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Abstract. Game theory is a widely used formal model for study-
ing strategical interactions between agents.Boolean games[7] are
two players, zero-sum static games where player’s utility functions
are binary and described by a single propositional formula,and the
strategies available to a player consist of truth assignments to each
of a given set of propositional variables (the variablescontrolledby
the player.) We generalize the framework ton-players games which
are not necessarily zero-sum. We give simple characterizations of
Nash equilibria and dominated strategies, and investigatethe compu-
tational complexity of the related problems.

1 Introduction

Game theory is the most successful formal model for the studyof
strategical interactions between agents. Informally, a game consists
of a set of agents (or players), and for each agent, a set of possi-
ble strategies and an utility function mapping every possible com-
bination of strategies to a real value. In this paper we consider only
staticgames, where agents choose their strategies in parallel, without
observing the others’ choices. While game theory considersseveral
formats for specifying a game (especially extended form andnor-
mal form, which coincide as far as static games are concerned), they
usually consider that utility functions are represented explicitly, by
listing the values for each combination of strategies.
In many real-world domains, the strategies available to an agent con-
sist in assigning a value to each of a given set of variables. Now,
representing utility functions explicitly leads to a description whose
size is exponential both in the number of agents (n× 2n values for
n agents each with two available strategies) and in the numberof
variables controlled by the agents (2×2p×2p values for two agents
each controllingp variables). Thus, in many cases explicitly specify-
ing utility functions is unreasonable, as well as computingsolution
concepts (such as pure-strategy Nash equilibria) using a naive algo-
rithm which enumerates combinations of strategies.
Now, specifying utilities, or more generally preferences,in a com-
pact way, is an issue addressed by many AI researchers in the last
years. Languages have been studied which allow for a conciserep-
resentation of preference relations or utility functions on combinato-
rial domains, exploiting to a large extent the structural properties of
preferences. In this paper, without much loss of generalitywe focus
on the case where each agent has control over a set of propositional
(binary) variables. Under this assumption, preferences can be repre-
sented within logic-based preference representation languages. Us-
ing propositional logic allies a rich expressivity to the possibility of
using a wide variety of algorithms.
Since the specification of a static game needs the description of the
agents’ preferences, it seems natural to specify them usingsuch lan-
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guages for compact preference representation. Here, for the sake of
simplicity we focus on the simplest possible way of using propo-
sitional logic for representing games (the extent to which it can be
extended is discussed at the end of the paper), namely by using a re-
visited form ofBoolean games. These games [7, 6, 4] are two-players
zero-sum games where the players’ utilities are binary and specified
by a mere propositional formulaϕ (theBoolean formof the game).
Some background is given in Section 2. In Section 3, we give a (sim-
plified) description of Boolean games and generalize them soas to
represent non zero-sum games with an arbitrary number of players
(but we keep the assumption that each player’s preferences are rep-
resented by a unique propositional formula, inducing a binary utility
function). In Sections 4 and 5, we show how well-known tools from
propositional logic can be used so as to give simple characterizations
of two of the most important game-theoretic notions, namelypure-
strategy Nash equilibria and dominated strategies, and so as to derive
complexity results for their computation. Sections 6 and 7 respec-
tively address related work and further issues.

