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Abstract

Several logical languages have been considered in AI for en-
coding compactly preference relations over a set of alterna-
tives. In this paper, we analyze both the expressiveness and
the spatial efficiency (succinctness) of such preference rep-
resentation languages. The first issue is concerned with the
nature of the preorders that can be encoded (for instance,
all preorders, all complete preorders). The second issue is
about how succinctly a preference relation can be expressed
in those languages. We give polynomial-size translations in
some cases, and prove the impossibility of such translations
in other cases.

Introduction
As soon as decision making is concerned, one has to rep-
resent the preferences of the agent over the set of feasi-
ble alternatives. This applies to a large variety of domains,
such as decision-theoretic planning, combinatorial auctions,
game playing, group decision making (including resource
sharing and vote), and agent coordination (including coop-
eration, negotiation, and communication).

In the following, we assume that the set A of feasible al-
ternatives is fixed (and finite). There are several possible
ways for modeling preference over A; however, most mod-
els fall in one of these two classes:

• utilitarian preferences consist of a utility function u from
A to a numerical scale (generally IR);

• ordinal preferences consist of a preorder � on A.

In many real-world domains, the set of alternatives is the
set of assignments of a value to each of a given set of vari-
ables. In such cases, the alternatives are exponentially many.
It is not reasonable to ask agents to report their preference in
an explicit way when the set of alternatives is exponentially
large, as this amounts to listing the exponentially many al-
ternatives together with their utility assessment or their rank-
ing.

For this reason, AI researchers have been more and
more concerned with languages for preference representa-
tion aiming at enabling a succinct representation of the de-
scription of the problem, without having to enumerate a
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prohibitive number of alternatives. Such preference rep-
resentation languages are often built up on propositional
logic, and allow for a much more concise representation
of the preference structure than an explicit enumeration,
while preserving a good readability and hence a similarity
with the way agents express their preferences in natural lan-
guage. The latter point is of the utmost value in the per-
spective of preference elicitation, which is typically a dif-
ficult problem when the set of alternatives has exponen-
tially many elements, due to its combinatorial nature. In
this paper we choose to consider only languages based on
full propositional logic, therefore we leave graphical lan-
guages for utility representation (Bacchus & Grove 1995;
Boutilier, Bacchus, & Brafman 2001; Gonzales & Perny
2004), CP-nets1 (Boutilier et al. 1999; Domshlak & Braf-
man 2002), and valued constraint satisfaction (Bistarelli et
al. 1999) to a further study.

A fundamental issue is how to choose among the many
preference representation languages. Many parameters are
relevant to such a choice. Some of them are domain-
dependent (e.g., preference may be easier to express in
one language than in another one for a specific applica-
tion). Among the domain-independent ones are expressive-
ness and succinctness. On the one hand, assumptions are
usually made about the nature of preferences (e.g., prefer-
ences are often considered completely ordered) so it is es-
sential to choose a representation language suited to such
structural assumptions, i.e., allowing for the representation
of the expected kind of preorder. On the other hand, the
spatial efficiency of the languages, which is their ability to
represent information in little space (Cadoli et al. 1996),
must also be considered. Indeed, a language in which a
given ordering can be expressed using only exponentially
long expressions is not only problematic from a computa-
tional point of view (a large amount of memory is required
to represent orderings) but also indicates that the language is
intuitively not suited for representing such an ordering. On
the contrary, the motivation of using preference languages
for representing orderings � is to avoid explicitly storing
the fact that M � M ′ for each ordered pair of alternatives

1CP-nets are nevertheless close to the language of ceteris
paribus statements considered in this paper. We will return on it
later.
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(M, M ′) in A for which the relation holds. If representing
the ordering requires exponential space in a language, how-
ever, the gain is lost and the explicit representation may be
even better.

In this paper, we investigate both the expressiveness and
the relative space efficiency of preference languages. While
it is known that some orderings require exponential space in
the explicit form but are more compact in preference repre-
sentation languages, no result is known to the authors about
comparing the ability of the languages to represent order-
ings compactly. The results of this paper are of two kinds:
the first results show that all orderings expressed in a lan-
guage L1 can be translated into language L2 with a polyno-
mially large increase of size; the second ones prove that such
a translation is not always possible. In the first case, the lan-
guage L2 is at least as good as language L1, as it can poly-
nomially express the same orderings L1 can polynomially
express. In the second case, this is not true; as a result, L2 is
not as good as L1, as some orderings are polynomial in L1

but exponential in L2. Some pairs of preference languages
L1 and L2 can also be incomparable, in the sense that some
orderings are exponential in the first one but polynomial in
the second one, while the inverse holds for other preference
relations. Given a set of computational tasks (e.g., determin-
ing whether a world is undominated) which can be solved
with the same computation costs when preferences are en-
coded in two different languages, it is natural for efficiency
reasons to prefer the language enabling the more compact
encoding.

Encoding preference relations (for various uses) must not
be confused with taking advantage of preferential informa-
tion for defining inference (which is another issue, even if it
is related to preference representation). If some problems in
the two fields are similar (e.g., determining whether a deci-
sion is undominated is just the model checking problem for
nonmonotonic KR formalisms), this is not the case for all of
them. For instance, it can make sense to determine the diam-
eter of a preference ordering, or the number of its connected
components (since this reflects in some sense how refined
the preferences are) while there is no significant counterpart
for it when inference is concerned.

