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Abstract. Boolean games, introduced by [15, 14], allow for expressiom-
pactly two-players zero-sum static games with binary pesfees: an agent’s
strategy consists of a truth assignment of the propositieadables she con-
trols, and a player’s preferences is expressed by a plajopitional formula.
These restrictions (two-players, zero-sum, binary pegfees) strongly limit the
expressivity of the framework. While the first two can be ashcompassed by
defining the agents’ preferences as an arbitranple of propositional formulas,
relaxing the last one needs Boolean games to be coupled watbpmsitional
language for compact preference representation. In tiusrpae consider gen-
eralized Boolean games where players’ preferences aresseut within two of
these languages: prioritized goals and propositional@ehets.

1 Introduction

The framework of Boolean games, introduced by [15, 14]vedléor expressing com-
pactly two-players zero-sum static games with binary pegfees: an agent’s strategy
consists of a truth assignment of the propositional vagisbhe controls, and a player's
preferences is expressed by a plain propositional formdutzuably, these three restric-
tions (two-players, zero-sum, binary preferences) stsolimgit the expressivity of the
framework. The first two can be easily encompassed by defihanggents’ preferences
as an arbitrary-uple of propositional formulas (see [3], who addressespierity is-
sues for these binaryplayers Boolean games). In this paper we focus on the thieg o
which needs considerably more work to be dealt with. Theistapoint of our paper
is that whereas a single propositional formula (ggaannot express more than a bi-
nary preference relation on interpretations (modelg afe strictly better than models
of —¢), expressing arbitrary (non-binary) preferences withimapositional framework
is possible, making use of@opositional language for compact preference represen-
tation. The study of such languages has been a very active issuddaryears in the
Al community. Several classes of languages based on prop@ilogic have been
proposed and studied (see for instance [16, 8] for an owsrvfghese languages).

A first question has to be addressed before going furtheuldraments’ preferences be
expressed in a numerical way or in an ordinal way? This deparidt on the notions
we want to deal with. While some notions (such as pure Naslililed@ and domi-
nated strategies) can be defined in a purely ordinal settithgr ones (such as mixed
strategy Nash equilibria) need quantitative (real-vajyedferences. Here we choose to
stick to ordinal settings (we leave numerical preferenne3dolean games for further



work — see Section 5), and we successively integrate Bogaares with two of these
languages: firsprioritized goals and then gropositionalized) CP-nets

In Section 2, some background is given and we defip&ayers, non zero-sum) Boolean
games with binary preferences. Boolean games are therhedngith prioritized goals
in Section 3, and with propositionalized CP-nets in SecioBection 5 addresses re-
lated work and further issues.

2 n-players Boolean games

LetV = {ab,...} be afinite set of propositional variables dngdbe the propositional
language built fronV and the usual connectives as well as the Boolean constants
(true) and L (falsg. Formulas ofLy are denoted by, Y, etc. Aliteral is a formula of
the formx or of the form—x, wherex € V. A termis a consistent conjunction of literals.
2V is the set of the interpretations g, with the usual meaning that an interpretation
M gives the valuérueto a variablexif x € M, and the valuéalseotherwise = denotes
classical logical consequence. DeIC V. 2X is the set ofX-interpretations A partial
interpretation(for V) is anX-interpretation for som& C V. Partial interpretations are
denoted by listing all variables of, with a— symbol when the variable is set to false:
for instance, letX = {a,b,d}, then theX-interpretationM = {a,d} is denotedabd.

If {V1,...,Vp} is a partition ofV and{My,...,Mp} are partial interpretations, where
M; € 2%, (My, .. .,Mp) denotes the interpretatid; U ... U M.

Given a set of propositional variablgs a Boolean game ovi [15, 14] is a zero-sum
game withtwo players(1 and 2), where the actions available to each player coinsist
assigning a truth value to each variable in a given subsét dhe utility functions of
the two players are represented by a propositional forgditamed upon the variables
inV and calledBoolean fornof the gamé. ¢ represents the goal of Player 1: her payoff
is 1 wheng is satisfied, and 0 otherwise. Since the game is zerd-ghmgoal of Player

2 is =¢. This simple framework can be extended in a straightforwaag to non zero-
sumn-players games (see [3], especially for complexity isswezmh player has a goal

¢; (a formula ofLy). Her payoffis 1 whem; is satisfied, and 0 otherwise.