2 Background

LetV = {a,b, . . .} be a finite set of propositional variables and letLV
be the propositional language built fromV and Boolean constants⊤
(true) and⊥ (false) with the usual connectives. Formulas ofLV are
denoted byϕ,ψ etc. A literal is a variablex of V or the negation of
one. Atermis a consistent conjunction of literals.Lit (α) denotes the
set of literals forming the termα. A formula ϕ is in DNF when it is
written as a disjunction of terms.
2V is the set of the interpretations forV, with the usual convention
that forM ∈ 2V andx∈V, M gives the valuetrue to x if x∈M and
falseotherwise.|= denotes the classical logical consequence relation.
Let X⊆V. 2X is the set ofX-interpretations. A partial interpretation
(for V) is anX-interpretation for someX ⊆V. Partial interpretations
are denoted by listing all variables ofX, with a ¯ symbol when the
variable is set to false: for instance, letX = {a,b,d}, then theX-
interpretationM = {a,d} is denoted{a,b,d}. If {V1, . . . ,Vp} is a
partition of V and {M1, . . . ,Mp} are partial interpretations, where
Mi ∈ 2Vi , (M1, . . . ,Mp) denotes the interpretationM1∪ . . .∪Mp.
Let ψ be a propositional formula. A termα is an implicant of ψ iff
α |= ψ holds.α is aprime implicantof ψ iff α is an implicant ofψ
and for every implicantα ′ of ψ, if α |= α ′ holds, thenα ′ |= α holds.
PI(ψ) denotes the set of all the prime implicants ofψ. If X⊆V, anX-
prime implicant ofψ is a prime implicant ofψ such thatLit (α)⊆ X.
PIX(ψ) denotes the set of all theX-prime implicants ofψ.
Let ϕ ∈ LV and X ⊆ V. The forgetting of X in ϕ [12],
denoted by∃X : ϕ, is defined inductively by: (i)∃∅ : ϕ = ϕ;
(ii) ∃{x} : ϕ = ϕx←⊤∨ϕx←⊥; (iii) ∃(X∪{x}) : ϕ = ∃X : (∃{x} : ϕ).
Note that∃X : ϕ is the logically weakest consequence ofϕ containing
only variables fromV \X [9, 11].



Finally, we denote the partial instantiation of a formulaϕ by anX-
interpretationMX by: (ϕ)MX = ϕv∈MX←⊤,v∈X\MX←⊥.

3 Boolean games

Given a set of propositional variablesV, a Boolean game onV [7, 6]
is a zero-sum game with two players (1 and 2), where the actions
available to each player consist in assigning a truth value to each
variable in a given subset ofV. The utility functions of the two play-
ers are represented by a propositional formulaϕ formed upon the
variables inV and calledBoolean formof the game.ϕ represents the
goal of player 1: her payoff is 1 whenϕ is satisfied, and 0 otherwise.
Since the game is zero-sum3, the goal of player 2 is¬ϕ. 4

Example 1
Consider V= {a,b,c}. Player1
controls a and c while2 controls
b. Player1’s goal is ϕ1 = (a↔
b)∨ (¬a∧b∧¬c) and therefore,
2’s is ϕ2 = ¬ϕ1 ≡ (¬a ∧ b ∧
c)∨ (a∧ ¬b). The normal form
of this game is depicted on the
right (in each(x,y), x—resp. y—
represents the payoff of player
1—-resp.2):

H
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HH

1
2

{b} {b}

{a,c} (1, 0) (0, 1)

{a,c} (1, 0) (0, 1)

{a,c} (0, 1) (1, 0)

{a,c} (1, 0) (1, 0)

We now give a more general definition of a Boolean game, with any
number of players and not necessarily zero-sum (we will see further
that the original definition [7, 6] is a special case of this more general
framework).

Definition 1 A Boolean gameis a 4-tuple(A,V,π,Φ), where A=
{1,2, . . . ,n} is a set of players, V is a set of propositional variables
(called decision variables), π : A 7→V is a control assignment func-
tion, andΦ = {ϕ1, . . . ,ϕn} is a collection of formulas of LV .

The control assignment functionπ maps each player to the variables
she controls. For the sake of notation, the set of all the variables con-
trolled by i is writtenπi instead ofπ(i). We require that each variable
be controlled by one and only one agent, i.e.,{π1, . . . ,πn} forms a
partition ofV.

Definition 2 Let G= (A,V,π,Φ) be a Boolean game. Astrategysi

for a player i in G is aπi-interpretation. Astrategy profileS for G is
an n-tuple S= (s1,s2, . . . ,sn) where for all i, si ∈ 2πi .

In other words, a strategy fori is a truth assignment for all the vari-
ablesi controls. Note that since{π1, . . . ,πn} forms a partition ofV,
a strategy profileS is an interpretation forV, i.e.,S∈ 2V .
In the rest of the paper we make use of the following notation,
which is standard in game theory. LetG = (A,V,π,Φ) be a Boolean
game withA = {1, . . . ,n}, andS= (s1, . . . ,sn), S′ = (s′1, . . . ,s

′
n) be

two strategy profiles.s−i denotes the projection ofS on A\ {i}:
s−i = (s1,s2, . . . ,si−1,si+1, . . . ,sn).
Similarly, π−i denotes the set of the variables controlled by all play-
ers excepti: π−i = V \πi .