The difference between the two objectives is very salient
in light of the translatability functions used for compar-
ing the spatial efficiency of the logic-based languages we
consider. When inference is concerned, it is sufficient to
preserve the set of preferred models (or the set of conse-
quences of preferred models over the original language); this
is reflected in the few notions of polyspace translatability
which can be found in the literature (Cadoli et al. 1996;
Gogic et al. 1995; Gottlob 1995; Janhunen 1998). Relaxing
the polyspace requirement, every inference relation from a
propositional base which has a preferred model semantics
can be turned into an equivalent base classically interpreted
(any base whose classical models are the preferred models
of the original base does the job). When the purpose is pref-
erence representation, such a translation is impossible in the
general case (it is only possible when the set of alternatives
quotiented by the equivalence relation induced by the pre-
order has two elements). Indeed, we need a much stronger

notion of translatability when preference representation is
concerned (the whole preorder must be preserved, not only
the set of undominated elements). As a corollary, existing
translability results for inference cannot be used as such for
our purpose.

The aforementioned difference between encoding a pref-
erence relation over a set of possible alternatives or possi-
ble worlds, and using preferential information for defining
or controlling inference, is the reason why we do not con-
sider in this paper “preference-based” approaches to logic
programming or default logic (see for instance (Brewka &
Eiter 1999; Delgrande, Schaub, & Tompits 2003)). In these
approaches, preference bears on syntactical items (rules) and
is used for discriminating among answer sets (or extensions)
so as to produce “preferred” ones, but not to produce a full
ordering on the set of all possible interpretations2 (note, by
the way, that the word “preference” in these approaches does
not have exactly the same meaning as the decision-theoretic
one).

The paper is organized as follows. In the next section, we
state the notations used in this paper. The following section
contains a panorama of the propositional preference repre-
sentation languages so far studied in the literature. The re-
sults of this paper are summarized in another section; due
to lack of space, full proofs are omitted and we only de-
scribe succinctly the proof methodology and give a few
proof sketches. In the last section of the paper, we point
out some further issues.

Preliminaries
In this paper, L is a propositional language built upon a fi-
nite set of propositional variables V AR = {x1, . . . , xn},
the usual connectives, and the symbols > (tautology) and
⊥ (contradiction). A literal is a propositional variable or
its negation. W = 2V AR is the set of all interpretations
(worlds) over V AR. Interpretations are denoted by M , M ′

etc. They are represented as tuples of literals over V AR; for
instance, if V AR = {a, b, c, d}, then M = [a,¬b,¬c, d] is
the interpretation mapping a and d to true, and b and c to
false. If a world M satisfies a formula G ∈ L, we write
M |= G. Mod(G) and V ar(G) denote the set of models of
G and the set of variables mentioned in G, respectively. If
X ⊆ W then Form(X) denotes the formula – unique up to
logical equivalence – such that Mod(Form(X)) = X .

Propositional Languages for Preference
Representation

The relative preference of alternatives can be expressed in
several ways. We will not discuss here the pros and cons of
each – this important question has been discussed for long
by researchers in decision theory and cognitive psychology.
Rather, we investigate how good they are in expressing a
given preference ordering in little space. Most preference
relation can be formalized either as an utilitarian preference

2This does not truly apply to the recent work on logic program-
ming with ordered disjunction (Brewka 2002); more on ordered
disjunction will be given later in the paper.
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(a function giving the goodness of the alternatives) or as an
ordinal preference (a binary relation over the pairs of alter-
natives).

In this paper, we mainly focus on this second kind of pref-
erences. A preference relation � is a preorder, i.e., a reflex-
ive and transitive binary relation on A. M � M ′ means that
alternative M is at least as good (to the agent) as alternative
M ′. Such a relation � is not necessarily complete, that is,
it may be that neither M � M ′ nor M ′ � M holds for a
pair of alternatives M and M ′ in A. We note M � M ′ for
M � M ′ and not (M � M ′) (strict preference of M over
M ′), and M ∼ M ′ for M � M ′ and M ′ � M (indiffer-
ence). It is important to note that M ∼ M ′ means that the
agent takes M and M ′ to be equally preferred, while the in-
comparability between M and M ′ (M 6� M ′ and M ′ 6� M )
simply means that no preference between them is expressed.

These definitions are about preferences over an arbitrary
set of alternatives A. In this paper, we consider proposi-
tional languages expressing preferences: such languages ex-
press preferences over the set of possible interpretations W
over a given alphabet V AR. A refinement of this definition
is that of assuming that the set of possible alternatives ex-
cludes some interpretations of W . In this case, we assume
that a formula K is given: this formula represents “integrity
constraints” on the set of feasible alternatives, i.e., the only
interpretations we accept as possible alternatives are those
of Mod(K), i.e., A = Mod(K). For instance, in a decision
making problem consisting of recruiting at least one and at
most two of three candidates a, b and c, the feasible alterna-
tives are the models of K = (a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c).

Even if we focus on ordinal preference in this paper, we
sometimes nevertheless make use of utility functions u, but
only because utility functions are a way among others of
encoding complete preference relations: namely, each u in-
duces �u defined by M �u M ′ iff u(M) ≥ u(M ′).

We now briefly recall the propositional languages for
preference representation we study. In the following, the for-
mulas Gi are propositional formulas representing elemen-
tary goals. The input of a logically-represented preference
relation is a pair ∆ = 〈K, GB〉 where K is the proposi-
tional formula restricting the possible alternatives (the in-
tegrity constraints) and GB (the goal base) is a set of ele-
mentary goals, generally associated with extra data such as
weights, priorities, contexts or distances. �K,GB (or simply
�GB when there is no risk of ambiguity) denotes the prefer-
ence relation induced by GB over Mod(K).

Penalties (Rpenalties)

In this natural and frequently used preference representation
language, the agent expresses her preferences in terms of
a set of propositional formulas that she wants to be satis-
fied. In order to compare alternatives (models), formulas are
associated with weights (usually, numbers), which tell how
important the satisfaction of the formula is considered.

Formally, the preferences of an agent are expressed as a
finite set of goals, where each goal is a propositional formula
with an associated weight. The complete preference is given
by a set of these goals: GB = {〈α1, G1〉, . . . , 〈αn, Gn〉},

where each αi is an integer and each Gi is a propositional
formula.

