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Abstract

The idea of ordering plays a basic role in
commonsense reasoning for addressing three inter-
related tasks: inconsistency handling, belief revi-
sion and plausible inference. We study the behavior
of non-monotonic inferences induced by various
methods for priority-based handling of inconsistent
sets of classical formulas. One of them is based on
a lexicographic ordering of maximal consistent
subsets, and refines Brewka's preferred sub-theories.
This new approach leads to a non-monotonic
inference which satisfies the "rationality" property
while solving the problem of blocking of property
inheritance. It differs from and improves previous
equivalent approaches such as Gardenfors and
Makinson's expectation-based inference, Pearl's
System Z and possibilistic logic.

1 Introduction

It is noticeable, although very natural, that the notion of
ordering (between logical formulas, between models,
between subsets of formulas) has emerged from studies in
nonmonotonic reasoning and belief revision as playing a
crucial role. In both cases, the existence of such orderings is
a direct consequence of a set of axioms which plausible
inference, or revision processes, must obey. Makinson and
Gardenfors [23] have pointed out that some nonmonotonic
inference systems can be expressed in terms of the appro-
priate revision of a related set of propositional sentences,
both inference and revision being guided by the ordering.
Namely, given a set of sentences S and a revision procedure,
given a formula a to be added to S, inferring P from a in
the context defined by S can be achieved by checking
whether B is a consequence of the result of revising S by a;
the revision process takes care of the case when 8w {a} is
inconsistent. The ordering underlying these operations helps
altogether coping with inconsistency, solving a revision
problem, and guiding a nonmonotonic inference. In this
paper we shall assume that a set of formulas is equipped
with a complete preordering structure (or priority ranking)
which, contrarily to Gardenfors' [13] view, is not related to
the semantical entailment ordering between sentences. This
kind of ordering has been considered by Brewka [4], Geffner
[15], Nebel [24], Cayrol [5] in the recent past. Especially
Nebel has used it to define syntax-based revision procedures,
such that two semantically equivalent knowledge bases may,
upon the arrival of some input inconsistent with them,
result in non-semantically equivalent revisions. A first idea

640 Knowledge Representation

to revise an inconsistent knowledge base 8 is to select one
of its maximal consistent subbases; another natural idea is
to keep as many sentences as possible, i.e. consider a
consistent subbase of S of maximum cardinality. The latter
option helps reducing the number of revision candidates.
The presence of an ordering on S leads to refine both approa-
ches. Besides, one does not need to select a single preferred
subbase when defining a non-trivial notion of inference from
an inconsistent knowledge base. The task of this paper is
precisely to study inferences of the form "S entails B if can
be classically inferred in all the preferred consistent subbases
of S". Here we shall focus on two meanings of "preferred":
one, already considered by Brewka and Geffner, that com-
bines priorities and maximal consistent subbases; another,
which has not been studied in the literature, combines
priorities and consistent subbases of maximum cardinality.
Borrowing from Gardenfors the image that nonmonotonic
reasoning and belief revision are two sides of the same coin,
we pursue Nebel's work on syntax-based revision, by
studying the other side of that particular coin; namely we
study the properties of inference based on the two kinds of
preferred subsets of formulas, and give algorithms for
computing these inferences. Inconsistency-tolerant inferen-
ces are interesting since they can overcome some limitations
of the kind of nonmonotonic inference that is the exact
counterpart of Gardenfors' revision theory (see [14]). This
kind of inference is also at work in possibilistic logic [10],
[8] and in System Z [25]. This approach suffers from what
we call the "drowning effect”: all formulas which are not
sufficiently entrenched are inhibited; this is an attenuated
form of the fact that in classical logic anything follows
from an inconsistent set of sentences; a particular case of
this effect is the property inheritance blocking [25], [16].