Definition 1 A n-players Boolean gamés a 4-uple(A,V, T, ®), where A={1,2,...,n}
is a set of players, V is a set of propositional varialbfe\ — V is a control assignment
function and® = (1,...,¢n) is a collection of formulas of\

The control assignment functiamassociates every player with the variables that she
controls. For the sake of notation, the set of all the vaeislbbntrolled by is writtenTs
instead ofrt(i). We require that each variable be controlled by one and amyagent,
i.e.,{my,..., T} forms a partition ol/. The original definition by [15, 14] is a special
case of this more general framework, obtained by lettirg2 andd, = —¢1.

1 The original definition in [15, 14] is inductive: a Booleannga consists of a finite dynamic
game. We use here the equivalent, simpler definition of [ showed that this tree-like
construction is unnecessary.

2 Stricto sensu, the obtained games are not zero-sum, busotissim (the sum of utilities being
1) — the difference is irrelevant and we use the terminolaggrd-sum” nevertheless.



Definition 2 Let G= (A,V, T, ®). A strategy s for a player i is arg-interpretation. A
strategy profile S for G is an n-uple & (s1,%,...,5) where for all i, $ € 2.

In other words, a strategy faris a truth assignment for all the variablesontrols.
Remark that sincéry, ..., T} forms a partition oV, a strategy profilSis an interpre-
tation forV, i.e.,Se 2¥. Q denotes the set of all strategy profiles @r

The following notations are usual in game theory. Get (A,V, 1, ®), S= (s1,...,5),

S =(s,...,s,) be two strategy profiles foB. s_j denotes the projection @on A\
{i}:sii=(s1,%---,5-1,S5+1,---,S). Similarly, Tt_; denotes the set of the variables
controlled by all players except i =V \ 5. Finally, (s_j,§) denotes the strategy
profile obtained fronS by replacings with § without changing the other strategies:

(s-i,5) = (S1,%2---,S—1,5,S+1s- -, Sn)-

Example 1 We consider here a Boolean n-players version of the welwknarisoners’
dilemma. n prisoners (denoted by .., n) are kept in separate cells. The same proposal
is made to each of them: “Either you cover your accomplicgsi(€ 1,...,n) or you
denounce them-C;, i = 1,...,n). Denouncing makes you freed while your partners
will be sent to prison (except those who denounced you astivedle ones will be freed
as well). But if none of you chooses to denounce, everyohbeniiteed®” This can be
expressed much compactly by the following n-players Boajgene G= (A,V, T, ®):
A={12....n}; V ={C,...,Cy}; and
foreveryie {1,...,n}, m = {C} and¢; =
(CLAC2A...Ch) Vv —G;. Here is the repre{\_2 C S C S
sentation of this game in normal form fok
n= 3, where in eachx,y,z), x — resp. y,| C; |(1,1,1)((0,1,0)|/(0,0,1)|(0,1,1)
resp. z — represents the payoff of plager G [(1,0,0)(1.1,0)[(1,0,1)[(1,1,1)
resp.2, resp.3.
The explicit representation of this game in normal form wiauted exponential space,

which illustrates the succinctness power of a represenriatly Boolean games.

Each player i has two possible strategies:s {Ci}, s, = {Ci}. There are 8 strategy
profiles for G. Consider S= (C;,C,,C3) and S = (C1,C,,C3). Under S, players 1, 2
and 3 have their goal satisfied, while &atisfies only Player 1's goal.

strategy of3: Cz||strategy of3: C3

This choice of binary utilities (where agents can only egpnglain satisfaction or plain
dissatisfaction, with no intermediate levels) is a reaslo§generality. We would like
now to allow for associating an arbitrary preference relatnQ with each player.

A preference relatior- is a reflexive and transitive binary relation (not necesgari
complete) oM. The strict preference associated with is defined as usual 1 - S
ifandonly if§ = S and not & = §).

A generalized Boolean game will be a 4-u@e= (A,V, 1, ®), whereA={1,....,n},V
andmare as before andt = (®4,...,®Py), where for each, ®; is a compact representa-
tion (in some preference representation language) of gfeance relationr; of agent
ionQ. We letPrefs = (=1,...,=n).

3 The case where everyone will be freed if everyone denouiheesthers is a side effect of our
simplication of the prisoners’ dilemma.



A pure strategy Nash equilibrium (PNE) is a strategy profilehsthat each player’s
strategy is an optimum response to the other players’ giegeHowever, PNEs are
classically defined for games where preferences are complbich is not necessarily
the case here. Therefore we have to defivenotions of PNEs, a weak one and a strong
one (they are equivalent to the notion of maximal and maxireguoilibria in [14]).

Definition 3 Let G=(A,V,,®) and Pre = (>1,...,=n) the collection of preference
relations onQ induced fromd. Let S= (sq,...,S) € Q.