The degree of preference of a model is measured as fol-
lows: for any M ∈ Mod(K), we define pGB(M) =
∑

{αi|M 6|= Gj} to be the penalty of M . The prefer-
ence relation �pen

GB is defined by M �pen
GB M ′ if and only

if pGB(M) ≤ pGB(M ′) (with the convention
∑

(∅) = 0).

Example 1 Let

• K = >

• GB = {〈2, a ∧ b〉, 〈2,¬a ∧ c〉, 〈3, c → d〉}.

We have
pGB([a, b, c, d]) = 0 + 2 + 0 = 2;
pGB([¬a,¬b, c, d]) = 2 + 0 + 0 = 2;
pGB([¬a,¬b,¬c,¬d]) = 2 + 2 + 0 = 4

and pGB([¬a, b, c,¬d]) = 2 + 0 + 3 = 5,
therefore

[a, b, c, d] ∼pen
GB [¬a,¬b, c, d]

�pen
GB [¬a,¬b,¬c,¬d]

�pen
GB [¬a, b, c,¬d]

Many references can be given regarding the use of penal-
ties in a logical framework. Here are a few of them: (Had-
dawy & Hanks 1992) for a utility representation language
with penalties and rewards, (Pinkas 1995; Dupin de Saint-
Cyr, Lang, & Schiex 1994) for a more systematic study.

Many other operators can be used, in place of the sum,
for aggregating weights of violated (or symmetrically, sat-
isfied) formulas (see (Lafage & Lang 2000) for a general
discussion). The other usual choice, namely the maximum
– leading to possibilistic logic – will be covered by the best-
out preference relation in the next paragraph. This principle
can be extended so as to introduce polarities between goals
(inducing positive rewards when satisfied) and constraints
(inducing negative rewards when violated); see for instance
(van der Torre & Weydert 2001; Benferhat et al. 2002;
Kaci 2002).

Hamming Distance to Goals (RH )
The preference relation based on penalties only makes a dis-
tinction between models satisfying a formula and models vi-
olating it. On the other hand, if an agent prefers a formula
Gi to be satisfied, we could infer that she also prefers mod-
els “close” to this formula than models “far”. The measure
of closeness between models mostly used is the Hamming
distance, so that the distance from a model to a goal is the
number of variables that must be flipped in the model in or-
der to make it satisfy the formula.

Let d be the Hamming distance between models (i.e.,
d(M, M ′) is the number of variables that are assigned differ-
ent values in M and M ′.) The “distance” between a model
M and a formula G is defined as follows:

d(M, G) = min
M ′|=G

d(M, M ′).

A goal base is a finite set of pairs 〈αi, Gi〉, as for penal-
ties languages. In this case, however, we make each formula
contribute to the total weight in a measure that is propor-
tional to the distance between the formula and the model:
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d(M, GB) =
∑

i

{αi.d(M, Gi)}.

�H
GB is defined (see for instance (Lafage & Lang 2001)) by

M �H
GB M ′ if and only if d(M, GB) ≤ d(M ′, GB)

Example 2 Let (again)

• K = >

• GB = {〈2, a ∧ b〉, 〈2,¬a ∧ c〉, 〈3, c → d〉}.

Let M = [¬a,¬b, c,¬d]. We have

d(M, a ∧ b) = 2, d(M,¬a ∧ c) = 0 and d(M, c → d) = 1

hence d(M, GB) = 2 × 2 + 2 × 0 + 3 × 1 = 7.
Let M ′ = [¬a,¬b,¬c,¬d]. We have

d(M ′, a ∧ b) = 2, d(M,¬a ∧ c) = 1 and d(M, c → d) = 0

hence d(M, GB) = 2×2+2×1+3×0 = 6 and therefore
M ′ �H

GB M .

Distances between logical worlds have been used many
times in knowledge representation, especially in belief revi-
sion (Dalal 1988; Magidor & Schlechta 2001), belief update
(Katsuno & Mendelzon 1991) and belief merging (Libera-
tore & Schaerf 1998; Lin & Mendelzon 1999; Revesz 1997;
Konieczny & Pino-Pérez 1998; Konieczny, Lang, & Mar-
quis 2002). Their use in logical preference representation
is more recent (Lafage & Lang 2000; 2001). While we use
here the Hamming distance d and the weighted sum, an arbi-
trary distance function and an arbitrary aggregation function
can be used instead – note however that succinctness results
depend on the chosen distance.

Prioritized Goals
The languages defined above allow for compensations
among goals (the violation of a goal may be compensated
by the satisfaction of a sufficient number of goals of lower
importance). Prioritization is used when such a compensa-
tion should not be possible, and does not need any numerical
data.

While a few approaches make use of a partial priority
preorders, most of them make the assumption that the pri-
ority relation is complete (or, if it is defined as a strict or-
der, that it is ranked, i.e., its complement is transitive), and
for the sake of simplicity, we make this assumption too.
When the priority relation is complete, priorities of formu-
las can be equivalently expressed (and in a simpler way)
by a function r from integers into integers. A goal base
is then a finite set of formulas with an associated function:
GB = 〈{G1, . . . , Gn}, r〉. If r(i) = j, then j is called the
rank of the formula Gi. By convention, a lower rank means
a higher priority. In the following we use the convention
min∅ = +∞

The question is now how to extend the priority on goals
to a preference relation on alternatives. The following three
choices are the most frequent ones:

best-out ordering (Rbestout
prio ) (Benferhat et al. 1993)

Let us define

rGB(M) = min{r(i) | M 6|= Gi}

Then we define

∣

∣ M �bo
GB M ′ if and only if rGB(M) ≥ rGB(M ′)

discrimin ordering (Rdiscrimin
prio ) (Brewka 1989; Geffner

1992; Benferhat et al. 1993)
Let

discr+
GB(M, M ′) = {i |M |= Gi and M ′ 6|= Gi}

and

discrGB(M, M ′) = discr+
GB(M, M ′)∪discr+

GB(M ′, M)

Then:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

M �discrimin
GB M ′

if and only if
mini∈discr+

GB
(M,M ′) r(i) < minj∈discr+

GB
(M ′,M) r(j)

M �discrimin
GB M ′

if and only if
M �discrimin

GB M ′ or discrGB(M, M ′) = ∅.

leximin ordering (Rleximin
prio ) (Benferhat et al. 1993;

Lehmann 1995)
Let dk(M) be the cardinal of {i | M |= Gi and r(i) = k}.