2 Nonmonotonic Inference Relations
Generated by a Flat Belief Base

Throughout this paper, &£ is a propositional language
assumed finite for simplicity, since we deal with cardinali-
ties. Formulas will be denoted by greek letters o, B,...; T
(resp. ) denotes any tautology (resp. contradiction); {2
denotes the set of classical interpretations {denoted by
o,w",...) associated with £ ; M (a) denotes the set of
models of . A belief base 8 is a non-empty set of formalas
{91.....9p) of &£ . Subsets of 8 will be denoted by A, B,...;
JAl is the cardinality of A. Let Cn(A)={pe £ ,A=9].

As discussed e.g. in [24], there are two ways of
considering a set 8 of sentences that describes an epistemic



state: the first one is to consider it logically (8 is then called
“belief set”), i.e. it can be represented equivalently by the set
of its models and in this case it behaves as its closure under
Cn. In this spirit, Girdenfors and Makinson [14] generate
nonmonotonic inference relations from sets of seniences
which are consistent and closed under Cn; namely, B is
inferred from o with respect w 8 iff B is derivable from o in
all the “selected” maximal subszets of 8 consistent with a,
where the selection function is to be defined. The second
way is to consider the belief base “syntactically™, i.e. each
formula of 8 is a distinct piece of information; § is then
more than the set of its models; for instance, {p.q} is
different from (paq) since the former can be viewed as
obtained from two experts, one asserting p and the other one
q, while the latter has to be taken as a whole; in particular,
in a revision context, p could be rejected or ignored
independently from q in the former case, which is not true in
the latter. Here, we assume neither that a belief base § is

closed under Cn, nor that § is consistent. The inconsistency
generally comes from the defeasibie status of the pieces of
information in 8; in particular, it may come from the
combination of several independent (consisient) knowledge
bases, as in [1]. The syntactic approach to nonmonotonicity
or belief revision was used in different ways [11] [12] [24].
We first briefly deal with the non-prioritized case, for which
inference can be based on maximal consisient subbases.
Definition 1: ACS is inclusion-maximal o -consistent if
and only if Au{a} is consistent and there is no strict
superset B of A with BCS such that Bu[«) is consistent.

A natural way of selecting among these subbases A is to
choose those of maximal cardinality, which leads to:
Definition 2: ACS is cardinality-maximal o -consistent
if and only if Av{e} is consistent and for any BCS such
that Bu o) is consistent, then [BISIAL

The obvious way of generating a nonmonotonic inference
relation from 8 is then:

Definition 3. a ~g B (resp. o ~ ; B) if and only if for
every inclusion-maximal (resp. cardinality-maximal) o-

consistent subset A of 8, we have Au(a)—p.

If a=T, we recover in the case of inclusion maximality
Brewka's definition of B-strong provability from §. Since
any cardinality-maximal ¢-consistent subset of 8 is
inclusion-maximal ¢-consistent, we have:

e ] c
Proposition 1. o g f=a ~ s B.

Thus, ¢ is more adventurous than ~g. Beyond complexity

s
considerations, the choice of cardinality for discriminating
among subbases is justified by adopting the point of vicw
(well-known in model-based diagnosis) that 8 is a set of
independently generated pieces of information which can
"fail” 1 be true with a small probability €; thus, the greater
the number of rejected formulas, the smaller the probability
that all of them fail (actually, €” if n formulas are rejected).
This justifies cardinality-based preferences. However we do
not claim that inferences based on cardinality are always the
best way of defining an inference relation since it may be
too adventurous in some cases. The choice of a selection

mode may be application-dependent {(e.g. the use of
cardinality in diagnosis).

c
Both g and ~ s fall in the class of consequence relations

based on preferential models, in the sense of Shoham [29].
Definition 4: 0 <g ©' iff [p;e 8.0=0;)c{P;cS,0'=@;};
© Sg 0" iff 1{Qe 5, =i}l S {gye S, w'i=g;)L.

It is clear that <g is a partial pre-ordering, while S§ is a
complete pre-ordering. In the following, we take the
convention that given a preordering on {1, maximal
elements are preferred ones,

Proposition 2: w is maximal w.rt. <g (resp. s;)iff

(@ 8.w=¢@} is an inclusion-maximal (resp, cardinality-
maximal} consistent subset of 8.

