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Abstract. Boolean games, introduced by [15, 14], allow for expressingcom-
pactly two-players zero-sum static games with binary preferences: an agent’s
strategy consists of a truth assignment of the propositional variables she con-
trols, and a player’s preferences is expressed by a plain propositional formula.
These restrictions (two-players, zero-sum, binary preferences) strongly limit the
expressivity of the framework. While the first two can be easily encompassed by
defining the agents’ preferences as an arbitraryn-uple of propositional formulas,
relaxing the last one needs Boolean games to be coupled with apropositional
language for compact preference representation. In this paper, we consider gen-
eralized Boolean games where players’ preferences are expressed within two of
these languages: prioritized goals and propositionalizedCP-nets.

1 Introduction

The framework of Boolean games, introduced by [15, 14], allows for expressing com-
pactly two-players zero-sum static games with binary preferences: an agent’s strategy
consists of a truth assignment of the propositional variables she controls, and a player’s
preferences is expressed by a plain propositional formula.Arguably, these three restric-
tions (two-players, zero-sum, binary preferences) strongly limit the expressivity of the
framework. The first two can be easily encompassed by definingthe agents’ preferences
as an arbitraryn-uple of propositional formulas (see [3], who addresses complexity is-
sues for these binaryn-players Boolean games). In this paper we focus on the third one,
which needs considerably more work to be dealt with. The starting point of our paper
is that whereas a single propositional formula (goal)ϕ cannot express more than a bi-
nary preference relation on interpretations (models ofϕ are strictly better than models
of ¬ϕ), expressing arbitrary (non-binary) preferences within apropositional framework
is possible, making use of apropositional language for compact preference represen-
tation. The study of such languages has been a very active issue for afew years in the
AI community. Several classes of languages based on propositional logic have been
proposed and studied (see for instance [16, 8] for an overview of these languages).

A first question has to be addressed before going further: should agents’ preferences be
expressed in a numerical way or in an ordinal way? This depends a lot on the notions
we want to deal with. While some notions (such as pure Nash equilibria and domi-
nated strategies) can be defined in a purely ordinal setting,other ones (such as mixed
strategy Nash equilibria) need quantitative (real-valued) preferences. Here we choose to
stick to ordinal settings (we leave numerical preferences in Boolean games for further



work – see Section 5), and we successively integrate Booleangames with two of these
languages: first,prioritized goals, and then (propositionalized) CP-nets.

In Section 2, some background is given and we definen-players, non zero-sum) Boolean
games with binary preferences. Boolean games are then enriched with prioritized goals
in Section 3, and with propositionalized CP-nets in Section4. Section 5 addresses re-
lated work and further issues.

2 n-players Boolean games

Let V = {a,b, . . .} be a finite set of propositional variables andLV be the propositional
language built fromV and the usual connectives as well as the Boolean constants⊤
(true) and⊥ (false). Formulas ofLV are denoted byϕ,ψ, etc. A literal is a formula of
the formx or of the form¬x, wherex∈V. A termis a consistent conjunction of literals.
2V is the set of the interpretations forV, with the usual meaning that an interpretation
M gives the valuetrue to a variablex if x∈ M, and the valuefalseotherwise.|= denotes
classical logical consequence. LetX ⊆ V. 2X is the set ofX-interpretations. A partial
interpretation(for V) is anX-interpretation for someX ⊆V. Partial interpretations are
denoted by listing all variables ofX, with a ¯ symbol when the variable is set to false:
for instance, letX = {a,b,d}, then theX-interpretationM = {a,d} is denotedabd.
If {V1, . . . ,Vp} is a partition ofV and{M1, . . . ,Mp} are partial interpretations, where
Mi ∈ 2Vi , (M1, . . . ,Mp) denotes the interpretationM1∪ . . .∪Mp.

Given a set of propositional variablesV, a Boolean game onV [15, 14] is a zero-sum
game withtwo players(1 and 2), where the actions available to each player consistin
assigning a truth value to each variable in a given subset ofV. The utility functions of
the two players are represented by a propositional formulaϕ formed upon the variables
in V and calledBoolean formof the game1. ϕ represents the goal of Player 1: her payoff
is 1 whenϕ is satisfied, and 0 otherwise. Since the game is zero-sum2, the goal of Player
2 is¬ϕ. This simple framework can be extended in a straightforwardway to non zero-
sumn-players games (see [3], especially for complexity issues): each playeri has a goal
ϕi (a formula ofLV). Her payoff is 1 whenϕi is satisfied, and 0 otherwise.