S is aweak PNE(WPNE) for G iffvi € {1,...,n}, Vs € 2™, (5,Si) i (S,S-i)-

S is astrong PNE (SPNE) for G iffvi € {1,...,n}, Vs € 2" (5,s.i) <i (S,Si)-
NEstrong(G) and NEyeal( G) denote respectively the set of strong and weak PNEs for G.

Clearly, any SPNE is a WPNE, that I$Estrong(G) C NEweakG)).

3 Boolean games and prioritized goals

The preferences of a single player in this framework are esgmd by a set of goals
ordered by a priority relation:

Definition 4 A prioritized goal baseZ is a collection(z*; ...; =P) of sets of proposi-
tional formulas 2! represents the set of goals of priority j, with the convemtiat the
smaller j, the more prioritary the formulas &'.

In this context, several criteria can be used in order to gdae preference relation
= from Z. We recall below the three most common ones. In the followih§ is an
interpretation of ¥ then we letSat(S,2) = {¢ € = | S= 1.

Definition 5 LetZ = (3%;...;2P), and let S and ‘e two interpretations a2” .

Discrimin preference relation [7,13,2] S¢S iff 3k € {1,...,p} such that:
SatS 7¥) o Sat(S,3*) andVj < k, Sat{S, 3)) = Sat(S, z/)

Leximin preference relation [10,2,17] S='®* Siff 3k € {1,..., p} such that:
|Sat(S 2)| > [SatS,=¥)| andVj < k, |SafS 3))| = |SatS,=))|.

Best-out preference relation[10, 2] Let a(s) = min{ j such thaB¢ € 2!, S}= ¢ }, with
the convention mif®) = +o. Then S-P° S iff a(S) > a(S).

Note that=P° and >'®* are complete preference relations, whitéis is generally a
partial preference relation. Moreover, the following ineptions hold (see [2]):

(S-°8) = (5958 = (51 8) (1) (S=UUS) = (SHS) = (S-P°S) (2)

Definition 6 APG-Boolean games a 4-uple G= (A,V, T, ®), where® = (31,...,2n)
is a collection of prioritized goals bases. We derite: (5., =P), thatis,>! denotes
the stratum j o, or equivalently, the (multi)set of goals of priority j folgyer i.

Note that the assumption that the number of priority levethé sameg) for all players
does not imply a loss of generality, as adding empty straégpidoritized base does not
change the induced preference relation.

We make use of the following notations:



— if Gis a PG-boolean game aod: {disc lex bo} thenPrefg = (=§,...,=5).
— NEJ,.(G) and NE§;,,,((G) denote respectively the sets of all weak and strong
Nash equilibria foPre f§.

Example 2 Let G= (A V, 1, ) with A= {1,2},V = {a,b,c}, m = {a,c}, m = {b},

%1 = (a;(—b,c)), T2 = ((-b,—c); -a).

For each of the three criteria € {lex, disc bo}, we draw the corresponding preference
relations Pre§ = (-§,...,=5). The arrows are oriented from more preferred to less
preferred strategy profiles {3s preferred to $is denoted by 5— $). To make the
figures clearer, we do not draw edges that are obtained frdmrstby transitivity. The
dotted arrows indicate the links taken into account in orblecompute Nash equilibria.

P1 Dis Lex BO

ANAN

abc* abc
P2 Disc Lex BO
htc bc

aB(:T;ab@—» a _«)ﬁBQﬁﬁbCHabC

abc -
;
abc

— Discrimin and Leximin: NEW'SClgG dt',%cng(G) = {abc}

— Best Out: NEP2_,(G) = NEstrong( = {abc abc}
Lemmal Let>=(>1,...,>=n) and>='=(>,..., =) be two collections of preference
relations, and let S be a strategy profile.

1. If = is contained in=" and if S is a SPNE for, then S is a SPNE for'.



2. If = is contained in-" and if S is a WPNE fox’, then S is a WPNE for.
This lemma enables us to draw the following:

Proposition 1 Let G= (A,V, 1, ®) be a PG-boolean game and Pfef (=§,...,=).
NEgtlrsoCng(G) C NEIS?F(ong(G) C NEgtcr)ong(G) and Nl?vséak(e) c NE\?/lesack(G) < NEvt\)/gaR(G)'

We may now wonder whether a PG-boolean game cappeoximatedy focusing on
the firstk strata of each player. Here, the aim is double: to obtain alsin{for PNE

computation) game and to increase the possibility to findjaificant PNE taking into
account the most prioritized strata.

Definition 7 LetG= (A={1,...,n},V,,®) be a PG-boolean game, andK 1,..., p}.

