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Abstract The above discussion reveals the existence of a gap: com-
s e pact representation and complexity issues for fair divisio
We study fair division of indivisible goods among have received very little attention until now, apart of tiee r
agents from the point of view of compact repre- cent work[Lipton et al, 2004 which studies approximation
sentation and computational complexity. We iden-  gchemes for envy-freeness. The need for compact representa
tify the complexity of several problems, including tion arises from the following dilemna, formulated by seter

that of deciding whether there exists an efficient  g4¢ia| choice theorists:  either (a) allow agents to express
and envy-free allocation when preferences are rep- gy possible preference relation on the set of all subsets of

resented in a succinct way. We also draw connec-  jtems, and end up with an exponentially large represemtatio
tions to nonmonotonic reasoning. (such as ifHerreiner and Puppe, 20])20r (b) severely re-
strict the set of expressible preferences, typically byiansg
1 Introduction additive independence between items, and then design-proce

, . dures where agents express preferences between singde item
Allocation of goods among agents has been considered frofmys giving up the possibility of expressing preferentiet d
different perspectives in social choice theory and Al. listh nendencies such as complementarity and substitutabitity e
paper we focus ofair division of indivisible goods without  fects among items; this is the path followed[Bramset al.,
money transfersFair division makes a prominent use of fair- 200 and[Demko and Hill, 1998 Yet, as we advocate in
ness criteria such asquity and envy-freenessand on this  this paper, conciliating conciseness and expressivitpésip
point totally depart from auctions, where orgfficiencyis  ple, by means ofompact representation

relevant (and moreover a specific form of efficiency, since . . . e .
( n 4 As in most works on fair allocation of indivisible items

the criterion to be maximized is the total revenue of the auc- . e
tioneer). Envy-freeness is a key concept in the literature oWwe focus on the joint search for envy-freeness and efficiency

fair division: an allocation is envy-free if and only if each The impossibility to guarantee the existence of an efficient

agent likes her share at least as much as the share of aﬁz_\/y-free allocation implies that determining whetheméhe
other agent. Ensuring envy-freeness is considered as cr@gXists such an allocation is a crucial task, since a posative
cial; however, envy-freeness alone does not suffice as a crp/Ve" leads to choose such an allocation whereas a negative
terion for finding satisfactory allocations, thereforedsstto ~ answer calls for a relaxation of one of the criteria. We con-
be paired with some efficiency criterion, such as Parete optiSIOIer this problem from the point of view of compact repre-
mality. However, it is known that for any reasonable notién o sentation and computational complexity. ~We focus first in
efficiency, there are profiles for which no efficient and envy-the simple case where agents haiehotomous preferences

free allocation exists (sd@ramset al, 2004)?. that is, they simply express a partition between satisfgcto

Whereas social choice theory has developed an importar.z?tnCI unsatisfactory shares. The interest of such a restricti
literature on fair division, computational issues haveshar |shthat n zplte Olf the exprlessnr/]lty I?]ss It |mpo|ses, It W#Ibb
been considered. On the other hand, artificial intelligenceOW" t% e nol ess complext _ﬁ?t € genera c?se, while be-
has studied these issues extensively, but until now has f¢'d Much simpler to expose. The most natural representa-
cused mainly on combinatorial auctions and related prob'Elon of a dichotomous preference is by a single propositiona
lems, investigating issues such as compact representati(gﬂrmma' where variables correspond to goods. Expressing
as well as complexity and algorithms. Complexity issueschvY-freeness and efficiency within this logical repreagon
for negotiation (where agents exchange goods by means veals unexpected connections to nonmonotonic reasoning
deals) have also been studied (e.founneet al, 2005; e identify the complexity of the key problem of the exis-
Chevaleyreet al, 2004). See alsdBouveretet al 2005’ tence of an envy-free and Pareto-efficient allocation, fwhic
for a preliminary complexity study of fair division problem turns out to be,-complete; we also identify the complexity
- of several other problems obtained either by imposing some

IThis is even trivial if every good must be assigned to someonerestrictions on the latter or by replacing Pareto-efficieby
in this case, there are profiles for which not even an enwy-itlo-  other criteria. In Section 5 we extend this result to the cdise
cation exists. non-dichotomous, compactly represented preferences.



