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Abstract

The practical use of Quantified Boolean Formulas
(QBFs) often calls for more than solving the validity
problem@sF. For this reason we investigate the cor-
responding function problems whose expected outputs
are policies. QBFs which do not evaluate to true do
not have any solution policy, but can be of interest nev-
ertheless; for handling them, we introduce a notion of
partial policy. We focus on the representation of poli-
cies, considering QBFs of the forvtiX 3Y ®. Because

the explicit representation of policies for such QBFs can
be of exponential size, descriptions as compact as pos-
sible must be looked for. To address this issue, two ap-
proaches based on the decomposition and the compila-
tion of ® are presented.

Introduction

A Quantified Boolean Formula (QBF) consists of a classical
propositional formula together with an ordered partition of
its variables, corresponding to quantifier alternations, such
as, for instanceld{a} V{b,d} I{c} (a A =c) — (b A d).
Any QBF evaluates to true or false; it evaluates to true if
and only if the corresponding statement where quantifiers
on variables bear actually on tirith valuesof these vari-
ables, holds, and in that case the QBF is said todda
(as it is the case for the latter instance)QBF is the de-
cision problem consisting in determining whether a given
QBF is valid. Solving the decision proble@sF has be-
come for a few years an important research area in Al.
Several explanations for this can be advanced, including
the fact that many Al problems whose complexity is lo-
cated inPSPACE can be expressed and then solvedsy
solvers (Eglyet al. 2000). Accordingly, many such solvers
have been developed for the past few years (see among oth
ers (Cadoli, Giovanardi, & Schaerf 1998; Rintanen 1999b;
Feldmann, Monien, & Schamberger 2000; Giunchiglia, Nar-
izzano, & Tacchella 2001; Letz 2002; Zhang & Malik 2002;
Pan & Vardi 2004); see also (Littman 1999; Majercik &
Littman 1999) for a probabilistic version of QBF.

Obviously, QBFs can be viewed as planning problems un-

der incomplete knowledge and feedback as well as sequen-

tial two-player games with complete information. Clearly
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enough, when QBFs are used to represent such problems,
what is expected is more than simply solviggr. Indeed,
solving the decision problem only enables telling whether
there exists a winning strategy or a valid plan; in practice,
one would also like to determine such a plan (that we call a
solution policy or at least, an approximation of it. There-
fore, the aim becomes solving tfienction problemassoci-

ated with QBFs, denoted RQBF.

While this function problem is nothing really new (it has
been considered before in (Kleinéiging, Subramani, &
Zhao 2003; Liberatore 2005), as well as in (Chen 2004)
in the close framework of quantified constraint satisfaction
problems (QCSPs)), this paper investigates new issues.
First, when no solution policy exists, we search far-
tial policiesthat solve the problem “as much as possible”.
Then, we introducespresentation scheme$such policies.
Lastly, we investigate the search foompact policiesfo-
cusing on QBFs of the forrdX 3Y ®. Because the explicit
representation of policies for such QBFs can be of exponen-
tial size, descriptions as compact as possible are looked for.
This issue is addressed by two approaches, based respec-
tively on thedecompositiorand thecompilationof ®.

Formal Preliminaries

In the rest of the papeF; RO Ppgs denotes the propositional
language built up from a finite sétS of symbols, the usual
connectives and the Boolean constanmts | in the stan-
dard way. ¥ is an instantiation of variables frold C PS
(also referred to as aiX -instantiation) and2¥ is the set
of all possible X-instantiations. Thus, iX = {a,b,c},
Z = (a,—b,c) is an X-instantiation. IfX andY are two
disjoint subsets oP RO Ppg, (Z, ) is the concatenation of
Z andy: in this instantiation, each variable &f (respec-
‘tively Y) takes the value indicated b§/(respectivelyy).

For® € PROPpg andZ € 2%, we denote byb; the
formula obtained by conditioning by 7; this formula is
obtained from® by replacing occurrences of each variable
x from X by T (respectivelyl) if z € & (respectively-x €
Z). For any set& andF’, E — F denotes the set of all total
functions fromFE to F'.