This leads to the following result (see [5) for (i})
Proposition 3:
i) okgPiff Yo maximal w.rit. sg in M(a), o=

i) »v; B iff Vo maximal w.r.1. s; in Mo(cr), =P

See Sec. 4 for properties of g and ~ . in a general setting.
A shortcoming of reasoning with maXimal consistent sub-
seis is their usually large number (see [24] for complexity
consideration). To reduce their number, one may select them
w.r.l. cardinality, or attach priorities to the formulas (see
Sec. 3 & 4) as proposed in [4] [15][24][1].

3 Prioritized belief bases

3.1 Introduction

Most of the time, when revising an inconsistent knowledge
base, it is not reasonable 10 give all formulas the same
importance (in a belief revision terminology, the formulas
in a belief base are not all equal regarding to rejection); for
instance, if some formulas are more certain than others we
wish to reject the least certain first; formulas may also be
otdered according 10 their arrival time in the belief base and
then the oldest ones might be preferably rejected in order to
restore consistency. More generally, we assume that
formulas of 8 are ranked by a complete pre-ordering <, or
equivalently, that 8 consists in a collection (81,...,8,) of
belief bases, where 81 contains the formulas of highest

priority, and 8, those of lowest priority. We shall denote <
the associated strict relation and = the associated
equivalence, 8 will be called a prioritized belief base, and < a
priority relation. The idea of selecting a preferred subbase
induced by the priorities is not a8 new one since it goes back
at least 1o [27]. This idea has been also put forward in the
framework of nonmonotonic reasoning with prioritized
circumscription [22], hierarchic autoepistemic logic {20] and
more specifically Brewka's preferred subtheories {4] which
extend Poole {26]’s logical approach (corresponding 10 the
case of only two priority levels). Preferred subtheories have
also been further studied (and in different ways) in [15], {5,
in possibilistic logic by [8], in knowledge base combination
by [1] and extensively in the context of belief revision, in
[24]. Boutilier [3] gives a characterization of Brewka's
preferred subtheories in terms of conditional logics. Roos
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[28] studies a particular case of Brewka's work. The
selection of preferred subbases of 8 presupposes that the
preordering € be extended 1o compare sets of formulas. We
argue that there might be not a single way to do it and we
give several possible choices. This problem has been
considered in specific cases in [4], [16], [8] and from a more
general point of view in [6].
3.2 From priorities on formulas to preferences
between subbases

The general idea is to account for prioritics in order to
further select some maximal consistent subbases. In this
spirit we now give some possible definitions for extending

the priority relation < on 8 into a preference relation € on

28 Let A=Aqu.. WAL, B=B|U...UB, be two consistent
subsets of 8 (where A;=AnS; and B;= B§,).

Definitions §:

- “best out” ordering: let A be a consistent subset of $ and
a(A) the highest priority of a formula of 8 which is not in
A, ie. a(A=Min(i,3pe 8\A;} with the convention Min@=
n+1; see [8]. The best-out ordering relation writes: A € 80
B iff a(A)<a(B). This ordering depends only on the most
prioritary layer where there is at least one formula from §
missing in the considered subbase. « s is a complete pre-
ordering. Note that this ordering is very rough since it does
not Lake into account formulas of lower priority (of level 2
a(A)); consequently, the induced preference is nol very

selective, since some of the preferred subsels may not be
maximal for set-inclusion. Indeed, let k be the maximal

index such that 8yu...8y isconsistent. Then A=8)u... .8y

isa € . -maximal element as well as any consisicnt
subbase of 8§ containing A.
- inclusion-based ordering. (his is the strict ordering defined

«

(c denotes strict inclusion). An equivalent definition of this
ordering has been proposed by Gefiner [15):

A« IS"CB iff Vae A\B, 3 B\A such that a<B.

To see it, it is enough to consider Be B\A; in the above

definition. This equivalence does not hold anymore if the
in

priorities define only a partial ordering [6]. The «lsc-

B iff 3 i such that A;cB; and for any j<i, Aj=B;

maximal consistent elements are of the form A=Aju.. L

A such that i) Ay is a maximal consistent subbase of 8;
ii) Ajyuw...wvA; is a maximal consistent subbase of

8u...US; for i=1,n.