∣

∣

∣

∣

∣

∣

∣

∣

∣

M �leximin
GB M ′if and only if there is a k such that

dk(M) > dk(M ′) and ∀j < k, dk(M) = dk(M ′);

M �leximin
GB M ′if and only if

M �leximin
GB M ′ or di(M) = di(M

′) for any i.

Note that �leximin
GB and �bo

GB are complete preference re-
lations while �discrimin

GB is generally not. We moreover
have the following chain of implications: M �bo

GB M ′ ⇒
M �discrimin

GB M ′ ⇒ M �leximin
GB M ′.

Example 3 Let

• K = >;
• GB = 〈{G1, G2, G3}, r〉

where

• G1 = a ∧ b; G2 = ¬a ∧ c; G3 = c → d;
• r(3) = 1, r(1) = r(2) = 2.

Let M1 = [a, b, c,¬d], M2 = [a, b, c, d], M3 =
[a,¬b, c, d] and M4 = [¬a, b, c, d].

best-out
We have rGB(M1) = 1, rGB(M2) = rGB(M3) =
rGB(M4) = 2, hence

M1 ≺bo
GB M2 ∼bo

GB M3 ∼bo
GB M4.

discrimin
We have
discr+

GB(M1, M2) = ∅; discr+
GB(M2, M1) = {3};

mini∈discr
+

GB
(M1,M2) r(i) = +∞;

mini∈discr
+

GB
(M2,M1) r(i) = 1
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therefore M2 �discrimin
GB M1. As for M2 and M4, we

have discr+
GB(M2, M4) = {1}, discr+

GB(M4, M2) =
{2}, hence M2 and M4 are incomparable w.r.t.
�discrimin

GB . We have the following:
M1 ≺discrimin

GB M3

M3 ≺discrimin
GB M2

M3 ≺discrimin
GB M4

M2, M4 incomparable.
leximin

We have the following:

M1 M2 M3 M4

d1 0 1 1 1
d2 1 1 0 1

Therefore, we have

M1 ≺leximin
GB M3 ≺leximin

GB M2 ∼leximin
GB M4

Let us note at this point that qualitative choice logic
(QCL) (Brewka, Benferhat, & Berre 2002) falls into the
class of priority languages. Indeed, (Brewka, Benferhat, &
Berre 2002) gives a polynomial-size translation from QCL
formulas to stratified knowledge bases (interpreted with
the leximin ordering) preserving the preference relation in-
duced; now, it can be shown that there exists as well a poly-
nomial size translation in the other direction, which implies
that both languages have the same succinctness power and
that results obtained for �leximin

GB carry over to QCL. How-
ever, they do not carry over to logic programming with or-
dered disjunction (Brewka 2002), the succinctness of which
is left for further research.

Conditional Logics
Each goal Gi is attached to a context Ci, so that GB =
{C1 : G1, ..., Cn : Gn}. Each conditional desire Ci : Gi

is interpreted as “ideally Ci if Gi” (Boutilier 1994), or: “in
all of the most preferred alternatives in which Ci holds, Gi

holds as well.” Formally, a complete preorder ≥ satisfies
Ci : Gi if and only if every model of max(Mod(Ci),≤)
is a model of Mod(Gi). On the other hand, more than
one complete preorder may satisfy this condition and there
are several ways for deriving a preference relation from this
set of complete preorders. The standard preference relation
RS

cond consists in considering that M �GB M ′ if and only if
this holds for all relations ≥ that satisfy the condition above
for all goals Ci : Gi, while the preference RZ

cond derived
from the Z-completion (Pearl 1990) selects one specific pre-
order relation, by making worlds gravitate towards prefer-
ence (Boutilier 1994) and allows much more consequences
to be derived and therefore makes more sense. To be more
precise:

Standard preference relation (RS
cond). Rcond,S consists

in considering that an alternative is at least as good as an-
other one if and only if this holds in all models of GB.
Formally: M �cond,S

GB M ′ if and only if for any ≥ satis-
fying GB we have M ≥ M ′. Note that �cond,S

GB is only a
partial preorder which is generally very weak, often much
too weak (it does not enable enough comparisons) to be a
good alternative for preference representation.