2 Background

2.1 Fair division problems

Definition 1
Afair division problem is a tupleP = (I, X, R) where

e I ={1,...,N}isasetof agents;
(] X:{$1,..

e R = <R1, ..
R, is a reflexive, transitive and complete relationh.

., xp} is a set of indivisible goods;

R; is the preference relation of agentAR; B is alterna-
tively denoted byR; (A, B) or by A =; B; we noted »; B
(strict preference) forl =; B and notB =; AandA ~; B
(indifference) forA =; B andB =; A.

In addition, R; is said to benonotonoud and only if for
allA,B,AC BC X impliesB =; A. R =(Ry,...,Rn)
is monotonous if and only i?; is monotonous for every

Definition 2
e Anallocationfor P = (I, X, R) is a mappingr : I —
2X such that for alli andj # 4, 7(i) N 7 (j) = 0. If for
everyz € X there exists a@ such thate € = (i) thenr is
a completeallocation.

e Let,n’' two allocations.m dominatest’ if and only if
(a) for all ¢, w(i) =; (i) and (b) there exists ahsuch
thatm(i) >, 7'(¢). = is (Pareto-) efficientif and only if
there is nor’ such thatr’ dominatesr.

e An allocationr is envy-freeif and only ifr (i) =; 7(4)
holds for alli and all j # .

2.2 Propositional logic

Let V be a finite set opropositional variables Ly is the
propositional language generated frémthe usual connec-
tives -, A andV and the Boolean constantsand L in the
usual way. An interpretationM/ for Ly is an element of
2V, i.e, atruth assignmentto symbols: foralk V,x € M
(resp.xz ¢ M) means thal/ assigns: to true (resp. to false).
Mod(p) = {M € 2V | M = ¢} is the set of all models of

¢ (the satisfaction relatiok= is defined as usual, as well as

satisfiability and logical consequence).

A literal is a formula ofL, of the formzx or of the form—z,
wherex € V. Aformulay is undemegative normal forngor
NNF) if and only if any negation symbol in appears only in

literals. Any formula can be turned in polynomial time into

an equivalent NNF formula. For instaneep —(b A ¢) is not
under NNF but is equivalent to the NNF formula(—bv—c).

A formula is positiveif it contains no occurrence of the
negation symbol. For instance/ (b Vv —¢) anda V (—a A b)
are not positive, whereasn (b ¢) and(a Ac) V (a A D) are.
T and_L are considered positive as well.

Letp € Ly. Var(p) C V is the set of propositional
variables appearing ip. For instanceVar((a A ¢) V (a A
b)) = {a,b,c} andVar(T) = 0.

Lastly, if S = {¢1, ..., .} is afinite set of formulas then
NS =1 A... Ay, is the conjunction of all formulas .

2Note that connectivess and« are not allowed:; this is impor-
tant for the definition of positive formulas (to come).

., Rn) is a preference profile, where each

2.3 Computational complexity

In this paper we will refer to some complexity classes lodate
in the polynomial hierarchy. We assume the reader to be fa-
miliar with the classe®NP and coNP. BH,(also referred to

as DP) is the class of all languages of the forln N Lo

whereL; is in NP andL in coNP. AL= PNP is the class of

all languages recognizable by a deterministic Turing maehi
working in polynomial time usin§P oracles. LikewiseyXt=
NPNP. 08 = AP[O(logn)] is the subclass af\ of prob-
lems that only need a logarithmic number of oracles. See for
instancd Papadimitriou, 199for further details.

3 Fair division problems with dichotomous
preferences: logical representation

We start by considering in full detail the case where prefer-
ences are dichotomous.

Definition 3 R; is dichotomous if and only if there exists a
subsetGood; of 2% such that for allA, B C X, A >=; B if
and only ifA € Good; or B ¢ Good;. R = (Ry,...,Rn)

is dichotomous if and only if every; is dichotomous.

There is an obvious way of representing dichotomous pref-
erences compactly, namely by a propositional fornyléor
each ageni) of the languagé. x (a propositional symbols for
each good) such thdtf od(¢) = Good;. Formally:

Definition 4 LetR; be a dichotomous preference 2#, with
Good; its associated subset aff, and ¢, a propositional
formula on the propositional languagex. We say thatp;
representsR; if and only if Mod(y;) = Good;.