Definition 1 A n-players Boolean gameis a 4-uple(A,V,π,Φ), where A= {1,2, . . . ,n}
is a set of players, V is a set of propositional variablesπ : A 7→V is a control assignment
function andΦ = 〈ϕ1,. . . ,ϕn〉 is a collection of formulas of LV .

The control assignment functionπ associates every player with the variables that she
controls. For the sake of notation, the set of all the variables controlled byi is writtenπi

instead ofπ(i). We require that each variable be controlled by one and only one agent,
i.e.,{π1, . . . ,πn} forms a partition ofV. The original definition by [15, 14] is a special
case of this more general framework, obtained by lettingn = 2 andϕ2 = ¬ϕ1.

1 The original definition in [15, 14] is inductive: a Boolean game consists of a finite dynamic
game. We use here the equivalent, simpler definition of [11],who showed that this tree-like
construction is unnecessary.

2 Stricto sensu, the obtained games are not zero-sum, but constant-sum (the sum of utilities being
1) – the difference is irrelevant and we use the terminology “zero-sum” nevertheless.



Definition 2 Let G= (A,V,π,Φ). A strategy si for a player i is aπi-interpretation. A
strategy profile S for G is an n-uple S= (s1,s2, . . . ,sn) where for all i, si ∈ 2πi .

In other words, a strategy fori is a truth assignment for all the variablesi controls.
Remark that since{π1, . . . ,πn} forms a partition ofV, a strategy profileS is an interpre-
tation forV, i.e.,S∈ 2V . Ω denotes the set of all strategy profiles forG.
The following notations are usual in game theory. LetG = (A,V,π,Φ), S= (s1, . . . ,sn),
S′ = (s′1, . . . ,s

′
n) be two strategy profiles forG. s−i denotes the projection ofS on A\

{i}: s−i = (s1,s2, . . . ,si−1,si+1, . . . ,sn). Similarly, π−i denotes the set of the variables
controlled by all players excepti: π−i = V \ πi . Finally, (s−i ,s′i) denotes the strategy
profile obtained fromS by replacingsi with s′i without changing the other strategies:
(s−i ,s′i) = (s1,s2, . . . ,si−1,s′i ,si+1, . . . ,sn).

Example 1 We consider here a Boolean n-players version of the well-known prisoners’
dilemma. n prisoners (denoted by1, . . . ,n) are kept in separate cells. The same proposal
is made to each of them: “Either you cover your accomplices (Ci , i = 1, . . . ,n) or you
denounce them (¬Ci , i = 1, . . . ,n). Denouncing makes you freed while your partners
will be sent to prison (except those who denounced you as well; these ones will be freed
as well). But if none of you chooses to denounce, everyone will be freed.3” This can be
expressed much compactly by the following n-players Boolean game G= (A,V,π,Φ):
A = {1,2, . . . ,n}; V = {C1, . . . ,Cn}; and
for every i∈ {1, . . . ,n}, πi = {Ci} andϕi =
(C1∧C2∧ . . .Cn)∨¬Ci . Here is the repre-
sentation of this game in normal form for
n = 3, where in each(x,y,z), x – resp. y,
resp. z – represents the payoff of player1 –
resp.2, resp.3.

strategy of3: C3 strategy of3: C3

@
@@1

2
C2 C2 C2 C2

C1 (1,1,1) (0,1,0) (0,0,1) (0,1,1)

C1 (1,0,0) (1,1,0) (1,0,1) (1,1,1)

The explicit representation of this game in normal form would need exponential space,
which illustrates the succinctness power of a representation by Boolean games.
Each player i has two possible strategies: si1 = {Ci}, si2 = {Ci}. There are 8 strategy
profiles for G. Consider S1 = (C1,C2,C3) and S2 = (C1,C2,C3). Under S1, players 1, 2
and 3 have their goal satisfied, while S2 satisfies only Player 1’s goal.