Clearly, when only one layer is present in 8, we recover the
maximal consistent subbases. The «mc-maximal consis-
tent elements are called preferred subtheories by Brewka and
strongly maximal consistent subbases in [8] with another
characterization: if Inc (A)=max{k, Aju...UA| 1 is

. . inc . . .
consistent}, A is a « _ -maximal consistent clement iff

3
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Vae8\; , Inc(Au{a))=i, for i=1n. Note that « ¢ -

maximal consistent elements are also maximal for
«8 (the converse is false). Lastly, «lsncis a strict partial
ordering, which means that there may be several incompara-
ble preferred subtheories, The dual ordering, exchanging ¥
and 3 in Geffner’s definition, has been studied in the scope
of abduction in [6].

- lexicographic ordering: this is the complete preordering
whose strict partis A «1eX B iff 3i such that 1A, I<IB;! and
for any j<i, |A;l=IB;} andhe equivatence part is A -=;°" B iff
for any i, [A;=IB;1.

The complete preordering «lscx generalizes the cardinality-

based selection of subbases of Section 2 to the prioritized
case and refines the inclusion-based ordering. Any lexicogra-
phically maximal consistent subbase of 8§ is strongly
maximal consistent but the converse is false (as seen in Sec.
2; see an example in Sec. 4). This ordering has been
proposed in [8] with a different formulation: namely,

consider the increasingly ordered multiset List(S8\A) of layer
levels of formulas of S not present in A, then A «1€*B

]
iff List(8\A) 5 List(S\B) where < is the lexicographic
ordering. Similarly to Brewka's constructive definition for
preferred subtheories, we can give an equivalent characteriza-

. lex . .
ion for «8 -maximal consistent bases: they are of the

form A=A .. UA such that i) Ay is a cardinality-maximal
consistent subbase of $1; ii} Aju...UA,; is a cardinality-
maximal consistent subbase of 8yu...§j for i=1,n.

Definition 6: A subbase A of § is said 10 be « l;o {resp.
«mc’ «lc")-maximal. a-consistent ilf Au{a} is consis-

s
tent and A is maximal wrt « l;o (resp. « lsnc. « lexy

among the a-consistent subbases of 8.

3.3 Semantics

Now, these {pre-Yorderings on 2% induce {pre-)orderings on
0, which provide us with clearer semantics,

Definition 7: let @, o’ € £, [w] be the set of formulas
satisfied by @.

bow' iff a(S[w]) < a8 [w']).

i) o £8

i) <';°m' iff 3 such that Vj<i, $;n[0]=8jn[0’],
and §;[0]CS{N[0] ® =g ©' if Vi, Sin[w] =
$in(w’]: @ é'smm' iff 0 -:;‘cw‘ orw -;‘cw‘.

iii) @ -:';"m' iff 3i such that Vj<i, I8;n[@]I=I8;n ']

le 1

and I8N [0]<8;~[w] @ =< g xm' means "not ' -c:xm ",

Prop(&s)ilion 4 .

. lex o e C

i) =g and ="“* are complete pre-orderings; -ss i1s a
panialme—mgering. .

. bo inc_ | lex |

i} m-cs W =:~m*:s )] :mfs w.



4 Nonmonotonic Inference Relations
Generated by a Prioritized Belief Base

We now generalize the inference relations defined in Sec. 2

to the prioritized case.

4.1 Inference relations generated By best-out

preorderings: the drowning effect
Definition 8: let $=(3,....8;) be a belief base and o be a
formula. The addition of o to 8, denoted by Add(c,8), is the

belief base obtained by adding 10 8 a new level, at the
highest priority, containing only a. More formally,
Add(o.8)=(8¢=(x},81,....8p).

Definition 9: o Pbso B iff for any =< t:;’-m,axinml o-
consisient subbase A of 8, Au o).