3 Stricto sensu, the obtained games are not zero-sum, but constant-sum (the
sum of utilities being 1) – the difference is irrelevant and we use the termi-
nology “zero-sum” nevertheless.

4 The original definition [7, 6] is inductive: a Boolean game consists of a
finite dynamic game. We use here the equivalent, simpler definition of [4],
who showed that this tree-like construction is unnecessary.

Finally, (s−i ,s′i) denotes the strategy profile obtained fromS by re-
placingsi with s′i without changing the other strategies:(s−i ,s′i) =
(s1,s2, . . . ,si−1,s′i ,si+1, . . . ,sn).
Players’ utilities in Boolean games are binary: playeri is satisfied
by a strategy profile (and gets utility 1) if and only if her goal ϕi

is satisfied, and she gets utility 0 otherwise. Therefore, the goals
{ϕi , i = 1, . . . ,n} play the role of the utility functionsu1, . . . ,un.

Definition 3 For every player i and strategy profile S: ui(S) = 0 if
S|= ¬ϕi and ui(S) = 1 if S |= ϕi .

Example 2 We consider here a Boolean n-players version of the
well-known prisoners’ dilemma. n prisoners (denoted by1, . . . ,n) are
kept in separate cells. The same proposal is made to each of them:
“Either you denounce your accomplices (denoted by Di , i = 1, . . . ,n)
or you cover them (Ci , i = 1, . . . ,n). Denouncing makes you freed
while your partners will be sent to prison (except those who de-
nounced you as well; these ones will also be freed). But if none of
you chooses to denounce, everyone will be freed.”
Here is the representation of this game in normal form for n= 3:

strategy of3: C3 strategy of3: D3
H

H
H

H
1

2
C2 D2 C2 D2

C1 (1,1,1) (0,1,0) (0,0,1) (0,1,1)

D1 (1,0,0) (1,1,0) (1,0,1) (1,1,1)

So, for n prisoners, we have an n-dimension matrix, therefore 2n

n-tuples must be specified. Now, this game can be expressed much
more compactly by the following Boolean game G= {A,V,π,Φ}:
A = {1,2, . . . ,n}, V = {C1, . . . ,Cn} (with ¬Ci = Di for every i),
∀i ∈ {1, . . . ,n},πi = {Ci}, and∀i ∈ {1, . . . ,n},ϕi = {(C1∧C2∧ . . .∧
Cn)∨¬Ci}.
Here, each player i has two possible strategies: si = {Ci} and
s′i = {Ci}. There are 8 strategy profiles for G, including S1 =
(C1,C2,C3) and S2 = (C1,C2,C3). Under S1, players 1, 2 and 3 have
their goal satisfied, while S2 satisfies only the goal of player1.

Note that this choice of binary utilities implies a loss of generality,
but it is essentially a starting point for the study of Boolean games,
which moreover will gives us lower complexity bounds. See Sec-
tion 7.

Definition 4 Let G = (A,V,π,Φ) be a Boolean game, withΦ =
{ϕ1, . . . ,ϕn} and A= {1, . . . ,n}. Strategy si is a winning strategy
for i if ∀s−i ∈ 2π−i ,(s−i ,si) |= ϕi .

Proposition 1 Let G= {A,V,π,Φ} be a Boolean game. Player i∈A
has a winning strategy iff PIπi (ϕi) 6= ∅.

Clearly enough, deciding the existence of a winning strategy for a
given player is an instance of the controllability problem [2, 10] and
can be reduced to the resolution of aQBF2,∃ instance.
It is also easily seen that Boolean games as studied by Harrenstein et
al [7, 6] are a special case of ourn-players Boolean games, obtained
by making the following two assumptions:n = 2 (two players) and
ϕ2 = ¬ϕ1 (zero-sum).