Clearly, for any dichotomous preferengg there is a for-
mulay; representingz;; furthermore, this formula is unique
up to logical equivalence.

Example 1 X = {a,b,c} and Good; = {{a,b},{b,c}}.
Note thatR; is not monotonous. Thep, = (a Ab A —¢) V
(ma A b A c) representsi;.

An easy but yet useful result (whose proof is omitted):

Proposition 1 Let R; be a dichotomous preference arf.
The following statements are equivalent:

1. R; is monotonous;

2. Good; is upward closed, thatisd € Good; andB D A
imply B € Good;.

3. R, is representable by a positive propositional formula.

From now on, we assume that allocation problgtare
represented in propositional form, namely, instead .o
andR we only specify{¢1, ..., on). I andX are obviously
determined fromy1, ..., oN).

LetP = {(¢1,...,pn) be an allocation problem with di-
chotomous preferences; then for edach NV, we rewritey;
into o} obtained fromyp; by replacing every variable* by
the new symbolr;. For instance, ifp; = a A (b V ¢) and
w2 =aAdthenp] =ay A (b1 Vcr) andys = ag A da.

Foralli < N, letX; = {z;,z € X} An allocation for
a standard allocation proble corresponds to a model of
V = X1U...UXy satisfyingat mostonex; for eache € X.

In other terms, there is a bijective mapping between thefset o



possible allocations and the models of the following foranul
Ip = Npex Nigj ~(@i Azj)
If allocation are required to be complete, tHép is replaced
byI'S =T'p AA,cx(z1V...Va,). Therestin unchanged.
LetV = {z; |i=1,...,N, x € X}. Any interpretation
M of Mod(I'p) is such that it is never the case thaandz;
are simultaneously true for£ j, therefore we can majpl €
Mod(T'p) to an allocationF'(r) = M simply defined by
m(1) = {z | M E z;}. This mapping is obviously bijective,
and we denoté"~1(M) the allocation corresponding to an
interpretationM of Mod(T'p).

3.1 Envy-freeness

Example 2 (cont’d) The maximal p-consistent subsets of
® are 51 = {p],p3}, G2 = {¢], 5} and Sz = {3, 3}
A\ S1 ATp has only one modekby, ¢1,a2}. A S2 AT p has
two models:{a1, b3} and {b1,c1,a3}. A Ss AT'p has one
model: {az, bs}. Therefore the four efficient allocations for
P are (be,a, —), (a,—,b), (be, —,a) and (—, a,b). None of
them is envy-free.

3.3 Efficient and envy-free allocations

We are now in position of putting things together. Since
envy-free allocations corresponds to the modelg\ pfand

We now show how the search for an envy-free allocation carfficient allocations to the models of maxinigh-consistent

be mapped to a satisfiability problem. Lﬁ}ﬂi be the formula
obtained fromyp} by substituting every symbal; in ¢} by
xz;: forinstance, ifp] = a1 A (b1 V 1) thenyj, = az A
(ba V c3). (Obviously,%i =)

Proposition 2 LetP = (1, ...,pn) be an allocation prob-

subsets of®p, the existence of an efficient and envy-free
(EEF) allocation is equivalent to the following condition:
there exists a maximdl p-consistent subsef of ®p such
that A S ATp A Ap is consistent In this case, the models
of the latter formula are the EEF allocations. Interestingl
this is an instance of a well-known problem in nonmonotonic

lem with dichotomous preferences under propositional forméasoning:

and the formula%*.‘i and mappingF as defined above. Let

Ap=Nic1..~ {S"f N (/\j;éi ﬁ‘P;u)}
Thenr is envy-free if and only iF'(7) = Ap.

Definition 6 A supernormal default thedtys a pair D =
(8,A) with A = {a,...,an}, Whereas,...,a,, and g
are propositional formulas. A propositional formulais a
skeptical consequence 6f, denoted byD ~¥ v, if and only

The proofis simple, so we omitit. The search for envy-freeif for all S € MaxCons(A, 3) we have\ S A 3 = 1.

allocations can thus be reduced to a satisfiability problem

{F~Y(M)| M | TpAAp}isthe setof envy-free allocations
for P Note that, importantlhi’» A Ap has a polynomial size
(precisely, quadratic) in the size of the input data.

Example 2

p1=aV (bAc); pa=a; p3=aVb.