This choice of binary utilities (where agents can only express plain satisfaction or plain
dissatisfaction, with no intermediate levels) is a real loss of generality. We would like
now to allow for associating an arbitrary preference relation onΩ with each player.
A preference relation� is a reflexive and transitive binary relation (not necessarily
complete) onΩ. The strict preference≻ associated with� is defined as usual byS1 ≻S2

if and only if S1 �i S2 and not (S2 �i S1).
A generalized Boolean game will be a 4-upleG = (A,V,π,Φ), whereA = {1, . . . ,n}, V
andπ are as before andΦ = 〈Φ1, . . . ,Φn〉, where for eachi, Φi is a compact representa-
tion (in some preference representation language) of the preference relation�i of agent
i on Ω. We letPre fG = 〈�1, . . . ,�n〉.

3 The case where everyone will be freed if everyone denounces the others is a side effect of our
simplication of the prisoners’ dilemma.



A pure strategy Nash equilibrium (PNE) is a strategy profile such that each player’s
strategy is an optimum response to the other players’ strategies. However, PNEs are
classically defined for games where preferences are complete, which is not necessarily
the case here. Therefore we have to definetwonotions of PNEs, a weak one and a strong
one (they are equivalent to the notion of maximal and maximumequilibria in [14]).

Definition 3 Let G=(A,V,π,Φ) and Pre fG = 〈�1, . . . ,�n〉 the collection of preference
relations onΩ induced fromΦ. Let S= (s1, . . . ,sn) ∈ Ω.
S is aweak PNE(WPNE) for G iff∀i ∈ {1, . . . ,n}, ∀s′i ∈ 2πi ,(s′i ,s−i) 6≻i (si ,s−i).
S is astrong PNE (SPNE) for G iff∀i ∈ {1, . . . ,n}, ∀s′i ∈ 2πi ,(s′i ,s−i) �i (si ,s−i).
NEstrong(G) and NEweak(G) denote respectively the set of strong and weak PNEs for G.

Clearly, any SPNE is a WPNE, that is,NEstrong(G) ⊆ NEweak(G)).

3 Boolean games and prioritized goals

The preferences of a single player in this framework are expressed by a set of goals
ordered by a priority relation:

Definition 4 A prioritized goal baseΣ is a collection〈Σ1; . . . ; Σp〉 of sets of proposi-
tional formulas.Σ j represents the set of goals of priority j, with the convention that the
smaller j, the more prioritary the formulas inΣ j .

In this context, several criteria can be used in order to generate a preference relation
� from Σ. We recall below the three most common ones. In the following, if S is an
interpretation of 2V then we letSat(S,Σ j) = {ϕ ∈ Σ j | S|= ϕ}.

Definition 5 Let Σ = 〈Σ1; . . . ;Σp〉, and let S and S′ be two interpretations of2V .

Discrimin preference relation [7, 13, 2] S≻disc S′ iff ∃k∈ {1, . . . , p} such that:
Sat(S,Σk) ⊃ Sat(S′,Σk) and∀ j < k, Sat(S,Σ j) = Sat(S′,Σ j)

Leximin preference relation [10, 2, 17] S≻lex S′ iff ∃k∈ {1, . . . , p} such that:
|Sat(S,Σk)| > |Sat(S′,Σk)| and∀ j < k, |Sat(S,Σ j)| = |Sat(S′,Σ j)|.

Best-out preference relation [10, 2] Let a(s) = min{ j such that∃ϕ ∈Σ j ,S 6|= ϕ}, with
the convention min(∅) = +∞. Then S�bo S′ iff a(S)≥ a(S′).

Note that�bo and�lex are complete preference relations, while�disc is generally a
partial preference relation. Moreover, the following implications hold (see [2]):

(S≻bo S′) ⇒ (S≻discr S′) ⇒ (S≻lex S′) (1) (S�discr S′) ⇒ (S�lex S′) ⇒ (S�bo S′) (2)

Definition 6 A PG-Boolean gameis a 4-uple G= (A,V,π,Φ), whereΦ = (Σ1, . . . ,Σn)

is a collection of prioritized goals bases. We denoteΣi = 〈Σ1
i , . . . ,Σ

p
i 〉, that is,Σ j

i denotes
the stratum j ofΣi , or equivalently, the (multi)set of goals of priority j for player i.

