman, and A. Srinivasan. Splitters and near-optimal derandom-
ization. In FOCS, pages 182–191, 1995.

[94] R. Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford

Lecture Series in Mathematics and its Applications. Oxford University Press, Ox-
ford, 2006.

[95] A. Nilli. Perfect hashing and probability. Combinatorics, Probability&Computing,
3:407–409, 1994.

[96] J. Obdrzálek. Dag-width: connectivity measure for directed graphs. In SODA,
pages 814–821, 2006.

[97] R. O’Donnell. Some topics in analysis of boolean functions. In STOC, pages 569–
578, 2008.

[98] R. O’Donnell and Y. Wu. An optimal sdp algorithm for max-cut, and equally
optimal long code tests. In STOC, pages 335–344, 2008.

[99] J. Opatrný. Total ordering problem. SIAM J. Comput., 8(1):111–114, 1979.

[100] R. Otter. The number of trees. Ann. Math., 49:583–599, 1948.

[101] E. Prieto and C. Sloper. Either/or: Using vertex cover structure in designing fpt-
algorithms - the case of k-internal spanning tree. In WADS, pages 474–483, 2003.

[102] E. Prieto and C. Sloper. Reducing to independent set structure – the case of k-
internal spanning tree. Nord. J. Comput., 12(3):308–318, 2005.

[103] D. Raible and H. Fernau. An amortized search tree analysis for k-leaf spanning
tree. In SOFSEM, pages 672–684, 2010.

133

[104] R. Solis-Oba. 2-approximation algorithm for finding a spanning tree with maxi-
mum number of leaves. In ESA, pages 441–452, 1998.

[105] Y. Villanger, P. Heggernes, C. Paul, and J. A. Telle. Interval completion is fixed
parameter tractable. SIAM J. Comput., 38(5):2007–2020, 2008/09.

[106] V. Vovk. Private communication. August, 2009.

[107] R. Williams. Finding paths of length k in O∗(2k) time. Inf. Process. Lett.,
109(6):315–318, 2009.

134