Ap = ((a1 Vv (b1 A C1)) Vv (ﬂ(az V (bz A Cg)) AN —\(CL3 Vv (b3 N c3
AN (az V (—|a1 AN —‘(13)) A ((ag V bg) V (“(0,1 V bl) AN —|(a2 V ba

)
DB

Mod(l'p ANAp) = {{c1},{c1,b3}, {c2, b3}, {ca}, {bs}, {c3}, 0}
There are therefore 7 envy-free allocations, nanfely-, —),
(Cafab)’ (*,C,b), (77@7)' (7777b)' (77776) and

)

). Note that none of them is complete.

3.2 Efficient allocations

Definition 5 LetA = {ay,. .., an} a set of formulae ang
a formula. S C A is amaximal-consistent subset af iff
(@) \ S A B is consistent and (b) there is it such thatS C
S’ C Aand A S’ A Sis consistent. Led axCons(A, 3) be
the set of all maximab-consistent subsets Af.

Proposition 3 Let P = (p1,...,on) an allocation prob-
lem. Let®p = {¢7,...,¢%}. Thenr is efficient forP if

and only if{¢} | F(n) = ¢f} is a maximall' p-consistent
subset ofb p.

This simple result, whose proof is omitted, suggests that e

ficient allocations can be computed from the logical expres-

sion ® of the problem, namely, by computing the maximal
I" p-consistent subsets & call them{S,,...,S,}. Thenfor
eachS;, let M; = Mod(/\ S; ATp) and letM = U!_, M.
ThenF~1(M) is the set of all efficient allocations fdr°.

3Note that there are in general exponentially many maximal
consistent subsets @f (and therefore exponentially many efficient

Proposition 4 Let? = (p1,...,py) a fair division prob-
lem. Let Dp = (I'p, ®p). Then there exists an efficient and
envy-free allocation foP if and only if D |£¥ —Ap.

This somewhat unexpected connection to honmonotonic
reasoning has several implications. First, EEF allocation
correspond to the models g S A T'p A Ap for S €
MaxCons(®p,T'p); howeverMaxCons(®p,I'p) may be
exponentially large, which argues for avoiding to start eom
puting efficient allocations and then filtering out thosettha
are not envy-free, but rather compute EEF allocations in a
single step, using default reasoning algorithms thusgdiair
vision may benefit from computational work in default logic
and connex domains such as belief revision and answer set
programming. Moreover, alternative criteria for selegtéx-
tensions in default reasoning (such as cardinality, weight
priorities) correspond to alternative efficiency critériallo-
cation problems.

4 Allocation problems with dichotomous
preferences: complexity

It is known that skeptical inference I&;-complete Gottlob,
1997; now, after Proposition 4, the problem of the existence
fof an EEF allocation can be reduced to the complement of a

skeptical inference problem, which immediately tells that

allocations). This can be tempered by (a) there are manyigahc
cases where the number of maximal consistent subsets i§ gmal
it is generally not asked to look fall efficient allocations; if we
look for just one, then this can be done by computing one malxim
T' p-consistent subset df.

4Supernormal” defaults are also called “normal defaultgwirt
prerequisites” (e.g[Reiter, 1980).



is in XE. Less obviously, we now show that it is complete for 2. 2,...,n envy noone;

this class, even if preferences are required to be monotonou

Let us first note that skeptical inference remaii$-

3. n+ 1 canonly envy + 2;

complete under these two restrictions (to which we refer as 4- 7+ 2 can only envy: + 1;

RS, for RESTRICTED SKEPTICAL INFERENCE ()¢ = ¢1;

(b) n > 2. (Here is the justificationA |~ ¢ if and only
if AU {y,¢} |~ v.) Equivalently,RsI is the problem of
deciding whether, givelA = (a1, ...,a,) with n > 2, all

maximal consistent subsets Afcontaina; .

Proposition 5 The probleneer EXISTENCEOf determining
whether there exists an efficient and envy-free allocatioa f

Proof: First, note that for any, j # 4, ¢ enviesj if and only

if 7(2) E —¢; andn(j) | vi.