4 Nash equilibria

Pure-strategy Nash equilibria (PNE) forn-players Boolean games are
defined exactly as usual in game theory (see for instance [13]), hav-
ing in mind that utility functions are induced from the player’s goals
ϕ1, . . . ,ϕn. A PNE is a strategy profile such that each player’s strat-
egy is an optimum response to the other players’ strategies.



Definition 5 Let G = (A,V,π,Φ) be a Boolean game with A=
{1, . . . ,n}. S= {s1, . . . ,sn} is a pure-strategy Nash equilibrium
(PNE) if and only if∀i ∈ {1, . . . ,n},∀s′i ∈ 2πi ,ui(S)≥ ui(s−i ,s′i).

Example 3 Let G= {A,V,π,Φ} be the Boolean game defined by
V = {a,b,c}, A = {1,2,3}, π1 = {a}, π2 = {b}, π3 = {c}, ϕ1 =
¬a∨ (a∧b∧¬c), ϕ2 = (a↔ (b↔ c)) and ϕ3 = ((a∧¬b∧¬c)∨
(¬a∧b∧c)).
Player1 has a winning strategy, namely setting a to false. It can be
checked that the strategy profile S= {a,b,c} is the only PNE of G.

In some examples, several PNE appear: in Ex. 1, the PNE are{abc}
and{abc}, and in Ex. 2, the PNE are{C1C2C3} and{C1C2C3}.
We now give simple characterizations of pure-strategy Nashequilib-
ria in Boolean games, starting with the following one:

Proposition 2 Let G= (A,V,π,Φ) be a Boolean game and let S∈
2V . S is a pure-strategy Nash equilibrium for G iff for all i∈A, either
S|= ϕi or s−i |= ¬ϕi holds.

Proof: S is a PNE forG iff ∀i ∈ A,∀s′i ∈ 2πi ,ui(S) ≥ ui(s−i ,s′i),
i.e., ∀i ∈ A,∀s′i ∈ 2πi ,ui(S) = 1 or ui(s−i ,s′i) = 0, i.e., ∀i ∈ A,
ui(S) = 1 or ∀s′i ∈ 2πi ,ui(s−i ,s′i) = 0. Finally, ui(S) = 1⇔ S |= ϕi ,
and ∀s′i ∈ 2πi ,ui(s−i ,s′i) = 0 ⇔ ∀s′i ∈ 2πi , (s−i ,s′i) |= ¬ϕi , i.e.,
s−i |= ¬ϕi . �

Sinces−i |= ¬ϕi means that¬ϕi follows from s−i whateverthe in-
stantiation of the variables controlled by playeri, the previous char-
acterization of PNE can be simplified again, using the forgetting op-
erator.

Proposition 3 Let S∈ 2V . S is a pure-strategy Nash equilibrium for
G if and only if S|=

V

i(ϕi ∨ (¬∃i : ϕi)).

Proof: We have the following chain of equivalences:s−i |= ¬ϕi ⇔
s−i |= ¬∃i : ϕi ⇔ (si ,s−i) |= ¬∃i : ϕi (because variables controlled
by playeri have disappeared from¬∃i : ϕi)⇔ S|= ¬∃i : ϕi . Putting
everything together, we get:(∀i ∈ A,S |= ϕi or s−i |= ¬ϕi) ⇔
(∀i ∈ A,S |= ϕi or S |= ¬∃i : ϕi) ⇔ ∀i ∈ A,S |= ϕi ∨ (¬∃i : ϕi) ⇔
S|=

V

i(ϕi ∨ (¬∃i : ϕi)) �

In the particular case of two-players zero-sum Boolean games, we re-
cover the well-known fact that pure-strategy Nash equilibria coincide
with winning strategies for one of the players.

Proposition 4 If G is a two-players zero-sum Boolean game, S=
(s1,s2) is a pure-strategy Nash equilibrium iff s1 is a winning strategy
for 1 or s2 is a winning strategy for2.