Similarly to what we noticed in 3.2, the set of maximal a-
consistent clements for < . has a least element, namely
$u...8y is a-consistent and 8.8y, 1 is a-inconsistent.
Hence ahs B e {a)uSy ... Si—B. and no sentence of
lower priority (i.e. level>k) is involved in the inference.
This is the drowning effect. The semantic counterpart is
Proposition 5: a b ° f e Yoe M (o), sach that
a([w]MS) is maximal, we M(B).

In the terminclogy of possibility theory, a([w}~8) is a kind

of degree of impossibility of interpretation o, and o Pvlsm B

comresponds to the non-trivial deduction of possibilistic
logic [10)], also called expectation-based non-monotonic
inference in [14]. Namely let us define for any formula ¢,

2(0)=min{k,8yu...8x—&}. Then 2 is closcly related 10 a

necessily measure, i.e. 2{(¢Ay)=max(2(¢),2(y)) in a scale of
integers running opposite 1o the unit interval.

It is easy to check that the ordering defined by 2(d)s2(y)
is an expectation ordering [14] and a qualitative necessity
measure [9], and that it is induced from § by the most
compact ranking of interpretations (following Pearl [25])
and by the principle of minimum specificity of possibilistic
logic. The non-monotenic inference is usually given by

a *v:o B < o f or 2(a-B)<e{a——P)

a definition given under various guises by Girdenfors and
Makinson, Pearl, and Dubois ang Prade. The relationship
between the drowning effect laid bare by definition 9 and the
blocking of property inheritance in Pearl's System Z can be
viewed in the foliowing example [2].

Example 1: Let p, b, f, w respectively mean penguin,
bird, fly, winged and consider the set of defaults (p—-f,
b—f,p—obb—ow]. Using the default ordering procedure of
System Z, the two defaults p-—+—f and p—b are granied
higher priority because they correspond to a more specific
reference class. In [2] it has been shown that it corresponds
to the following layered classical belief base 8= 8,US)
where 8 ={~pv—f,—pvb] and 8= ({-bvf,—~bvw] and tgz
inference made possible by System Z is exactly M o

(expressed in the terminology of possibilistic logic in the
above mentioggd paper). Tt is easy 1o check thai b Ps f

[
b s w.pfvs ~

but because of the drowning effect,pi"go

hold due 10 the presence of a conflict in $1uUS,
{Inc(8)=2). Hence penguins cannot inherit from birds the

property of having wings. The inference relationships
studied in the following will cope with this problem.

w does not

4.2 Inference relations generated by inclusion-
based and lexicographic preorderings

Since the preference relations defined in Section 3 generalize
the criteria of Section 2, based on inclusion and cardinality,
the following definitions naturally extend definition 3.

Definition 10: o ,.,18 B iff for any <« ‘;c-maximal
a-consistent subbase A of S, Aufal—B. Thls definition is
also in [24] [5]. o lv B iff for any « 8 *.maximal o-
consistent subbase A of 8, Au{ol-B.

Example 2: let 8=(51={a,—a}, Sp={—avh,avc], S3={-b},
S4={—c]. Then the two subbases A={a,—avb.avc,—c} and

inc¢ . .
B={—a,~avb,avc,~b) are both « _ -maximal consistent,

. lex . . lex
but only B is « s -maximal a-consistent. Thus, va ~a
in¢c
holds but not +v8 —a.

Example 3: let us consider again the belief base of

inc
Section 4.1, Now, it is casy 10 check that pr , w and

S

lex
p Ns w; thus, b and !v escape the drowning problem
The next resull, generahzmg Prop. 3, states that o and

rvlscx inferences can be defined equivalently by means of
preferential models A Ia Shoham (see [5] for tv:‘c)-

Proposmon 6 let o#l; @ is maximal in M(a) w.r.L

8 (resp Xg ) iff [w]8 is maximal w.r.t. «8 (resp.

8 ) among the cons:stem subsets of Ac}d(a.S)
B (resp o b 8 B) iff for any
x—maxlmal) in M (0), we

Proposition 7. o *v
» =< nc—msuumal (resp 48
have we M-(B).