Preference relation based on Z-ranking (RZ
cond). While

Rcond,S considered all models satisfying a set of con-
ditionals, the approach based on the Z-completion of
GB, at work in System-Z (Pearl 1990) and similar ap-
proaches, selects one model and allows much more con-
sequences to be derived. Given a theory ∆ = 〈K, GB〉
where K is a set of hard constraints (propositional formu-
las) and GB = {δ1, . . . , δn} a set of conditional rules,
where δi = Ci : Gi (with the condition that Ci ∧ Gi

is consistent), System-Z proceeds by determining a par-
tition {GB0, . . . , GBq} of GB by the following proce-
dure, for which we need first this definition: a condi-
tional rule C : G is tolerated by a set of conditional
rules {C1 : G1, . . . , Cm : Gm} (w.r.t. K) if and only
if C ∧ G ∧ (C1 → G1) ∧ . . . ∧ (Cm → Gm) ∧ K is
consistent.

k := 0; R := GB;
repeat

k := k + 1
Rk := ∅;
for each δ ∈ R

if δ is tolerated by R \ {δ}
then add δ to Rk and remove it from R
endif

endfor
until R = ∅; maxrank := k

This procedure stops because each individual rule in ∆
is consistent (that is, Ci ∧ Gi is consistent). If a con-
ditional rule δ is in Rk then we let rank(δ) = k.
Ranks respect specificity relations between rules, i.e.,
more specific rules are assigned higher ranks. Now, let
MatImp(δ) be the material implication C → G as-
sociated with δ = C : G. Then, �cond,Z

GB′ is de-
fined by the best-out preference relation generated by
GB′ = 〈{MatImp(δ1), . . . , MatImp(δn)}, r〉 where
r(i) = maxrank − rank(δi) + 1.

Example 4 Let

• K = >;
• GB = {> : a, a : ¬b, ¬a : b, ¬a ∧ ¬b : c}

The first iteration gives R1 = {> : a, a : ¬b}, the
second one gives R2 = {¬a : b} and the last one
R3 = {¬a ∧ ¬b : c}. We have maxrank = 3. Thus,
GB′ = 〈{G1, G2, G3, G4}, r〉 with G1 = a, G2 = a ∧ ¬b,
G3 = ¬a ∧ b, G4 = ¬a ∧ ¬b ∧ c, and r(4) = 1, r(3) = 2,
r(1) = r(2) = 3. Let M1 = [¬a,¬b,¬c], M2 = [¬a,¬b, c],
M3 = [a, b, c], M4 = [a,¬b, c]. We have

M1 ≺cond,Z
GB M2 ≺cond,Z

GB M3 ≺cond,Z
GB M4

Intuitively speaking, �cond,Z
GB is the preference relation,

among those satisfying GB, maximizing preference world
by world ((Boutilier 1994), page 79). The obtained rela-
tion �cond,Z

GB is much more discriminant (hence much better)
than �cond,S

GB . Nevertheless, one drawback of both Rcond,Z

and Rcond,S is the so-called “drowning effect” (some goals
are ignored while they should not); this can be remedied for
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instance by adding extra constraints expressing that violat-
ing a conditional desire induces an explicit utility loss (Lang
1996; Lang, van der Torre, & Weydert 2002).

Ceteris Paribus Preferences (Rcp)
In this language, preferences are expressed in terms of state-
ments like: “all other things being equal, I prefer these alter-
natives over these other ones.” Formally, let C, G, and G′ be
three propositional formulas and V being a subset of V AR
such that V ar(G) ∪ V ar(G′) ⊆ V . The ceteris paribus
desire C : G > G′[V ] means: “all irrelevant things being
equal, I prefer G ∧ ¬G′ to ¬G ∧ G′”, where the “irrele-
vant things” are the variables that are not in V . The defini-
tions proposed in various places (Doyle & Wellman 1991;
Doyle, Wellman, & Shoham 1991; Tan & Pearl 1994;
Boutilier et al. 1999) differ somehow. We take as a basis the
definition by (Doyle & Wellman 1991), slightly generalized
by introducing a variable set V that explicitely tells the vari-
ables that are referred to in the clause “all other things being
equal” (namely, the other things are the variables not in V .)
For natural reasons, and to remain consistent with the orig-
inal definitions, we impose that V ar(G) ∪ V ar(G′) ⊆ V .
Furthermore, we add to the original definition the ability to
express indifference statements – without them, M ∼ M ′

could not be expressed.
Let GB = DP ∪ DI , where DP and DI are defined as

follows.
DP = {C1 : G1 > G′

1[V1], . . . , Cm : Gm > G′
m[Vm]}

DI = {Cn : Gn ∼ G′
n[Vn], . . . , Cp : Gp ∼ G′

p[Vp]}

We call the elements of DP as “preference desires”
while elements of DI are “indifference desires”. For all i,
Ci, Gi and G′

i are propositional formulas and V ar(Gi) ∪
V ar(G′

i) ⊆ Vi ⊆ V AR. We define the preference induced
by a single desire Di = Ci : Gi > G′

i[Vi], denoted by
M >Di

M ′, by the following three conditions:
1. M |= Ci ∧ Gi ∧ ¬G′

i;

2. M ′ |= Ci ∧ ¬Gi ∧ G′
i;

3. M and M ′ coincide on all variables in V AR\Vi.
If the above conditions 1-3 are satisfied for an indiffer-

ence desire Di = Ci : Gi ∼ G′
i[Vi] in DI , then we say

that M and M ′ are indifferent with respect to Di, denoted
by M ∼Di

M ′. Now, the preference order �cp
GB is defined

from the above dominance relations by transitive closure of
their union: M �cp

GB M ′ holds if and only if there exists a
finite chain M0 = M, M1, . . . , Mq−1, Mq = M ′ of alterna-
tives such that for all j ∈ {0, . . . , q−1} there is a Di ∈ GB
such that Mj >Di

Mj+1 or such that Mj ∼Di
Mj+1.

Example 5 Let K = > and GB = {> : a > ¬a [{a}], a :
b > c [{b, c}], ¬a : c > b [{b, c}], > : d > ¬d [{c, d}] > :
e ∼ ¬e [{e}] }. Then we have the following:

[a, b,¬c, d, e]
�cp

GB [a,¬b, c, d, e] (using a : b > c [{b, c}])
�cp

GB [¬a,¬b, c, d, e] (using > : a > ¬a [{a}])
�cp

GB [¬a, b,¬c, d, e] (using ¬a : c > b [{b, c}])
�cp

GB [¬a, b, c,¬d, e] (using > : d > ¬d [{c, d}])
∼cp

GB [¬a, b, c,¬d,¬e] (using > : e ∼ ¬e [{e}])

Synthesis of Results
We now present the results we have obtained when consider-
ing both the expressiveness and the spatial efficiency dimen-
sions to compare the preference representation languages
described before.