Gl1-K = (A, v, 1 ®[1~X) denotes thekeduced game ofG in which all players’ goals

in G are reduced in their k first stratapl=K = (si*4 517K

Lemma 2 Let G be a PG-boolean game. Then for every g, ce {discr,lex bo}, and
everyic A, we have: S0 g = 501k U g ang 5Pt H g o gyt t g,

Proposition 2 Let G be a PG-boolean game andec{discrlex bo}. If S is a SPNE
(resp. WPNE) for Pref, , of the game @4, then S is a SPNE (resp. WPNE) for

PrefS, . 1 of the game @1,

This proposition leads in an obvious way thaGf! for PrefZ, does not have any
SPNE (resp. WPNE), then the gaf@éor Pre f§ does not have any SPNE (resp. WPNE)
whatever the criteria used. The converse is false, as shotte ifollowing example.

Example 3 Let G with A={1,2},V ={a,b}, m ={a}, o ={b},Z1 =(a—b;b—
a), I = (a+ —b;—b). We check that Nf2_(G) = NE5?,,(G) = @. Let us now focus

on thel-reduced game & = (A V, . ®Y) of G. We have! = (a—b), 5 = (a
—b). We check that for any criterion ¢, N, (G!!) = NEno(G!) = {ab}.

This example shows us that Proposition 2 can be used to firmiptielevel of approx-
imation for a PG-game. For instance, we may want to focus eraitgesk such that
GI1¥ has a SPNE, and similarly for WPNEs.

4 Boolean games and CP-nets

A problem with prioritized goals is the difficulty for the agteto express his prefer-
ences (from a cognitive or linguistic point of view). In tHgection we consider an-
other very popular language for compact preference reptatien on combinatorial
domains, namely CP-nets. This graphical model exploitditmmal preferential in-
dependence in order to structure decision maker’s prefeseander @eteris paribus
assumption. They were introduced in [6] and extensiveldistliin many subsequent
papers, especially [4, 5].



Although CP-nets generally consider variables with aabjtrfinite domains, for the
sake of simplicity (and homogeneity with the rest of the papere we consider only
“propositionalized” CP-nets, that is, CP-nets with binaayiables (hote that this is not
areal loss of generality, as all our definitions and resultstie easily lifted to the more
general case of non-binary variables).

Definition 8 Let V be a set of propositional variables afi¥,Y,Z} a partition of V.
X is conditionally preferentially independent of Y given Z if and only if/z € 27,
Vx1, X2 € 2% andVyr,ys € 2¥ we have : xy17 > xoy1Z iff X1yoz > Xoy»z

For each variabl¥, the agent specifies a setaarent variable$a(X) that can affect her
preferences over the valuesXfFormally,X andV \ ({X} UPa(X)) are conditionally
preferentially independent givé?a(X). This information is used to create the CP-net:

Definition 9 LetV be a set of variablesy = (g,7) is aCP-net onV, whereg is a
directed graph overV, and is a set of conditional preference tables CEXF) for each

Xj € V. Each CPTX;) associates a total order j with each instantiation g 27%)),

Definition 10 A CP-boolean games a 4-uple G= (A,V, T, ®), where A= {1,...,n}
is a set of players, V= {x1,...,Xp} is a set of variables an® = (A1, ..., An). Eachaj
isa CP-netonV.

Example 4 G= (A )V, ®) where A= {1,2} V = {a,b,c} m = {a,b}, ®m = {c}, 24

and«» are represented on the following figure.

_ v O b-b B
b-b @ Of e [abd]

anblc-t abc _'"
anblc-c 5 blc>-T

:. a1 Qo I —

e anb|c~c B /abc O bt~c abc

A1 =1 A2 =2

Using these partial pre-orders, Nash equilibria are: BMEng= NEyeak= {abc}.

The first property concerns a very interesting case wherextstence and the unicity
of PNE hold:



Proposition 3 Let G= (A,V, T, ®) be a CP-boolean game such the graghsare all
identical (i, j, Gi = gj) and acyclic. Then G has one and only one strong PNE.

The proof of this result makes use of tfegward sweegprocedure [6, 4] for outcome
optimization (this procedure consists in instantiatingatales following an order com-
patible with the graph, choosing for each variable its prefi¢value given the value of
the parents).