Let k£ be a positive integer angd € {3,V}. A QBF is a
(k + 3)-uple P = (k,q, X, ..., X1, ®) where{ X1, ..., Xi}
is a partition of the set of propositional variables occurring
in® € PROPps. P = (k,q, Xk, ..., X1, ®) is valid if and



only if one of the following three conditions is true: {c}, (a = ¢) A(b — —¢)): P is not valid because the in-

1. k=0and® = T stantiation(a, b) makes® unsatisfiable: thus, if nature plays
' ) . o (a,b), the agent cannot do anything leading to the satisfac-
2. k > 1, ¢ = 3, and there exists ai;-instantiationzj, € tion of ®. On the other hand, if nature plays anything but
2% such thatlk — 1,V, Xj,_1, ..., X1, @5 ) is a positive (a,b) then the agentando something satisfactory, namely,
instance 0RQBF,—1,v ; (a,—b) + ¢, (—a,b) — —c, (ma, —b) — c (or —=c).
3. k > 1, ¢ =V, and for eachX-instantiationz;, € 2+, Definition 3 (partial policy) The setPP(k,q, Xy, ..., X1)
(k = 1,3, Xp—1,..., X1, ®z,) is a positive instance of  of partial policiesfor the QBFP = (k, ¢, X}, ..., X1) is
QBFk—1,3. defined inductively as follows:

QBF;, 4 is the set of all QBFs of rank and first quantifier e PP(1,3,X;)=2%1U{x};
q. QBFy, is the subproblem ofBF where only formulas o PP(1,V,X1) = 2% — {)\ x};

from QBF; , are considered. o PP(k,3, Xk, ..., X1)
.. = {fk;’ﬂ'k,1 |7Tk,1 S PP(k—LV, Xi_1, ..,Xl)}U{X};
Policies e PP(k,V, Xy, ... X1) = 2X PPk —
Intuitively, a policy is a function mapping instantiations of 1,3, Xp—q, ..., X1).

each group of universally quantified variables into instantia-
tion of the group of existentially quantified variables imme-
diately following it.

x represents failure. Any partial policy frof?P(k —
1,4, Xk—1,..,X1) used to define a partial policy of rank
k along the definition above is called amternal policyof

Definition 1 (total policy) The setT'P(k,q, Xk, ..., X1) m. Itis a universal internal policywheng = V, and an
of total policiesfor QBFs from QBF , is defined inductively ~ existential internal policptherwise.
by: Definition 4 (sound policy) A partial policyr € PP(k,
e TP(0,q) = {\}% q, Xk, ..., X1) issoundfor P = (k, q, Xy, ..., X1, ®) ifand
o TP(k,3, Xp, ... X1) = {Zp ;741 | mh1 € TPk — only if one of these conditions is satisfied:
17V7Xk717---7X1)}; 1. qulandW: X,
o TPk, Xp, ... X1) = 2% 5 TPk — 2. (kq) =(1,3),7r=7 andi = ;
1,3, Xg—1,.00, X1). 3. (k,q) = (1,Y) andVz; € 2%, n(#1) = x or (7(#1) =
For instance, a policy offP(1,3,X;) has the form Aandi = @) ;
(#1;\), i.e., 71 (an X;-instantiation);TP(1,V, X,) is re- 4.k > 1,q = 3, 7 = Zy;m—1 and m,_; is sound for

duced to a unique policy: the constant function which maps (¢ — 1,V, Xg—1,..., X1, ®z,) ;
any X -instantiation to\. A policy of TP(2,V, X», X;) is 5. k > 1,q =V, and for anyz;, € 2%+, 7(%},) is sound for

a total function from2X2 to 2X1. (k—1,3, Xp_1,..., X1, Pz,).

Definition 2 (satisfaction) A total policy 7© of While only valid QBFs have solution policies, it is clear
TP(k,q, X, ..., X1) satisfiesP = (k,q, X, ..., X1, D), that all QBFs have sound partial policies.

gglr(ljost.ed byr = P, if and only if one of these conditions Example 2 P = (2,V, {a, b}, {c}, (aVb)A(a — )A(bVe))

has no solution policy. Here is a sound policy fér
e k=0andr =\ and®=T; (a,b)
—

ek >1landgq = Jandw = (Ty; ') with 7 E (k — (_‘ b) >—>2

1,V,X;€_17...,X1,(I>fk> ; = (a —\b) — C
e k> 1andq =V and for all #;, € 2%+ we haver(7},) = (-a,—b) > x

k—1,3, X5 1,.... X1,®z ). .