Proof:LetS= (s1,s2) be a PNE. Assumeu1(S) = 1 (the caseu2(S)=
1 is symmetric). SinceG is zero-sum, we haveu2(S) = 0. Now since
S is a PNE,∀s′2,u2(S)≥ u2(s1,s′2), which entails∀s′2,u2(s1,s′2) = 0.
It follows ∀s′2,(s1,s′2) |= ¬ϕ2, which entails that∀s′2,(s1,s′2) |= ϕ1.
Thuss1 is a winning strategy for 1.
Conversely, assume thats1 is a winning strategy for 1 (the case of 2 is
symmetric). Then we have∀s2,u1(s1,s2) = 1 and∀s2,u2(s1,s2) = 0.
Let S= (s1,s2) wheres2 ∈ 2π2. We have∀s′1,u1(S)≥ u1(s′1,s2) and
∀s′2,u2(S)≥ u2(s1,s′2). ThusS is a PNE. �

This fact enables us to easily determine the complexity of deciding
whether there is a pure-strategy Nash equilibrium in a givenBoolean
game. Recall thatΣp

2 = NP NP is the class of all the languages that
can be recognized in polynomial time by a nondeterministic Turing
machine equipped withNP oracles [14].

Proposition 5 Deciding whether there is a pure-strategy Nash equi-
librium in a Boolean game isΣp

2-complete. Completeness holds even
under the restriction to two-players zero-sum games.

Proof: Membership inΣp
2 is immediate. Hardness is obtained by a re-

duction from the problem of deciding the validity of aQBF2,∃. Given
Q = ∃A,∀B,Φ, we define a two-players zero-sum Boolean game by
ϕ1 = Φ∨ (x↔ y), wherex,y are new variables andπ1 = A∪ {x}.
Obviously, this game can be built in polynomial time givenQ.
Clearly, if Q is valid with MA ∈ 2A as a witness, then both(MA,x)
and (MA,x) are winning strategies for 1. Conversely, ifQ is not
valid, then whateverMA ∈ 2A 1 plays, 2 can playMB ∈ 2B such
that (MA,MB) 6|= Φ, and 2 can playy (resp.y) if 1 playsx (resp.x),
resulting in both cases in 2 winning (so, 1 has no winning strategy).
Now it is easily seen that 2 has no winning strategy. Finally,there is
a winning strategy for 1 (or 2, vacuously) if and only ifQ is valid,
and Proposition 4 concludes. �

The fact that this problem lies at the second level of the polynomial
hierarchy can intuitively be explained by the presence of two inde-
pendent sources of complexity: the search for the “good” strategy
profiles, and the test whether this strategy profile is indeeda pure-
strategy Nash equilibrium. Once again, this result is related to the
complexity of controllability [10]. Actually, since the existence of a
Nash equilibrium is a more general problem than controllability, the
fact that it has the same complexity is rather good news.
We now briefly investigate syntactic restrictions on the formulas rep-
resenting the players’ goals which make the problem easier.We are
especially interested in DNF formulas. Recall that any Boolean func-
tion can be represented by such a formula, and thus that this is a
syntactic but not a semantic restriction.
As far as 2-players zero-sum games are concerned, since deciding
the validity of ∃A,∀B,Φ, a QBF2,∃ formula, isΣP

2 -complete even if
Φ is restricted to be in DNF, Proposition 5 holds even if player1’s
goal is restricted to be in DNF (and player 2’s is implicit). However,
when we explicitly represent the goals of each player in DNF,the
complexity of the problem goes down to NP, as the next proposition
shows.

Proposition 6 Let G be a Boolean game. If the goalϕi of every
player is in DNF, then deciding whether there is a pure-strategy Nash
equilibrium is NP-complete. Completeness holds even if both we re-
strict the number of players to2 and one player controls only one
variable.

Proof: If ϕi is in DNF, then∃i : ϕi can be computed in linear
time [9, Propositions 17–18]. Thus if everyϕi is in DNF, a formula
ψ≡

V

i(ϕi ∨ (¬∃i : ϕi)) can be computed in linear time. By Proposi-
tion 3 it is enough to guess a strategy profileSand checkS|= ψ, thus
the problem is in NP.
As for hardness, we give a reduction from (the complement of)the
problem of deciding whether a DNFΦ =

Wk
i=1 Ti is tautological, a

well-knowncoNP-complete problem. WriteX for the set of variables
of Φ and letx,y /∈X. Define a two-players gameG by ϕ1 =