The point is that in general the graptisfor i € {1,...,n} may not be identical. How-
ever, they may benadeidentical, once remarked that a CP-xet 7 ) can be expressed
as a CP-netg’,7') as soon as the set of edgessiris contained in the set of edges in
G'. We may then take as common gragplfto all players) the graph whose set of edges
is theunion of the set of edges of1,...,gn. The only problem is that the resulting
graph may not be acyclic, in which case Proposition 3 is npliegble. Formally:

Definition 11 Let G be a CP-boolean game. For each playeiiis denoted byV, Arc;),
with Arg being the set of edges of i's CP-net. Tingion graph of G is defined by
G = (V,Arc1U...UArc,). Thenormalized game equivalent toG, denoted by G=
{AV, 1, ®*}, is the game obtained from G by rewriting, where the graptacheplayer’s
CP-net has been replaced by the graph of the union of CP-rfé&sand the CPT of
each player’'s CP-net are modified in order to fit with the neagdr, keeping the same
preferences (formally, i;f—iy denotes the relation associated with G for Player i's
CP-net in G, then we have for'Gvx € V such that x is a parent of y in*Gout not in
G, - =Y=1).

The following lemma is straightforward:

Lemma 1. Let G be a CP-boolean game and {& equivalent normalized game. Then
G* and G define the same preference relations on strategy wofile

Therefore, ifG* is acyclic, then Proposition 3 applies, theref@ehas one and only
one SPNE. Now, sinc& andG* define the same pre-orders Onthe latter is also the
only SPNE ofG (on the other hand, if the graph &is cyclic, neither the unicity nor
the existence of SPNEs is guaranted).

Proposition 4 Let G= (A,V, 11, ®) be a CP-boolean game. If the union graph of G is
acyclic then G has one and only one strong PNE.

Example 4, continued: Players’ preferences in the normalized game (€quivalent
to G) are represented by the CP-nets given on Figure 1. Thenugiaph is acyclic,
therefore Proposition 3 can be applied and G has one and omdystrong PNE (abc).

There is a last condition (less interesting in practice beeat is quite strong) guaran-
teeing the existence and the unicity of a SPNE. This conditates that any variable
controlled by an agent is preferentially independent onatées controlled by other
agents (in other words, the parents of any variable coetidily a playet are also
controlled byi). In this case, each agent is able to instantiate her vagablan unam-
biguously optimal way, according to her preferences.

Proposition 5 Let G= (A,V, T, ®) be a CP-boolean game such that for every player
i € A and for every e 5, we have P&) € 15. Then G has one and only one SPNE.
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Fig. 1. CP-net of Players 1 and 2's preferences@sr

5 Related work and conclusion

Apart of previous work on Boolean games [15,14, 11], relatedk includes a few
papers where games are expressed within ordinal preferaritten well-developed Al
frameworks.

In [12], a game in normal form is mapped intdagic program with ordered disjunc-
tion (LPOD) where each player owns a set of clauses that encodddher’s prefer-
ence over her possible actions given every possible syratetfile of other players.
It is shown that PNE correspond exactly to the most prefearexsiver sets. The given
translation suffers from a limitation, namely its size: #iee of the LPOD is the same
as that of the normal form of the game (since each player n@edsnber of clauses
equal to the number of possible other strategy profiles togmgplayers). However, this
limitation is due to the way LPODs are induced from games autbche overwhelmed
by allowing to express the players’ preferences by any LP@tfie same spirit as our
Section 3).

In [9], a strategic game is represented usinghaice logic programwhere a set of
rules express that a player will select a “best responseidive other players’ choices.
Then, for every strategic game, there exists a choice lagigram such that the set of
stable models of the program coincides with the set of Nashibga of the game. This
property provides a systematic method to compute Nashikdaifor finite strategic
games.

In [1], CP-nets are viewed as games in normal form and viceavétach playarcorre-
sponds to a variabl§ of the CP-net, whose domali(X;) is the set of available actions
to the player. Preferences over a player’s actions giveotier players’ strategies are
then expressed in a conditional preference table. The €Bxpeession of the game
can sometimes be more compact than its normal form expéipitasentation, provided
that some players’ preferences depend only on the actioaswolbset of other players.
A first important difference with our framework is that weaall players to control an
arbitrary set of variables, and thus we do not view playersasbles; the only way of
expressing in a CP-net that a player controls several Masakould consist in intro-
ducing a new variable whose domain would be the set of all aoation of values for
these variables—and the size of the CP-net would then benexyial in the number of
variables. A second important difference, which holds ab fwethe comparison with
[12] and [9], is that players can express arbitrary prefeesnincluding extreme cases
where the satisfaction of a player's goal may depend onlyaniables controlled by



other players. A last (less technical and more foundat)atiierence with both lines
of work, which actually explains the first two above, is tha @o notmapnormal form
games into anything but wexpresggames using a logical language.

Further work includes the investigation of other notionscfsas dominated strategies)
within the two frameworks proposed in this paper, as wellhasihtegration of other
preference representation languages within Boolean games
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