< ol 1 ®a) Intuitively, the best policies among the sound ones are
Example 1 (3,3, {a}, {b},{c,d},(a — (cAd)) A (b < those built up from internal policies wheseis used as less
—¢)) is satisfied byr = —a; (b) = (e d) as possible:

L) =(ed) [ Definition 5 (maximal sound policy) Letw and=’ be two

Proposition 1 (folklore) P = (k,q, X, ..., X1, ®) is a pqmal pO|/ICIES ofPP(q, k, X, ./..,_Xl). wis at_least as cov-
positive instance ofBFy. , if and only if there exists atotal ~ €ring asm’, denoted byr J 7/, if and only if one of the
policy = € TP(k,q, X, ..., X1) such thatr = P. Such a following conditions is satisfied:

m is called a solution policy foP. e g=3Jandn’' = x;
Now, asking for a solution policy is often too much de- ® ¢ =Y.k =1landforall#; € 2*1, eithern’(;) = x or
manding. For instance, let us consider= (2,V, {a, b}, m(@1) = A;
® q = El! ™ = [fk;ﬂ_k_l], = [x;g;ﬂ-;gfl]v andﬂ-k—l g

) represents thempty policy The operator “” represents the .
sequential composition of policies; \ is typlcally abbreviated as k=1~
. e ¢ =V, k> 1andforallz, € 2%, 7(&) 2 7' (T%).



O is a partial preorder (reflexive and transitive relationy;
is a maximal soundolicy for a QBF P if and only if7 is
sound forP and there is no sound policy for P such that
' Jrandr 2 ',

Example 3 P = (2,V, {a, b}, {c}, (aVb)A(a — c)A(bVc))
has two maximal sound policies: as reported in Example
2, andr’ identical tor except that it map&—a, b) to —c.

Clearly, every QBFP has a maximal sound policy; fur-
thermore, if a solution policy foP exists, then solution poli-
cies and maximal sound policies coincide.

Policy Representation

It is essential to distinguish between the notion of policy
per seand the notion ofepresentationr of a policy. Indeed,
policies may admit many different representations, and two
representations of the same policy can easily have differ-
ent sizes, and can be processed more or less efficiently (e.g.
computing the image of an instantiation by a given universal
internal policy can be more or less computationally demand-
ing).

A representation schem® for policies is a finite set of
data structures representing policies. Associated with any
representation schemg is an interpretation functiods
such that for anyy € S, 7 = Is(o) is the policy rep-
resented by. The simplest representation scheme is the
explicit one: the representation of a policy is the policy it-
self (so the corresponding interpretation function is iden-
tity). Accordingly,w also denotes the explicit representation
of policy 7. Within the explicit representation of a policy
m, every universal internal policy’ is represented explic-
itly as a set of pairs (this is the representation we used in
the examples reported in the previous sections). Another
representation scheme for total policies consists of circuits
(Liberatore 2005): to each existentially quantified variable
x € X; ofaQBFP = (k,q, Xk, ..., X1, ) is associated
a circuitC', whose inputs are all the universally quantified

variablesy” from |J}_,,, X;. For each instantiatiog of
those variables}', gives the corresponding value of

The next proposition makes precise the connection be-
tween the decision proble@sF and the function problem
FQBF. It shows that explicit representations of total policies
are certificatesfor QBF, i.e., data structures from which a
polytime verification of the validity of positive instances is
possible. To be more precise:

Proposition 2 There is a polytime algorithm whose input is
the explicit representation of a policy € TP(k, ¢, Xk,
.., Xj) and a QBFP = (k,q, Xy, ..., X1, ®) and which
returns1 if 7 is a solution policy forP and0 otherwise.