Expressiveness
The first results of this paper tell which orders can be ex-
pressed in the languages we consider. Namely, we show that
some languages are only able to express complete preorders,
while other ones are able to express all preorders.

Theorem 1

1. Rpenalties, RH , Rbestout
prio , Rleximin

prio and RZ
cond can ex-

press all complete preorders (and nothing more);
2. Rdiscrimin

prio and Rcp can express all preorders;

3. RS
cond cannot even express all complete preorders.

These results are not surprising. They are rather posi-
tive: all languages considered (except RS

cond) are fully ex-
pressive for what they are designed to. Notice also that ex-
tending RS

condwith negated conditionals (¬(C : G)) enables
expressing all preorders.

This result has two obvious consequences:

• let R1 a language expressing all preorders anmd R2 a lan-
guage expressing only complete preorders. Then there
cannot be any translation from R1 to R2 (because it is not
possible to find a translation in R2 of a preference item of
R1 inducing an incomplete preorder).

• let R1 and R2 be two languages of the same expressive
power (that is, both expressing all preorders, or both ex-
pressing all complete preorders). Then R1 and R2 can be
translated to each other. Note however that the result of
such a translation can be exponentially large.

Succinctness
The second kind of results are about the existence of a poly-
size translation of any preorder from a language into another
one in another language. This is simply proved by exhibiting
the translation.

The largest part of the work, however, is composed of re-
sults of impossibility of always translating preferences from
a language to another one while preserving the size of the
original goal base. Three methods are used to prove these
results:

1. show that a specific preorder can be expressed in a lan-
guage by a goal base whose size is polynomial in the num-
ber of variables, while it cannot in the other language. We
consider three classes of such specific preorders:

• exponentially long chains. An exponentially long chain
is a preference relation of the form M1 � M2 � . . . �
M2n where n is the number of propositional variables.
Some of the languages (namely Rpenalties , Rdistances,
Rleximin

prio , Rdiscrimin
prio , Rcp) can express such chains in

polynomial space while some others (namely Rbestout
prio ,
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RS
cond, RZ

cond) cannot. Therefore, there is no polyno-
mial size translation from one language of the former
class into a language of the latter class.

• exponentially many equivalence classes. We consider
the (partial) preference relation such that M � M ′

if and only if M and M ′ are “opposite” models (this
preference relation has 2n−1 equivalence classes, two
models of different equivalence classes being incompa-
rable). Among the languages expressing all orderings,
Rdiscrimin

prio can express this preference relation in poly-
nomial size while Rcp cannot.

• exponentially large equivalence classes. We consider
the preference relation where M � M ′ holds for all
M, M ′. RS

condcannot express it in polynomial space
while all other languages can.

2. show that the existence of such a translation contradits
some results on circuit complexity, such as the impossi-
bility of expressing the majority function with a CNF cir-
cuit of size polynomial in the number of variables. Tech-
nically, this is done by showing that the preference rela-
tion such that M � M ′ if and only if M has at least as
many positive literals as M ′ can be expressed in polyno-
mial space in some languages but not in other ones. In
particular, the languages Rdistances,Rpenalties ,Rleximin

prio ,
and Rcp can express this preference relation in polyno-
mial size. The languages Rdiscrimin

prio ,Rbestout
prio ,RS

cond, and
RZ

cond can express this ordering only using formulae that,
combined in some way, express exactly the majority func-
tion. The majority function can be represented in polyno-
mial space in general, but do not if we restrict to specific
syntactic forms such as CNF. As a result, the languages
Rdiscrimin

prio ,Rbestout
prio ,RS

cond, and RZ
cond cannot express the

preference relation based on the number of positive liter-
als only if we restrict to CNF. We remark that this result
only holds under this language restriction, but is not con-
ditioned to the collapse of the polynomial hierarchy.

3. prove a result based on complexity classes; such results
are conditioned to the non-collapse of the polynomial hi-
erarchy. The impossibility of translating a preference lan-
guage from a language to another one in polynomial time
can be proved as follows: prove that checking whether
M � M ′ is hard in one language and easy in another
one. If a translation from the first language from the sec-
ond were be possible in polynomial time, then some parts
of the polynomial hierarchy would collapse, contradict-
ing a widely-acceted conjecture. Such a result, however,
only indicates that the translation would require super-
polynomial time; it may very well be that the result of
the translation is polynomial in size. Since the size of the
result is what matters in this paper, we cannot directly use
the conventional complexity classes. We instead use the
compilability classes, which characterize the complexity
of problems when preprocessing is allowed (Cadoli et al.
2002; Liberatore 2001). Intutively, we can view the trans-
lation of the problem M � M ′ from a language to an-
other one as a problem of finding a new goal base in the
second language; we however do not require this transla-
tion to take only a polynomial amount of time, but only

that the result is polynomially large. This is exactly the
kind of problems the classes of compilability character-
ize. Somehow, proving impossibility in this way gives
a stronger result, as a polysize translation does not ex-
ist even if we are allowed to translate the models M and
M ′; on the other hand, these results are conditioned to the
non-collapse of the polynomial hierarchy.

Theorem 2 The results about translations and impossibility
of translations are summarized in Table 1.

This table deserves a few comments.

• no means a provable impossibility of a polysize transla-
tion. We indicate the type of proof used for showing this
impossibility:
1 for an impossibility due to the fact that the first lan-

guage can express all preorders while the second does
not (typically, the second language expresses only com-
plete preorders);

2 for an impossibility due to the fact that there are spe-
cific classes of preorders that the first language can ex-
press in polynomial space while the second one can-
not.