Wk
i=1(Ti∧

x∧¬y)∨ (Ti ∧¬x∧ y), π1 = {y}, ϕ2 = (x∧ y)∨ (¬x∧¬y), π2 =
X∪{x}. Clearly,G can be built in linear time andϕ1,ϕ2 are in DNF.
Observeϕ1≡Φ∧(x 6= y) andϕ2≡ (x= y). By Proposition 3, there is
a PNE inG if and only if ((Φ∧(x 6= y))∨¬Φ)∧(x= y) is satisfiable.
Indeed: (i) sincey does not occur inΦ we have¬∃y : (Φ∧x 6= y) ≡
¬(Φ∧∃y : x 6= y)≡¬(Φ∧⊤)≡¬Φ, and (ii)¬∃X∪{x} : (x= y)≡⊥.
SinceΦ∧ (x 6= y)∧ (x = y) is unsatisfiable, there is a PNE inG iff
¬Φ∧ (x = y) is satisfiable, i.e., iff¬Φ is satisfiable sincex andy do



not occur inΦ. Finally, there is a PNE inG iff Φ is not tautological.�

When restricting to two-players games, the complexity of deciding
whether a game has a PNE can even be lowered toP. This is the case
if goals are represented in (i) Horn-renamable DNF, (ii) affine form,
(iii) 2CNF or (iv) monotone CNF. This is ensured by tractability of
projection in these cases, and the same proof as for abduction [16,
Section 6] can be used. However, as far as we know the practical
interest of these restrictions in our context has not been studied.

5 Dominated strategies

Another key concept in game theory isdominance. A strategysi for
playeri strictly dominatesanother strategys′i if it does strictly better
than it against all possible combinations of other players’strategies,
andweakly dominatesit if it does at least as well against all possible
combinations of other players’ strategies, and strictly better against
at least one. The key idea is that dominated strategies are not useful
and can be eliminated (iteratively, until a fixpoint is reached). This
process relies on the hypothesis that every player behaves in a ratio-
nal way and knows that the other players are rational.

Definition 6 Let si ∈ 2πi be a strategy for player i. si is strictly dom-
inatedif ∃s′i ∈ 2πi s.t.∀s−i ∈ 2π−i , ui(si ,s−i) < ui(s′i ,s−i).
si is weakly dominatedif ∃s′i ∈ 2πi s.t. ∀s−i ∈ 2π−i , ui(si ,s−i) ≤
ui(s′i ,s−i) and∃s−i ∈ 2π−i s.t. ui(si ,s−i) < ui(s′i ,s−i).

The following simple example shows the interest of eliminating dom-
inated strategies.

Example 4 Let G= {A,V,π,Φ} be the Boolean game defined by
V = {a,b}, A= {1,2}, π1 = {a}, π2 = {b}, ϕ1 = ϕ2 = a∧¬b.
This game has two PNE: strategy profiles S1 = {a,b} and
S2 = {a,b}. Nevertheless, only one of these equilibria is interesting.
Indeed, if1 and2 are rational, they will both choose strategy profile
S1, which makes both of them win. This result may be obtained by
eliminating dominated strategies: for player1 (resp.2), strategy{a}
(resp.{b}) weakly dominates strategy{a} (resp.{b}).

This interest also appears in Ex. 2 (the resulting strategy profile is
{C1C2C3}), but not in Ex. 1 (the resulting strategy profiles are exactly
the PNE). It is a well-known fact from game theory that a strictly
dominated strategy is not present in any Nash equilibrium, whereas
a weakly dominated strategy can be present in one (see for instance
[8].) Moreover, the order of elimination of strictly dominated strate-
gies does not affect the final result, which is no longer true for weakly
dominated strategies. Since the latter negative result holds for gen-
eral games (with no restriction on the players’ utility functions), it is
worth wondering whether it still holds for Boolean games. Itactually
does, as shown on the following example.

Example 5 G = {A,V,π,Φ}, where V= {a,b}, A = {1,2}, π1 =
{a}, π2 = {b}, ϕ1 = a∧b, ϕ2 = a∧¬b. For player1 (resp.2), strat-
egy {a} (resp.{b}) weakly dominates strategy{a} (resp.{b}). If
we first eliminate{a}, then{b} weakly dominates{b} and only one
strategy profile remains, namely{ab}. Now, if we first eliminate{b},
then{a} no longer dominates{a} any more, and two strategy pro-
files remain, namely{ab} and{ab}.