For every instanc® = (1,3, X;, ®) of QBF, 3 (i.e., ev-
ery SAT instance), a solution policy for P is represented
explicitly by any model ofd over X, ; obviously, such rep-
resentations of policies are certificates fpBF; 5. Now,
for every instanceP = (1,V,X;,®) of QBF vy, the so-
lution policy 7 for P is represented explicitly by the set
{(#1,\) | #1 € 2%1}; again, this representation is a cer-
tificate forQBF; v. The same policyr can be represented in
an exponentially more succinct way as the constant function

mapping anyX | -instanciation to\; obviously, such an (non-
explicit) representation of is not a certificate foQBF; v,
unlessP = NP; furthermore, the existence of a certificate
of polynomial size forQeF; v would lead toNP = coNP,
hence the polynomial hierarchy to collapse. This example
clearly shows how different representations of the same pol-
icy may lead to different computational behaviours when the
purpose is to use the policy.

The Case 0fsFQBFR,y

We now focus on the practical resolution $fQBF, v, the
second function problem for QBFs frogBF, v, which aims

at computing a maximal sound policy for a givéh Why

the choice ofk = 2 andq = V? It is important, before
investigating more complesFQBF; , problems, to focus on
the problems at the first levels (which are already complex
enough, as we will see). The cake= 1 has received an
enormous attentiorsFQBR, 3 is not really new either, since

it reduces to an abduction problem. Things are different with
SFQBR,y, since (i) finding maximal sound policies becomes
here relevant and (ii) the size of the representation of a policy
becomes a crucial issue.

Polynomially compact and tractable schemes

In the case 0BFQBR v, a partial policy forP = (2,V, X,

Y, ®) is any mappingr from 2% to 2¥" U {x}. Ideally, we

are looking for representation schemes for maximal sound
policies that are both polynomially compact and tractable:

Definition 6 (polynomially compact scheme) A policy
representation schem& for maximal sound policies for
QBF,,v is said to bepolynomially compacif and only if
there is a polysize functioRs that associates each = (2,
v, X, Y, ®) € QBR, v to a representatior € S of a maxi-
mal sound policyr for P.

Definition 7 (tractable scheme) A policy representation
schemeS for maximal sound policies for QBF; is said
to betractableif and only if there exists a polytime algo-
rithm Dgs such that for any € S, Ds computesr(Z) =
Ds(o, %) for any s € 2%, whererr = I5(o).

Clearly, the explicit representation scheme for maximal
sound policies is not polynomially compact in the general
case. For instance, there exist instances of QBfBr which
any solution policy is injective, as in the following example:

V{z1, ..z} Y1, Yn Ny (@i = 43)-

However, it is possible to encode the solution polictes
for the set of QBFs of this example (withvarying), using
data structures of size polynomial inn and from which
7(Z) can be computed in time polynomialin See for in-
stance the policy description schefA® given in the next
subsection. This argues towards using implicit representa-
tion schemes for policies, but still, the existence of a poly-
nomially compact and tractable representation scheme for
maximal sound policies cannot be ensured:

Proposition 3  If a polynomially compact and tractable
representation schem& for maximal sound policies for



QBF,v exists, then the polynomial hierarchy collapses at
the second levél

This theorem generalizes Theorem 5 from (Liberatore
2005) in two directions: considering maximally sound poli-
cies (instead of the proper subset of it consisting of total poli-

e if px is a propositional formula built onX and o1, o2
are inPD, then
if px then o, else o5isinPD;

e if 01 andoy are inPD, theno; ® o3 isin PD.
Now, the partial subpolicyt, induced by a description €

cies), and considering any tractable representation schemePD s defined inductively as follows; for everyc 2

(and not only the so-called directional representation scheme

as in (Liberatore 2005)).

Given Proposition 3, it seems reasonable to look for rep-

resentations of policies, which aees concise as possible

and especially more concise than the explicit representa-

tions, provided that they are tractable:

Definition 8 (tractable representation) A representation
o of a policyr fora QBFP = (2,V, X,Y,®) € QBR v is
said to betractableif and only if there exists an algorithm
Ds ., such that for any? € 2%, Ds, computest(7) =
Ds (%) in time polynomial ino| + |Z|.

The decomposition approach

We present two ways of decomposing the search for a max-

imally sound policy into easier subproblems. The first one

is based on the observation that it is often needless looking

for a specific -instantiation for eaclX -instantiation: some
Y-instantiations may cover large sets &finstantiations,

which can be described in a compact way, for instance by

a propositional formula. In order to formalize this, we intro-
duce the notion ofubdecisiorand how to merge them.