Note that the assumption that the number of priority levels is the same (p) for all players
does not imply a loss of generality, as adding empty strata toa prioritized base does not
change the induced preference relation.
We make use of the following notations:



– if G is a PG-boolean game andc∈ {disc, lex,bo} thenPre fcG = 〈�c
1, . . . ,�

c
n〉.

– NEc
weak(G) and NEc

strong(G) denote respectively the sets of all weak and strong
Nash equilibria forPre fcG.

Example 2 Let G= (A,V,π,Φ) with A= {1,2}, V = {a,b,c}, π1 = {a,c}, π2 = {b},
Σ1 = 〈a;(¬b,c)〉, Σ2 = 〈(¬b,¬c);¬a〉.
For each of the three criteria c∈ {lex,disc,bo}, we draw the corresponding preference
relations Pre fcG = 〈�c

1, . . . ,�
c
n〉. The arrows are oriented from more preferred to less

preferred strategy profiles (S1 is preferred to S2 is denoted by S1 → S2). To make the
figures clearer, we do not draw edges that are obtained from others by transitivity. The
dotted arrows indicate the links taken into account in orderto compute Nash equilibria.
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– Discrimin and Leximin: NEdisc
weak(G) = NEdisc

strong(G) = {abc}
– Best Out: NEbo

weak(G) = NEbo
strong(G) = {abc,abc}

Lemma 1 Let�= 〈�1, . . . ,�n〉 and�′= 〈�′
1, . . . ,�

′
n〉 be two collections of preference

relations, and let S be a strategy profile.

1. If � is contained in�′ and if S is a SPNE for�, then S is a SPNE for�′.



2. If ≻ is contained in≻′ and if S is a WPNE for≻′, then S is a WPNE for≻.

This lemma enables us to draw the following:

Proposition 1 Let G= (A,V,π,Φ) be a PG-boolean game and Pre fc
G = 〈�c

1, . . . ,�
c
n〉.

NEdisc
strong(G) ⊆ NElex

strong(G) ⊆ NEbo
strong(G) and NElex

weak(G) ⊆ NEdisc
weak(G) ⊆ NEbo

weak(G).

We may now wonder whether a PG-boolean game can beapproximatedby focusing on
the firstk strata of each player. Here, the aim is double: to obtain a simpler (for PNE
computation) game and to increase the possibility to find a significant PNE taking into
account the most prioritized strata.

Definition 7 Let G= (A= {1, . . . ,n},V,π,Φ) be a PG-boolean game, and k∈{1, . . . , p}.
G[1→k] = (A,V,π,Φ[1→k]) denotes the k-reduced game ofG in which all players’ goals

in G are reduced in their k first strata:Φ[1→k] = 〈Σ[1→k]
1 , . . . ,Σ[1→k]

n 〉.

Lemma 2 Let G be a PG-boolean game. Then for every k≤ p, c∈ {discr, lex,bo}, and

every i∈A, we have: S�c,[1→k]
i S′ ⇒S�c,[1→k−1]

i S′ and S6≻c,[1→k]
i S′ ⇒S 6≻

c,[1→k−1]
i S′.

Proposition 2 Let G be a PG-boolean game and c∈ {discr, lex,bo}. If S is a SPNE
(resp. WPNE) for Pre fc

G[1→k] of the game G[1→k], then S is a SPNE (resp. WPNE) for

Pre fc
G[1→(k−1)] of the game G[1→(k−1)].

This proposition leads in an obvious way that ifG[1] for Pre fc
G[1] does not have any

SPNE (resp. WPNE), then the gameG for Pre fcG does not have any SPNE (resp. WPNE)
whatever the criteria used. The converse is false, as shown in the following example.

Example 3 Let G with A= {1,2}, V = {a,b}, π1 = {a}, π2 = {b}, Σ1 = 〈a→ b;b→
a〉, Σ2 = 〈a↔¬b;¬b〉. We check that NEbo

weak(G) = NEbo
strong(G) = ∅. Let us now focus

on the1-reduced game G[1] = (A,V,π,Φ[1]) of G. We haveΣ[1]
1 = 〈a→ b〉, Σ[1]

2 = 〈a↔

¬b〉. We check that for any criterion c, NEc
weak(G

[1]) = NEc
strong(G

[1]) = {ab}.