1. Leti = 1andj € {2,...,n,n + 2}. Assume 1 envies
j. Thenn(j) &= ¢1. « being regularz® & =(j), therefore
7m(7) E B1. Now, sincer is regular,7(j) does not contain
any v* nor any #‘; now, 3; can only be made true by
variablesv® or * (which cannot be the case here) unless it is

given problen with monotonous, dichotomous preferences tautology. Now, if3, is a tautology, then 1 is satisfied by

under logical form is=8-complete.

We show hardness by the following reduction fraai
(the complement problem &fs1) to EEF EXISTENCE Given
any finite setA of propositional formulae, 16fA = Var(A)
the set of propositional symbols appearing4ng and let
P = H(A) the following instance oEEF EXISTENCE

Q) ={1,2,...n+2};
2 X ={v'|veVa,iel.n}U{t'|veVa,icl.n}
U{z'i € 1..n} U{y};

(3) for eachi = 1,...,n, let 5; be obtained fromy; by the
following sequence of operations: (i) patf into NNF form
(let o, be the result); (b) for every € Va, replace, ina/,
each (positive) occurrence ofoy v* and each occurrence of
—v by 7°; let 3; be the formula obtained. Then

o1 =1 Val
ofori=2,...,n,¢; = B A2’

®Ppy1 = ((/\vGVar(A) (Niz1v) Vv (A W)) A 5‘71)\/9;
® Ppt2 =Y.
Lemma 1 An allocationr for P is said to beregularif and
only if for all i # n, 7 (i) C o(i), where

o foralli #n, (i) = U,ey, {0, 0"} U{z'};

b O’(TL +1) = UveVA,izl n{vi"’ji} U{xlvy};

o o(n+2) = {y}.
Let nowrp defined byrg (i) = 7(i) N o;. Then

1. 7w is regular;

2. wis efficient if and only ifry is is efficient;

3. if w is envy-free them is is envy-free.

.....

Proof: (1) is obvious. For all, the goods outside (i) do
not have any influence on the satisfactioniafsince they
do not appear iny;), thereforerg (i) ~; w(i), from which
(2) follows. The formulasy; being positive, the preference
relations=; are monotonous, therefor€;) =; mz(j) holds
for all 4, 7. Now, if 7 is envy-free then for all, j we have
w(1) »=; 7(j), thereforeng(i) ~; w(i) =; w(j) =i 7r(j)
andrp, is envy-free, from which (3) follows. ]

Lemma 2 If 7 is regular then
1. 1 canonly envyr + 1;

and cannot envy, a contradiction.

2. Leti € {2,...,n} andj # 4. If i envies;j then
7(j) | Bi A «*, which is impossible becausé ¢ 7 (j), due
to the regularity ofr.

3. Leti = n+ 1. Assumen + 1 envies 1 them (1) = vp 1.
Sincer (1) | y is impossible (becauseis regular), we have
(1) E Aveva (Aimy v') V (AiZ; %) A 2, which implies
that eitherr(1) |= Ay, (Aizg v?) orm(1) = (A, 0°).
Both are impossible becaugeis regular andr > 2. The
casej € {2,...,n} is similar.

4. Leti = n+ 2 andj # n. If ¢ enviesj thenn(j) = v,
which is impossible becauseis regular. [ ]

Lemma 3 Letr be a regular allocation satisfying + 1 and
n + 2. Let M (r) be the interpretation oi¥a obtained from
7 by: forallv € Va, M(7) = v (i.e,v € M(m))ifn+1

receivesi!, ..., o", andM (w) &= —w otherwise, i.e., ifi + 1

receivesv!, ..., v". Thenr is envy-freeff M(7) = «;.

Proof: Let = be a regular allocation satisfying + 1 and

n + 2. Sincer satisfiesn + 2, y € w(n + 2). Now, 7
satisfiesn + 1 without giving himy, therefore, for any,

n + 1 receives either all the®’s or all thev”’s. This shows
that our definition ofM (7) is well-founded. Now, sincer

is regular, it is envy-free if and only if (a) 1 does not envy
n+1, (b) n+1 does not envy n+2 and (c) n+2 does not envy
n+1. Sincen + 1 andn + 2 are satisfied byr, we get thatr

is envy-free if and only if 1 does not envy n+1, that is, if and
only if eithern(1) = @1 orw(n + 1) ¥ ¢1. Now, 7(n + 1)
containse!, thereforer(n + 1) = 1, which entails thatr

is envy-free if and only ifr(1) = 1. This is equivalent to
7(1) & B3, becausd does not get:! (which is assigned to
n+1), which in turnis equivalenttd/ (r) by constructionm