Definition 9 (subdecision) An instantiation olsome(not
necessarily all) variables df (or equivalently, a satisfiable
term~y onY) is called asubdecisionThe set of all subde-
cisions is denoted B (as each variable can be mapped to
true, false or undefined). @artial) subpolicyor VX 3Y ®is

a mappingr : 2% — 3Y U {x} assigning a subdecision (or
x) to eachX-instantiation. Themergingof subdecisions
is the commutative and associative internal operdtdron
3Y U {x} defined by:

o W A=Ay =y,
® Vy.X = X.yy = X;
o if vy, 74 are two terms oY, then
;| ow Ay iy Ay is satisfiable
WY T\ x otherwise :

The empty decision is assimilated to the empty term.
Themergingof two subpoliciesr;, m» is the subpolicyr; ®
o defined by:

V¥ e 2X, (7T1 @WQ)(f) = 71'1(5?).71’2(5).

Definition 10 (policy description) Thepolicy description
scheme PDOs a representation scheme for maximal sound
policies for QBFR v, defined inductively as follows:

e Aandx areinPD;
e any satisfiable termyy onY isin PD;

2\We have also derived the stronger result according to which,
under the same assumptioi$P C P/poly holds; due to space
limitations, we refrain from presenting it.

o T\(Z) = A andIpp(x)(7) = x;

o Ty (&) = v,
® Tif oxthen o else o, (7) = {

® To100; (‘f) = To,y (f)'ﬂ—(m (f)

We  abbreviate if ¢ then o else x)
if ¢ then o and {f ¢; then o, else...else
if ¢, then o,)into (Case ¢1: o1;...; on: o, End).

into

Example 4 Leto; =if x7 < zo then y; else -y,
oo = if 1z then -y, ando = o1 ® o3. The corre-
sponding policies are given by

Ty | Moy Ty
(171, 1’2) Y1 Y2 (yh _‘y2)
(z1,~m2) |~ | w2 | (Cyr, —w2)
(mx1,22) | Y1 | X X
(_‘171 s _\IQ) Y1 X X

Proposition 4 PDis a tractable representation scheme for
maximal sound policies for QBF.

Example 5 A tractable representation iRD of the solution
policy for

Vey...2p3y1. .. Un /\7:1(331 — yi) is o =
O ((if x; then y) ®(if  —a; then —y;))
Proposition5 Let P = (2,¥,X,Y,®) and let
{e1 01,05, ) } be2p formulas such that

D= (e ApY ) V... V(o) AgpY).
LetJ = {j | ) is satisfiabl¢ = {ji,...,7j,} and for

everyj € J, lety; |= @f. Then the policy represented by
the description

o =Case ¢X: 7, ...
is a maximal sound policy faP.

: <pj§: ¥;, End

The interest of Proposition 5 is that on®ehas been de-
composed in such a way, the resolution of the instance of
SFQBR,y given by P = YX3Y ® comes down to solving
p instances ofSAT. Furthermore, it is always possible to
find such a decomposition — just take all instantiationX of
o= Vf€2x (f/\ (bf).

Of course, such a decomposition is interesting only if it
is not too large, i.e., if it leads to a reasonable number of
SAT instances to solve. Le¥(®) the minimal number of
pairs of such a decomposition: the best cas&'{®) =
1 and the worst isV(®) = 2@»(XLYD  Finding a good
decomposition actually amounts to break the links between
X andY in &, the ideal case being when there are no links
between them, i.e., wheb = px A ¢y (0Or equivalently,X
andY are marginally conditionally independent with respect
to ® (Darwiche 1997; Lang, Liberatore, & Marquis 2002)).



Furthermore, Proposition 5 immediately tells how to
compute a maximal sound policy in polynomial time for
vX3Y® when® is in DNF. Interestingly, the problem of
computing a maximal sound policy (i.e., a solution policy
when thevVX3Y ® is positive) iseasierthan the decision
problem of deciding whethey X3Y & is positive CONP-
complete wherd is a DNF formula).