This example shows us that Proposition 2 can be used to find theright level of approx-
imation for a PG-game. For instance, we may want to focus on the largestk such that
G[1→k] has a SPNE, and similarly for WPNEs.

4 Boolean games and CP-nets

A problem with prioritized goals is the difficulty for the agent to express his prefer-
ences (from a cognitive or linguistic point of view). In thisSection we consider an-
other very popular language for compact preference representation on combinatorial
domains, namely CP-nets. This graphical model exploits conditional preferential in-
dependence in order to structure decision maker’s preferences under aceteris paribus
assumption. They were introduced in [6] and extensively studied in many subsequent
papers, especially [4, 5].



Although CP-nets generally consider variables with arbitrary finite domains, for the
sake of simplicity (and homogeneity with the rest of the paper) here we consider only
“propositionalized” CP-nets, that is, CP-nets with binaryvariables (note that this is not
a real loss of generality, as all our definitions and results can be easily lifted to the more
general case of non-binary variables).

Definition 8 Let V be a set of propositional variables and{X,Y,Z} a partition of V .
X is conditionally preferentially independent of Y given Z if and only if∀z∈ 2Z,
∀x1,x2 ∈ 2X and∀y1,y2 ∈ 2Y we have : x1y1z� x2y1z iff x1y2z� x2y2z

For each variableX, the agent specifies a set ofparent variablesPa(X) that can affect her
preferences over the values ofX. Formally,X andV \ ({X}∪Pa(X)) are conditionally
preferentially independent givenPa(X). This information is used to create the CP-net:

Definition 9 Let V be a set of variables.N = 〈G ,T 〉 is a CP-net onV, whereG is a
directed graph over V, andT is a set of conditional preference tables CPT(Xj) for each

Xj ∈V. Each CPT(Xj) associates a total order≻ j
p with each instantiation p∈ 2Pa(Xj).

Definition 10 A CP-boolean gameis a 4-uple G= (A,V,π,Φ), where A= {1, . . . ,n}
is a set of players, V= {x1, . . . ,xp} is a set of variables andΦ = 〈N 1, . . . ,N n〉. EachN i

is a CP-net on V.

Example 4 G = (A,V,π,Φ) where A= {1,2} V = {a,b,c} π1 = {a,b}, π2 = {c}, N 1

andN 2 are represented on the following figure.

a

b

c

a≻ a

b≻ b

a∧b c≻ c

a∧b c≻ c

a∧b c≻ c

a∧b c≻ c

N 1
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abc

abc

abc

abc

abc

�1

a

b

c

a≻ a

a b≻ b

a b≻ b

b c≻ c

b c≻ c

N 2

abc

abc

abc

abc

abc

abc

abc

abc

�2

Using these partial pre-orders, Nash equilibria are: NEstrong= NEweak= {abc}.

The first property concerns a very interesting case where theexistence and the unicity
of PNE hold:



Proposition 3 Let G= (A,V,π,Φ) be a CP-boolean game such the graphsG i are all
identical (∀i, j, G i = G j ) and acyclic. Then G has one and only one strong PNE.

The proof of this result makes use of theforward sweepprocedure [6, 4] for outcome
optimization (this procedure consists in instantiating variables following an order com-
patible with the graph, choosing for each variable its preferred value given the value of
the parents).
The point is that in general the graphsG i for i ∈ {1, . . . ,n} may not be identical. How-
ever, they may bemadeidentical, once remarked that a CP-net〈G ,T 〉 can be expressed
as a CP-net〈G ′,T ′〉 as soon as the set of edges inG is contained in the set of edges in
G ′. We may then take as common graphG (to all players) the graph whose set of edges
is theunion of the set of edges ofG1, . . . ,Gn. The only problem is that the resulting
graph may not be acyclic, in which case Proposition 3 is not applicable. Formally:

Definition 11 Let G be a CP-boolean game. For each player i,G i is denoted by(V,Arci),
with Arci being the set of edges of i’s CP-net. Theunion graph of G is defined by
G = (V,Arc1∪ . . .∪Arcn). Thenormalized game equivalent toG, denoted by G∗ =
{A,V,π,Φ∗}, is the game obtained from G by rewriting, where the graph of each player’s
CP-net has been replaced by the graph of the union of CP-nets of G and the CPT of
each player’s CP-net are modified in order to fit with the new graph, keeping the same
preferences (formally, if≻y

i denotes the relation associated with CPTi(y) for Player i’s
CP-net in G, then we have for G∗: ∀x∈V such that x is a parent of y in G∗ but not in
G,≻y

i,x=≻
y
i,x=≻

y
i ).