We now study properties and characterizations of dominating strate-
gies. A first result, that we just state as a remark, is that in aBoolean

game, if strategysi strictly dominates strategys′i , thensi is a win-
ning strategy fori. Stated in more formal terms,si strictly dominates
strategys′i if and only if: si |= (¬∃− i : ¬ϕi) ands′i |= (¬∃− i : ϕi).
This shows that, due to the restriction to binary utilities,the notion
of strict dominance degenerates and loses its interest. This is how-
ever not the case for weak dominance. We have the following simple
characterization of weak dominance:

Proposition 7 Strategy si weakly dominatesstrategy s′i if and only if
(ϕi)s′i

|= (ϕi)si and(ϕi)si 6|= (ϕi)s′i
.

Proof:Strategysi weakly dominatess′i iff (i) ∀s−i ∈ 2π−i ,ui(si ,s−i)≥
ui(s′i ,s−i) and (ii)∃s−i ∈ 2π−i ,ui(si ,s−i) > ui(s′i ,s−i).
Now (i)⇔ ∀s−i ∈ 2π−i ,(ui(si ,s−i) = 1 or ui(s′i ,s−i) = 0)⇔ ∀s−i ∈
2π−i , if (s′i ,s−i) |= ϕi then(si ,s−i) |= ϕi ⇔ ∀s−i ∈ 2π−i , if s−i |=
(ϕi)s′i

thens−i |= (ϕi)si ⇔ (ϕi)s′i
|= (ϕi)si .

Finally, (ii)⇔¬(i) if we swapsi ands′i ; thus (ii)⇔ (ϕi)si 6|= (ϕi)s′i
. �

Like for Nash equilibria, this characterization allows us to derive the
complexity of deciding weak dominance.

Proposition 8 Deciding whether a given strategy s′i is weakly domi-
nated isΣp

2-complete. Hardness holds even ifϕi is restricted to be in
DNF.

Proof: Membership inΣp
2 is immediate. Hardness is obtained again

by a reduction from the problem of deciding the validity of aQBF2,∃.
GivenQ = ∃A,∀B,Φ, let a,b be two new variables, and defineϕ1 =
(a∧Φ)∨ (¬a∧b), π1 = A∪{a}, π2 = B∪{b} (ϕ2 does not matter).
Let M′A be anyA-interpretation ands′1 be(M′A,a). We have(ϕ1)s′1

≡
(b).
AssumeQ is valid with MA ∈ 2A as a witness, and lets1 = (MA,a).
Then clearlys1 is a winning strategy for 1 whereass′1 is not, thus
s1 weakly dominatess′1. Conversely, assumeQ is not valid, and let
MA ∈ 2A. Let s1 = (MA,a). Then (ϕ1)s1 ≡ (b) ≡ (ϕ1)s′1

, thus by
Proposition 7,s1 does not weakly dominates′1. Now lets1 = (MA,a).
SinceQ is not valid, there isMB ∈ 2B such that(MA,MB) 6|= Φ. Thus
(MB,b) |= (ϕ1)s′1

but (MB,b) 6|= (ϕ1)s1, and by Proposition 7,s1

does not weakly dominates′1. Finally, s′1 is weakly dominated iffQ
is valid. For goals in DNF, just note (i) ifΦ is in DNF then∃A,∀B,Φ
is still Σp

2-complete and (ii) a DNF forϕ1 can be built efficiently. �

6 Related work

Our work is not the first one that gives a logical account to thestudy
of concepts such as Nash equilibria and dominating strategies. Apart
from Boolean games [7, 6, 4], a number of other works considered
static games from the point of view of logic and AI.
Two recent lines of work allow for expressing games withordinal
preferences within well-developed AI frameworks.
In Foo et al [5], a game in normal form is mapped into alogic pro-
gram with ordered disjunction(LPOD) where each player owns a
set of clauses that encode the player’s preference over her possible
actions given every possible strategy profile of other players. It is
then shown that pure-strategy Nash equilibria correspond exactly to
the most preferred answer sets. The given translation suffers from a
limitation, namely its size: the size of the LPOD is the same as that
of the normal form of the game (since each player needs a number
of clauses equal to the number of possible other strategy profiles for
other players). However, this limitation is due to the way LOPDs are