Skeich of proof: (=’) folloTs from Proposition 4 and the
definitons of o *v B !v B.

(=)letAbeca « s ©. maximal a-consistent subbase of §.
Let o be a model of A U {a}; then [w]) N 8 2 A. As the
refines set inclusion, A « I: €. maximal

€ maximal and due to }-‘rop 6,
ex

. inc
relation & s

. in
implies that (@] N 8 is «s

® is <""°_ maximal in Mo{a). Similar proof for «

s
We also give other equivalent formulations:
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Proposition 8: If a=Ll, o rv';m B iff :;d( os)B The

same holds for lex-ordmng instead of mc-ordmng.
Sketch of proof for «! s : let ACS; Ais « s c-maximal -
nc
consistent iff Ac[a]) is € -maximal consistent sub-
(@) 55 € Ada(e5)
hase of Add{c, 8). Indeed in Add(c,8) the first level is a sin-
gleton {a], so set-inclusion verifications are equivalent on

lex
the first level Ag. Similar proof for « s -

Proposition 9:

ah';o B=« Ivl;C B= p1o% B (as shown with
Examples 2 and 3, the converses are faise).

4.3 Properties inc

Proposition 10: ~ s -inferences satisfy Supraclassica-
lity, Left logical equivalence, right weakening, And, Weak

conditionalization, Consistency preservation, Cumulativity,
Or (System P in [21]),

Proposition 11: h'l;
rational monetony [14] (nor a fortiori, Rational monotony).

c-infcrcnccs do not sausfy Weak

Proof: a counterexample for Weak rauonal monotony is 8=

—-c *v av-»-.c and

({—av—b—avc],.{ab].[—c)); then r-r s s

nc
nevertheless ¢ b g av-<.

Proposition 12: the class of w1ne inference relations

s

strictly includes the class of Girdenfors and Makinson [14]'s
comparative relations and is strictly included in the class of
Kraus et al. [21]’s preferential relations.

Skeich of proof: for the first inclysion, we need to show
that for any expectation ordering E there is an 8 such that

n .
NFPS c): n being the number of levels induced by E, this
can be done by considering the belief set 8 pbtained by pu-
inc
tting every formula at its E-level. Then & l‘-'s B is equiva-

lent to 8*y — B where the revision $*, is a partial meet
in the sense of Gardenfors. The strictness of the inclusion is
a corollary of Proposition 11, The second inclusion comes
from the fact that preferential models are swrictly more
general than ours since the partial ordering is defined on so-
called states; each state is labelled by a single interpretation,
where an interpretation may label distinct states.

The properties of lex—mfe{enoes stem from this resull:
Proposition 13: any ™ _ -inference is a rational inference
relation, i.e. satisfies all %ropemes in proposition 10 plus
Rational monotony. lex
Skeich of proof: from proposition 7, the fact that << is
complete, and Gitrdenfors and Makinson’s characterization of
nonmonotonic inference by ranked models.

The last result states the other direction, i.e. that the class of
lex-inferences contains the class of comparative inference
relations.

Proposition 14: for any comparative inference relation

there is a belief base § such that isequalloh'];x.
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Corollary 15: the class of lex-inferences is equal to the
class of comparative inference relations.

As a conclusion, what we gain with inclusion-based
inferences is that we avoid the drowning effect, but at the
same time we lose Rational monotony; now, with lex-
inferences, we still avoid the drowning effect and we
furthermore recover Rational monotony.