The following lemma is straightforward:

Lemma 1. Let G be a CP-boolean game and G∗ its equivalent normalized game. Then
G∗ and G define the same preference relations on strategy profiles.

Therefore, ifG∗ is acyclic, then Proposition 3 applies, thereforeG∗ has one and only
one SPNE. Now, sinceG andG∗ define the same pre-orders onΩ, the latter is also the
only SPNE ofG (on the other hand, if the graph ofG is cyclic, neither the unicity nor
the existence of SPNEs is guaranted).

Proposition 4 Let G= (A,V,π,Φ) be a CP-boolean game. If the union graph of G is
acyclic then G has one and only one strong PNE.

Example 4, continued: Players’ preferences in the normalized game G∗ (equivalent
to G) are represented by the CP-nets given on Figure 1. The union graph is acyclic,
therefore Proposition 3 can be applied and G has one and only one strong PNE (abc).

There is a last condition (less interesting in practice because it is quite strong) guaran-
teeing the existence and the unicity of a SPNE. This condition states that any variable
controlled by an agent is preferentially independent on variables controlled by other
agents (in other words, the parents of any variable controlled by a playeri are also
controlled byi). In this case, each agent is able to instantiate her variables in an unam-
biguously optimal way, according to her preferences.

Proposition 5 Let G= (A,V,π,Φ) be a CP-boolean game such that for every player
i ∈ A and for every v∈ πi , we have Pa(v) ∈ πi . Then G has one and only one SPNE.
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N 1
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N 2

Fig. 1. CP-net of Players 1 and 2’s preferences forG∗

5 Related work and conclusion

Apart of previous work on Boolean games [15, 14, 11], relatedwork includes a few
papers where games are expressed within ordinal preferences within well-developed AI
frameworks.
In [12], a game in normal form is mapped into alogic program with ordered disjunc-
tion (LPOD) where each player owns a set of clauses that encode theplayer’s prefer-
ence over her possible actions given every possible strategy profile of other players.
It is shown that PNE correspond exactly to the most preferredanswer sets. The given
translation suffers from a limitation, namely its size: thesize of the LPOD is the same
as that of the normal form of the game (since each player needsa number of clauses
equal to the number of possible other strategy profiles for other players). However, this
limitation is due to the way LPODs are induced from games and could be overwhelmed
by allowing to express the players’ preferences by any LPODs(in the same spirit as our
Section 3).
In [9], a strategic game is represented using achoice logic program, where a set of
rules express that a player will select a “best response” given the other players’ choices.
Then, for every strategic game, there exists a choice logic program such that the set of
stable models of the program coincides with the set of Nash equilibria of the game. This
property provides a systematic method to compute Nash equilibria for finite strategic
games.
In [1], CP-nets are viewed as games in normal form and vice versa. Each playeri corre-
sponds to a variableXi of the CP-net, whose domainD(Xi) is the set of available actions
to the player. Preferences over a player’s actions given theother players’ strategies are
then expressed in a conditional preference table. The CP-net expression of the game
can sometimes be more compact than its normal form explicit representation, provided
that some players’ preferences depend only on the actions ofa subset of other players.
A first important difference with our framework is that we allow players to control an
arbitrary set of variables, and thus we do not view players asvariables; the only way of
expressing in a CP-net that a player controls several variables would consist in intro-
ducing a new variable whose domain would be the set of all combination of values for
these variables—and the size of the CP-net would then be exponential in the number of
variables. A second important difference, which holds as well for the comparison with
[12] and [9], is that players can express arbitrary preferences, including extreme cases
where the satisfaction of a player’s goal may depend only of variables controlled by



other players. A last (less technical and more foundational) difference with both lines
of work, which actually explains the first two above, is that we do notmapnormal form
games into anything but weexpressgames using a logical language.

Further work includes the investigation of other notions (such as dominated strategies)
within the two frameworks proposed in this paper, as well as the integration of other
preference representation languages within Boolean games.
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