• no-c (“conditional no”) means that there cannot be any
polysize translation unless the polynomial hierarchy col-
lapses.

• w-no (“weak no”) means that there cannot be any poly-
size translation if we require the formulae of the resulting
language to be in CNF.

One of the cells of the table contains both a “w-no” and a
“no-c”. These two results do not imply each other: “w-no”
means that no polysize translation is possible if we restrict
formulae to a specific syntactic form, but this result is not
conditioned (i.e., is proved for sure); “no-c” means that the
impossibility of translation holds in general (i.e., even if we
do not restrict the syntactic form of formulae) but only if the
polynomial hierarchy does not collapse.

One more class of results has not been reported in the
table in order to make it more readable. These results are
about translations that require the introduction of new vari-
ables. Indeed, all other results (both positive and negative)
about translations have been proved by assuming that the
goal base and its translation contain exactly the same vari-
ables. This restriction is not irrelevant: the addition of new
variables increases the number of possible formulae that rep-
resent the same function, and some of these formulae may be
very short. For example, as it has been proved for a number
of nonmonotonic formalisms (Cadoli et al. 1999), the in-
troduction of new variables may superpolynomially reduce
the minimal size of formulae needed for representing a piece
of information. In the setting of representing preference in-
formation, we can introduce new variables by assuming that
a goal base GB that contains only the propositional vari-
ables X can be translated into a goal base GB ′ (in another
language) that contains the variables X ∪ Y . Intuitively,
the new variables Y are used as names for “propositional
macros”, i.e., , the goal base contains formulae like y ≡ F ,
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Table 1: Existence of Polynomial-Size Translations.

from\to Rpen RH Rbo
prio Rlexi

prio Rdisc
prio RS

cond RZ
cond Rcp

Rpen yes yes no2 ? w-no no2 no2 no2

RH no-c yes no2 no-c w-no/no-c no2 no2 ?
Rbo

prio yes yes yes yes yes no2 yes yes
Rlexi

prio yes yes no2 yes w-no no2 no2 no2

Rdisc
prio no1 no1 no1 no1 yes no2 no1 no2

RS
cond no1 no1 no1 no1 ? yes no1 ?

RZ
cond yes yes yes yes yes no2 yes yes
Rcp no1 no1 no1 no1 w-no no2 no1 yes

where F is a formula that occurs often; this way, we can re-
place each occurrence of F with y (this is how size can be
reduced.) Technically, we can no more define a translation
from a language L1 to L2 by enforcing M �L1

GB M ′ to be
equivalent to M �L2

GB′ M ′ because M and M ′ are models
over X , while GB′ is a goal base over variables X ∪Y . The
problem is that M �L2

GB′ M ′ only makes sense if M and
M ′ are models over the variables of GB′. This problem can
be overcome by extending the definition to partial models:
M �L2

GB′ M ′ holds if and only if there exists two models
Mt and M ′

t over X ∪Y that extend M and M ′, respectively
(i.e., Mt gives the same evaluation of M to the variables
in X), and Mt �L2

GB′ M ′
t . Using this definitions, the con-

straint that M �L1

GB M ′ is equivalent to M �L2

GB′ M ′ now
makes sense, as the latter formula is well-defined. Transla-
tions in this weak sense exist from Rleximin

prio to Rdiscrimin
prio ,

from Rdiscrimin
prio to Rcp and from Rleximin

prio to Rcp. A for-
malization of this kind of translations where new variables
can be introduced, but their values must be determinable
from the value of the old ones in polynomial time, are the
model-preserving translation (Cadoli et al. 2000).

Conclusion
In this paper, we have shown that some preference repre-
sentation languages are more succinct than others. How-
ever, no language is the most succinct one: for any language,
there is another one that cannot be translated into it in poly-
nomial space. On the other hand, Rbestout

prio and RZ
cond can

be translated into any other language except RS
cond (which

is however incomparable to everything else) and can there-
fore be considered as the least succinct languages of our list.
While spatial efficiency results were known for knowledge
representation formalisms such as nonmonotonic logics and
revision (Cadoli et al. 1996) and action representation for
planning (Nebel 2000), nothing so far was known about the
spatial efficiency of preference representation languages.

Even if some of our impossibility results make use of
complexity results for some decision problems, it is impor-
tant to note that our results cannot be directly inferred from
the complexity of the decision problems associated with
these languages3. Indeed, even if a problem is hard in a

3Complexity results for some of the languages considered here

language and easy in another one, the existence of a transla-
tion is not guaranteed: see for example Rcp, whose compari-
son problem is PSPACE-hard, but cannot be translated into
the simpler Rdiscrimin

prio , where comparison is polynomial-
time. Our results that are conditioned to the non-collapse of
the polynomial hierarchy are not obtained using “standard”
complexity classes.

We do not claim that the list of languages considered here
is exhaustive. It is however representative of the languages
developed by researchers in AI and especially in qualitative
decision theory for representing preference relations com-
pactly using propositional logic: this means that we con-
sciously omitted from the study “numerical” languages for
describing compactly utility functions, such as (Boutilier,
Bacchus, & Brafman 2001) as well as CP-nets and con-
straints and let their succinctness as an open problem. Note
however that these languages are close to propositional pref-
erence languages, up to syntactical restrictions – the fact that
variables are not binary having no significant influence on
succinctness. Furthermore, CP-nets with binary variables
can be encoded in a straightforward way (in linear time) as
ceteris paribus statements. However, CP-nets cannot encode
all preorders, in contrast to the language Rcp

4.