Lemma 4 For each interpretationV/ overVa, let us define
7 s I — 2% by:
o my(1) ={v! | M Ev}U{dt | M E —w};
o for eachi € 2,....,n, my(i) = {v' | M E v} U
{v' | M |= v} U{z};
e my(n+1) ={z'}U{v" | M Ev,i=1,...,n}U
{v' | M E-w,i=1,...,n};
o my(n+2) = {y}
Then:
1. 7 is a well-defined and regular allocation satisfying
n+1andn + 2;
2. Mr,, = M (M,,, is obtained fromr,, as in Lemma3).

™M

3. foranyi € 1,...,n, m satisfies iff M E «;.



4. 7y is efficient iff M satisfies a maximal consistent sub- Proof: Let = be an efficient and envy-free allocation. By
set ofA. Lemma 1,7 is regular, efficient and envy-free. By Lemma
Proof: 6, 7 satisfiesn + 1 andn + 2. Then by Lemma 5M (7r)
1. 7, does not give the same good to more than one indivigsatisfies a maximal consistent subset’ofand by Lemma

ual, therefore it is an allocation. The restis straightfardy 3 M (7r) |= a1. ThereforeSat(M(wr), A) is a maximal
) ) ) consistent subset df and containg; . ]

2. if M = v thenmy (n + 1) contains{v* [ i = 1,...,n}

and thereforé// (myr) |= v. The caseV |= —w is similar. Lemma 8 If there exists a maximal consistent subsetof

3. leti € 2,...,n. Sincery givesz’ to 4, ) satisfies if containinga; then there exists an EEF allocation.

and only ifmy, (i) = 3, which is equivalenttd = «;. If  Proof: Assume that there exists a maximal consistent subset
i = 1 then, sincer,; does not giver' to 1, 7y, satisfiesl if  § of A containingay, and letM be a model of5. By point

and only ifr (1) = 31, which is equivalent td// = a;. 4 of Lemma 47, is efficient.

By point 1 of Lemma 4., is regular; then by Lemma 2,
s IS envy-free if and only if (i) 1 does not enwy+ 1, (ii)

n + 1 does not envyh + 2 and (iii) n + 2 does not envy
n+ 1. By point 1 of Lemma 47, satisfies: + 1 andn + 2,
therefore (ii) and (iii) hold. Lastly, by point 5 of Lemma 4,
M = «; implies thatry, satisfiesl, therefore (i) holds as
well andmy, is envy-free. ]

4. from point 3,{i, myssatisfies} = {i,M | «;}. Now,
since preferences are dichotomous, an allocatioris
efficient if and only if the set of individuals it satisfies is
maximal with respect to inclusion. Thereforg, is efficient
if and only if M satisfies a maximal consistent subsefom

Lemma 5 Letrw be a regular and efficient allocation satisfy-
ingn+1andn+2. ThenM () satisfies a maximal consistent

subset ofA. Proof of Proposition 5 from Lemmas 7 and 8, the ex-

o o istence of a maximal consistent subset/fcontaininga;
Proof. m is regularl and satisfies + 1 andn + 2, therefore 44 the existence of an efficient and envy-free allocation
m(n+2) = {y}, 2* € n(n+1),andM(r) is well-defined.  for P = F(A) are equivalent. Clearly is computed in

Let' obtained fromr by polynomial time. Therefore is a polynomial reduction
o /(1) = {v|M(7) Ev}U{d M () E w}; from RSI to EEF EXISTENCE Which shows that the latter
o for eachi = 2,....n: «'(i) = {v|M(r) |= v} U problem is¥}-hard, and therefore,-complete. [
(oM (m) = o} U {o') |
o ' (n+1) = {z'JU{v'|M(7) F ~0}U{v"|M(7) |= v} As a corollary, thisz5-completeness result holds for gen-
o 7'(n+2)={y}. eral (not necessarily monotonous) dichotomous prefesence