induced from games and could be overwhelmed by allowing to ex-
press the players’ preferences by any LPODs (and prioritized goals),
which then would allow for a possible much more compact represen-
tation.
In De Vos et al [3], a strategic game is represented using achoice
logic program, where a set of rules express that a player will select
a “best response” given the other players’ choices. Then, for every
strategic game, there exists a choice logic program such that the set
of stable models of the program coincides with the set of Nashequi-
libria of the game. This property provides a systematic method to
compute Nash equilibria for finite strategic games.
In Apt et al [1], CP-nets are viewed as games in normal form andvice
versa. Each playeri corresponds to a variableXi of the CP-net, whose
domainD(Xi) is the set of available actions to the player. Preferences
over a player’s actions given the other players’ strategiesare then ex-
pressed in a conditional preference table. The CP-net expression of
the game can sometimes be more compact than its normal form ex-
plicit representation, provided that some players’ preferences depend
only on the actions of a subset of other players. A first important dif-
ference with our framework is that we allow players to control an ar-
bitrary set of variables, and thus we do not view players as variables;
the only way of expressing in a CP-net that a player controls several
variables would consist in introducing a new variable whosedomain
would be the set of all combination of values for these variables—
and the size of the CP-net would then be exponential in the number of
variables. A second important difference, which holds as well for the
comparison with Foo et al [5] and De Vos et al [3], is that players can
express arbitrary binary preferences, including extreme cases where
the satisfaction of a player’s goal may depend only of variables con-
trolled by other players. A last (less technical and more foundational)
difference with both lines of work, which actually explainsthe first
two above, is that we do notmapnormal form games into anything
but weexpressgames using a logical language.
Admittedly, on the other hand, the restriction to binary preferences is
a strong limitation, but our work can be viewed as a preliminary, but
necessary step, and the extension of our notions, and of someof our
results, to non-degenerated (ordinal or numerical) preferences do not
present any particular problem (see Section 7).
In Section 4 we mentioned a relationship to propositional controlla-
bility, as studied by Boutilier [2] and Lang et al [10]. A recent line of
work within this alley [15] studies a cooperation logic in which each
agent is assumed to control a set of propositional variables. While we
focus on preferences and solution concepts, a recent work oncon-
trollability, namely the Coalition Logic of PropositionalControl [15]
focuses on the effective power of agents, that is, they reason about
the state of affairs that a group of agents can bring about.

7 Conclusion

In this paper we extended Boolean games to an arbitrary number of
players and to arbitrary Boolean goals. Extended Boolean games are
a first step towards a more general framework for expressing and
reasoning with interacting agents when the set of strategy profiles
has a combinatorial structure.
Clearly, the restriction to a single goal for each agent—andthere-
fore to binary utilities—is a strong one. However, as often,proceed-
ing by “building blocks” is valuable, for at least two reasons. First,
once this Boolean games framework is defined, extending it soas
to allow for more general preferences does not present any partic-
ular difficulty: the definition remains unchangedexceptthe agents’
goalsϕ1, . . . ,ϕn, which are replaced by more complex structures, ex-

pressed within logical languages for compact representation, such as
prioritized goals, weighted goals, conditional goals, or CP-nets with
binary variables. These frameworks allow for representingcompactly
eithernumericalpreferences (utility functions on 2V ) or ordinal pref-
erences (partial or complete orderings on 2V ). Nash equilibria and
dominated strategies are defined in the very same way5.
Now, binary utilities are a degenerate case of both numerical and
ordinal preferences. This implies that the complexity results identi-
fied in this paper providelower boundsfor complexity results in the
aforementioned possible extensions of the framework6.
Thus, this paper is a first step towards a more general propositional
framework for representing and reasoning with static gameswhere
the set of strategy profiles has a combinatorial structure. Further work
includes not only extensions to more expressive preferences as ex-
plained above, but also more sophisticated games such as dynamic
games or games with incomplete information.
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