5§ Computing Nonmonotonic Inference
Relations from a Belief Base

In this section we briefly describe a procedure for computing
inclusion-based and lex-inferences, The procedure pre-
supposes the existence of an ATMS computing incremen-
tally the set of minimai candidates {7), which are defined as
minimal sets of assumptions of a belief base whose deletion
restores the consistency (i.e., a minimal candidate is the
complement of a maximal consistent subbase). Note that,
ductoProposmon 8 it 1s] eiufﬁcmnt to have a procedure
deciding if g B (resp. g B,

Decislon procedure for L s ne B

8B « (D) [set of (3“’ -preferred subbases of 81L... 8}

k «- & {working level}: Siop « False
Repeat

1 ke k+l; New-8 B « @; Answer — Yes
2 For eachB in § B do

3 I, « set of justifications obtained from 8 !
4 Compute the set Uy of minimal candidates of BUL,
using an ATMS?Z;
5 For each Cin {y do
[ if BU(8,\C)=—p then Siop & True;
Answer « No?
else it B w (8§, \C) & P then
Ifk=nthen Stop « True;

Answer « No 4
else New-8 Be—New-8& BU{BU(§\O)};3
if New-8 3= then Siop « True
& Be—New-5B
until Stop

Deciding whether lvlse" B hoids is very similar, except at (4)

where only candidates of minimal cardinality are computed,
and at (6) where the test is not done any more, since il is

! This means that an assumption A, is assocmed io each
formuls @; of 8. in the {ollowing way' let {Cl 10 } & set
of clauses equivalent o @;; then we replace (pj gy the

justifications A ---)C1 1. Aj-—’C ip
2 This means tlul we obl.am the maximal consistent sub-bases

of BUS} such that all rejected formulas are formulas of §y.

3 M thereisa « i“c-prefcrmd consistent sub-base of $,uU. .8}
deriving —B then there will be a «1PC.preferred consistent sub-
base of 8 deriving —P and it is not worth going on.

4 If we are ot the last level, finding a preferred sub-base not
deriving B is sufficient to conciude “no™.

5 Note that in the case where BU(8,\C»=P, we do nothing, even
if k < n: indeed, in this case, il is guaranteed that this sub-base
will lead only 1o preferred sub-bases of 8 deriving P, so it is not
necessary to go on computing them.



not guaranteed that Bu {8 \C] will lead to a lex-preferred
subbase of 8.

The procedures are based on the constructive
characterization of preferred maximal consistent subbases

and the following resuits: i) for any k and for each « isrlc_

preferred subbase B of 8.8y there is a « i"c-;tcfmed
3

subbase A of 8 such that AN(8Su... 8y)=B (this is not true

for lex-preferred subbases); ii) for any «inC (resp «lexy.

prefem:d subbase A of 8 and for any k there is a «8 (resp.
8 )preferrcd subbase B of 3ju...u8) such that

ArYSu...uS)=B.

6 Applications and Conclusion

In this paper we started by noticing the limitations of
several approaches to non-monotonic reasoning such as
expectation-based inferences, possibilistic logic and System
Z, which cope with inconsistency at the expense of taking
away too many pieces of knowledge (the drowning effect).
We then proposed two ways of coping with this problem:
the first one, inferring a conclusion iff it is deducible from
all inclusion-based preferred subbases, avoids it but fails to
satisfy Weak rational monotony. The second one, less
cautious, inferring a conclusion iff it is deducible from all
lex-preferred subbases, still avoids the drowning effect and
enables us to recover Rational Monotony.

There are many situations where all this can be applied, of
which we mention some examples. First in default rea-
soning, Geffner and Pearl [16] have already used inclusion-
based prioritized inference to mend System Z. Here we have
shown that the lexicographically-preferred subbases led to
another solution recovering property inheritance. It would be
interesting to compare this solution to the approach based
on maximum entropy [17]. A second potential application
is model-based diagnosis (in this spirit, see [19]) where S
describes the functioning of the system to diagnose (the
levels reflecting the certainty of the rules, and the reliability
of the components); a corresponds to the observed
situation; then each of the maximal consistent subbases
correspond to a consistency-based diagnosis (where the
absent formulas correspond to faulty components). In the
non-gradual case, subbases of maximum cardinality corres-
pond to a minimum number of faulty components. Lex-
inferences are a generalisation of this principle, and are thus
very natural in this context. Other potential applications are
consistency maintenance in temporal data bases (where
recent informations are preferred to older ones), prioritized
constraint satisfaction problems (where overconstrained
problems are solved by taking priorities into account), or to
minimisation of surprizes in a logic of time and action.
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