Expressivity and succinctness of languages are particu-
larly significant to preference elicitation (which, roughly
speaking, consists in obtaining preference items directly
from the agent until the preference relation is “sufficiently”
described): indeed, the interactive elicitation process using
some preference representation language may require expo-
nential time, while polynomial time would be sufficient if a
more succinct language were considered. Another impact of
our results concerns the design of “mixed” languages based
on two (or more) types of representations (which is partic-
ularly relevant when each language “cognitively fits” some
particular types of preferences); the existence or the impos-
sibility of polysize translation help us identifying the lan-
guages that may or that may not be used together in such a
mixed language.

can be found, or easily derived from results in (Friedman &
Halpern 1994; Eiter & Lukasiewicz 2000; Nebel 1998; Lang 2002).

4Thanks to Christophe Gonzalès and Patrice Perny for pointing
this out to us.
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Nord/Pas-de-Calais under the TACT-TIC project, and the
European Community FEDER program for their support.

References
Bacchus, F., and Grove, A. 1995. Graphical models for
preference and utility. In Proc. of UAI’95, 3–10.

Benferhat, S.; Cayrol, C.; Dubois, D.; Lang, J.; and
Prade, H. 1993. Inconsistency management and prioritized
syntax-based entailment. In Proc. of IJCAI’93, 640–645.

Benferhat, S.; Dubois, D.; Kaci, S.; and Prade, H. 2002.
Bipolar representation and fusion of preferences in the pos-
sibilistic logic framework. In Proceedings of the Eighth
International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR2002), 421–432. Morgan
Kaufmann.

Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex,
T.; and Verfaillie, G. 1999. Semiring-based CSPs and val-
ued CSPs: Frameworks, properties, and comparison. CON-
STRAINTS: An International Journal 4(3):199–240.

Boutilier, C.; Bacchus, F.; and Brafman, R. 2001. UCP-
networks: a directed graphical representation of condi-
tional utilities. In Proc. of UAI’01, 56–64.

Boutilier, C.; Brafman, R.; Hoos, H.; and Poole, D. 1999.
Reasoning with conditional ceteris paribus statements. In
Proc. of UAI’99, 71–80.

Boutilier, C. 1994. Toward a logic for qualitative decision
theory. In Proc. of KR’94, 75–86.

Brewka, G., and Eiter, T. 1999. Preferred answer sets for
extended logic programs. Artificial Intelligence 109:297–
356.

Brewka, G.; Benferhat, S.; and Berre, D. L. 2002. Quali-
tative choice logic. In Proc. of KR’02, 158–169.

Brewka, G. 1989. Preferred subtheories: an extended logi-
cal framework for default reasoning. In Proc. of IJCAI’89,
1043–1048.

Brewka, G. 2002. Logic programming with ordered dis-
junction. In Proc. of AAAI’02, 100–105.

Cadoli, M.; Donini, F.; Liberatore, P.; and Schaerf, M.
1996. Comparing space efficiency of propositional knowl-
edge representation formalisms. In Proc. of KR’96, 364–
373.

Cadoli, M.; Donini, F. M.; Liberatore, P.; and Schaerf, M.
1999. The size of a revised knowledge base. Artificial
Intelligence 115(1):25–64.

Cadoli, M.; Donini, F.; Liberatore, P.; and Schaerf, M.
2000. Space efficiency of propositional knowledge rep-
resentation formalisms. Journal of Artificial Intelligence
Research 13:1–31.

Cadoli, M.; Donini, F.; Liberatore, P.; and Schaerf, M.
2002. Preprocessing of intractable problems. Information
and Computation 176(2):89–120.

Dalal, M. 1988. Investigations into a theory of knowledge
base revision: preliminary report. In Proceedings of the
seventh American National Conference on Artificial Intel-
ligence (AAAI’88), 475–479.
Delgrande, J.; Schaub, T.; and Tompits, H. 2003. A frame-
work for compiling preferences in logic programs. Theory
and Practice of Logic Programming 3(2):129–187.
Domshlak, C., and Brafman, R. 2002. CP-nets: reasoning
and consistency testing. In Proc. of KR’02, 121–132.
Doyle, J., and Wellman, M. P. 1991. Preferential semantics
for goals. In Proc. of AAAI’91, 698–703.
Doyle, J.; Wellman, M. P.; and Shoham, Y. 1991. A logic of
relative desire (preliminary report). In Proc. of ISMIS’91,
16–31.
Dupin de Saint-Cyr, F.; Lang, J.; and Schiex, T. 1994.
Penalty logic and its link with Dempster-Shafer theory. In
Proc. of UAI’94, 204–211. Morgan Kaufmann.
Eiter, T., and Lukasiewicz, T. 2000. Complexity results for
default reasoning from conditional knowledge bases. In
Proc. of KR’00, 62–73.
Friedman, N., and Halpern, J. 1994. On the complexity of
conditional logics. In Proc. of KR’94, 202–213.
Geffner, H. 1992. Default reasoning: causal and condi-
tional theories. MIT Press.
Gogic, G.; Kautz, H.; Papadimitriou, C.; and Selman, B.
1995. The comparative linguistics of knowledge represen-
tation. In Proc. of IJCAI’95, 862–869.
Gonzales, C., and Perny, P. 2004. Gai networks for utility
representation. In Proceedings of KR-2004 (this Volume).
Gottlob, G. 1995. Translating default logic into standard
autoepistemic logic. Journal of the ACM 42:711–740.
Haddawy, P., and Hanks, S. 1992. Representations for
decision theoretic planning: utility functions for deadline
goals. In Proc. of KR’92, 71–82.
Janhunen, T. 1998. On the intertranslatability of autoepis-
temic, default and priority logics, and parralel circumscrip-
tion. In Proc. of JELIA’98, volume 1489 of Lectures Notes
in Artificial Intelligence, 216–232. Springer-Verlag.
Kaci, S. 2002. Fusion de connaissances et de préférences
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