« being regular and satisfying + 1 andn + 2, we have . As a consequence of this high complexity, it is worth study-
mn+1) = 7' (n+1), 7(n +2) = 7'(n + 2), and then for N9 restrictions and variants of the latter problem for whic
eachi, 7(i) C '(i): indeed, letj € {2,...,n} (forn + 1 complexity may fall down. We start by consideriiugntical
andn + 2 this inclusion is obviously satisfied); then (a) dichotomous preference profiles, that is, all agents hawe th
is regular, thereforer(j) C o(j); now, all goods ofr(j) ~ Sa@me preference, i.e. the same formplla

are either int’(j) orin w(n + 1) (namely:z' if j = 1and  Proposition 6 EEF EXISTENCEwith N identical dichoto-

all the v’ such thatM (7) = —v and all thes’ such that  mous, monotonous preferencedliB-complete, for any fixed
M(x) E wv); thereforer(j) C #'(j) U n(n + 1), which, N > 9.

together withr (1) N w(n + 1) = 0, impliesw(j) C 7' (j). N
Since preferences are monotonous, all individuals satisfie
by 7 are satisfied by’ as well; and since is efficient,= and

7' satisfy the same set of individuals. Now, we remark tha
7' = Ty By Lemmadn’ is efficientiff M (r) satisfies a
maximal consistent subset 4f, from which we conclude s

Due to space limitations the proofs of this result and the
following ones are omitted Note that we have here a hard-
ness result for anfixednumber of agentsX 2). Things are
different with Proposition 5, for which hardness does nddho
whenN is fixed. Namely, the following holds faV = 2:

Proposition 7 EEF EXISTENCE for two agents with
Lemma 6 Any envy-free and efficient allocation f@r sati-  monotonous dichotomous preferencedi®Bcomplete.

fiesn + 1 andn + 2. . Unlike Proposition 5, these results are sensitive to whethe
Proof: Supposer doesn't satisfyn + 1; theny & w(n + 1); preferences are required to be monotonous or not.

now, if y € w(n+2) thenn + 1 enviesn+2;if y € 7(n+2) " . : . .
thenr is not efficient because givingto n 4 2 would satisfy ~ FroPOsition 8 EEF EXISTENCEwith V' identical dichoto-
n + 2 and thus lead to a better allocation than mous preferences BH;-complete, for any fixed > 2.
Now, supposer does not satisfy + 1, i.e.,y & m(n + 2); Proposition 9 EEF EXISTENCEfor 2 agents with dichoto-
if y € m(n + 1) thenn + 2 enviesn + 1; if y & m(n + 1)  Mous preferences &pBH,-complete.

then againr is not efficient because givingto n +2would  complexity decreases as well if we weaken Pareto-efficiency
satisfyn + 2 and thus lead to a better allocationthan = by only requiring allocations to beomplete

Lemma 7 If there exists an EEF allocation, then there exists  5They can be found in the long version of the paper, accesaible
a maximal consistent Subset@fcontainingal. http://wwmvirit.fr/recherches/ RPDVP/ persos/ Jer omelLang/ paper s/ eef . pdf .



Proposition 10 The existence of a complete envy-free allo-6 Concluding remarks

cation for agents with monotonous, dichotomous preference\e have identified the exact complexity of the key problem
is NP-complete, even for 2 agents with identical preferenceset geciding whether there exists an efficient and envy-free
Lastly, replacing Pareto-efficiency by an utilitariargstotion  allocation when preferences are represented compactly, in
of efficiency results in a complexity decrease as well: several contexts; we have also considered variations of the
Proposition 11 The existence of an envy-free allocation sat-Problem. We have also drawed connections to a well-studied
isfying a maximal numberf agents with monotonous di- Problem in nonmonotonic reasoning. The next step will

chotomous preferences@s,-complete. consist in designing and experimenting algorithms for the
search of an EEF allocation (when it exists) and approxima-
5 Non-dichotomous preferences tion notions for defining optimal allocations when there is

no EEF allocation (sekLipton et al, 2004 for approximate

We now consider the case where preferences are no longgﬁvy-freeness, although not coupled with efficiency).

dichotomous. Again, since an explicit description of prefe

ences is exponentially large, the need for a compact descri&\cknowledgements:We thank Michel Lemaitre for stimu-

tion thereof is clear. Many languages exist for SUCCINCE rep i i cussions about fair division and compact represe
resentation of preference. However, Proposition 5 extends tation, and Thibault Gajdos for stimulating discussionsteb

any language, provided that (a) it extends propositiorgitio envy-freeness and for pointing to us some relevant papers
i.e., it is able to express compactly any dichotomous pref- '

erence represented by a propositional formula; (b) compari

two sets of goods can be done in polynomial time. Conditionﬁeferences _

(a) and (b) are met by many languages for succinct represebBouveretet al, 2003 S. Bouveret, H. Fargier, J. Lang, and
tation of preference Under assumptions (a) and (b): M. Lemaitre. Allocation of indivisible goods: a gen-

Corollary 1 EEF EXISTENCEwith monotonous preference €@l model and some complexity results. Fmoceed-
under Io)g/]ical form iso2-complete P ings of AAMAS 052005. Long version available at
L .

. http://www.irit.fr/recherches/RPDMP/persos/Jeromeg/papers/aig.pdf
For the latter result preferences do not have to be numeric E :

since Pareto efficiency and envy-freeness are purely drdini ramset al, 2000 S. Brams, P. Edelman, and P. Fishburn.
notions. Now, if preferences are numerical, which implrest ~ Fair division of indivisible items. Technical Report RR

possibility of intercomparing and aggregating preferesnafe 2000-15, C.V. Starr Center for Applied Economics, New
several agents, then, besides Pareto-efficiency, we may con York University, 2000.

sider efficiency based on social welfare functions. We con{Chevaleyreet al, 2004 Y. Chevaleyre, U. Endriss, S. Es-

sider here only the two most classical way of aggregating a tivie, and N. Maudet. Multiagent resource allocation with

collection of utility functions(u, . ..,w,) into a social wel- k-additive utility functions. InProc. DIMACS-LAMSADE
fare functionsw: utilitarianism sw = >, u;) and egalitari- Workshop on Computer Science and Decision Theaty
anism w = min; u;). ume 3 ofAnnales du LAMSADpages 83-100, 2004.
Proposition 12 Given a collection of utility functions o2® [Demko and Hill, 1998 S. Demko and T.P. Hill. Equitable
given in compact form: distribution of indivisible itemsMathematical Social Sci-

« the problem of the existence of an envy-free allocation €nces16:145-158, 1998.
maximizing utilitarian social welfare is\}-complete, [Dunneet al, 2009 P. Dunne, M. Wooldridge, and M. Lau-
evenifN = 2. rence. The complexity of contract negotiatioArtificial

e the problem of the existence of an envy-free allocation Intelligence 2005. To appear.
maximizing egalitarian social welfare iA%-complete, [Gottlob, 1992 G. Gottlob. Complexity results for non-
evenifN = 2. monotonic logics. Journal of Logic and Computation

A last case that has not been considered is the caesadf 2:397-425,1992.

tive numerical preferences. In the latter case, the utility func [Herreiner and Puppe, 20DD. Herreiner and C. Puppe. A

tion of agenti < N is simply expressed by the numbers simple procedure for finding equitable allocations of in-
ui({z;}), j = 1,...,p. While the existence of aomplete divisible goods.Social Choice and Welfard 9:415-430,
envy-freeallocation is easily shown to HeP-complete (see 2002.

[Lipton et al, 2004), things become much harder witEF

EXISTENCE all we know is that this problem P-hard and [Lang, 2004 J. Lang. Logical preference representation and

combinatorial vote Annals of Mathematics and Atrtificial

i . - : ;
in 32, but its precise complexity remains an open problem. Intelligence 42(1):37—71, 2004,

SFor the sake of illustration, we pick here one of the most sim-[Lipton et al,, 2004 R. Lipton, E. Markakis, E. Mossel, and
ple ones, similar to those used for combinatorial auctiagents’ A. Saberi. On approximately fair allocations of indivigibl
preferences are numerical (i.e., utility functions) arelr@presented goods. InProceedings of EC'04004.

by a set of propositional formulas, each of which is assediatith . s .
a weight denoting its importance; the utility of a set of gead  [Papadimitriou, 1994 Ch. H. PapadimitriouComputational

the sum of the weights of the formulas satisfied. Prefereaces complexity Addison-Wesley, 1994.
monotonous if all formulas are positive and all weights aositve. [Reiter, 198] R. Reiter. A logic for default reasoningrti-

See for instancélLang, 2004 for a survey of logical languages for ficial Intelligence 13:81-132, 1980
compact preference representation. ) ’ )