Example 6 Consider  the instance V{xzi,xq,x3}
H{yl,yg}q), whered = (1’1 \Y .’L’g) A ((Eg — (yl — yg))
Written as suchd cannot be decomposed@s= & x A Dy,
becauseX = {z1,z2,23} andY {y1,y2} are not
marginally conditionally independent with respect do
However, instanciating:; breaks the links betweek and
Y and gives the following equivalent form fér

(@3 (@1VE2))A(Y1 < y2)IV[(mz3A (21 VE2))A-(y1 < y2)]

then Proposition 5 applies and gives, for instance, the fol-
lowing maximal sound policy described compactly by

Case

w3 A (21 V T2) 1 Y1 A yo;
3 A (21 V x2) Y1 Aya
End

Note thatm,(—'xl, X9, .’Eg) = 7'('0(_\1'1, X9, _\1'3) = X.
The second way of decomposing a problem into subprob-

U =Ux, p»A¥xy,, Wwherelx ,, . = & (from Exam-
ple 6) and¥x ,, = (z1 < x2) < ys. Then, using the
policy descriptions determined in Example 6 and Propo-
sition 6,6’ = o ® (if 1 < 22 then y; else —y3)

is the description of a maximal sound policy for
V{1, w2, 23} Hy1, y2, Y3} V.

The compilation approach

It consists in generating first@mpiled formz of ® using
any knowledge compilation algorithm.

Proposition 7 Let P = VX 3Y ® be a QBF and let- be a
propositional formula equivalent té and which belongs to

a propositional fragmenf enabling polytime clausal query
answering, polytime conditioning and polytime model find-
ing (see (Darwiche & Marquis 2001)} is a tractable rep-
resentation of a maximal sound policy fBr

Note that there is no policy representation scheme here.
Actually, within this compilation-based approach,alone
does not represent any policy fét but a specific maximal
sound policy forP is fully characterized by the way a model
of oz is computed for each.

Among the target fragmentg of interest are all poly-
nomial CNF classes fasAT problem, which are stable by
conditioning (i.e., conditioning always leads to a CNF for-
mula belonging to the class). Indeed, for every formula

lems is based on the observation that it may be the case thatfrom such a class, polytime model enumeration is possi-
some sets of variables froin are more or less independent  ple (see e.g. (Darwiche & Marquis 2001)). Among the

given X w.rt. ® and therefore that their assigned values acceptable classes are the Krom one, the Horn CNF one,
can be computed separatélffhe following decomposition  and more generally the renamable Horn CNF one. Sev-
result makes possible to compute subpolicies independently eral other propositional fragments can be considered, in-

on disjoints subsets d&f, and then merge these subpolicies.

Proposition 6 Let{Y7,Y>} be a partition ofY” such that
Y, andY; are conditionally independent giveki with re-
spect tod, which means that there exist two formulag v,
and pxy, of respectivelyPROPxyy, and PROPx y,
such thatd = px )y, A ¢xy,. Thenr is a maximal sound
policy for VX 3Y @ if and only if there exist two subpolicies
71, w2, Which are maximal and sound fotX 3Y ¢ x y, and
for VX3Y ¢x v, respectively, such that = 7 © .

Proposition 6 can be used efficiently to reduce an instance
of SFQBRy into two (or several, when iterated) instances
of SFQBR, v With smaller sety”. Ideally, ¢ is already on
the desired form (i.e., there exists a partition that works);

however, in general this is not the case and we have then to

find a candidate partitiofiY:, Y2} which isalmostindepen-
dent w.r.t. ® given X, and then break the links betwe#n
andY; through case-analysis on a set of variables fiom
which must be chosen as small as possible (for efficiency

cluding the DNF one, the OBDD one and more generally
the DNNF one since each of them satisfies the three require-
ments imposed in Proposition 7. Even if there is no guar-
antee that for evergp, the corresponding is polysize (un-
less the polynomial hierarchy collapses at the second level),
many experiments reported e.g., in (Boufkretdal. 1997;
Darwiche 2004) showed the practical interest of knowledge
compilation techniques for clausal entailment; clearly, such
a conclusion can be drawn as well when the purpose is the
representation of tractable policies for QBFs from QBF

Conclusion and Related Work

The specificities of our work are the following ones: de-
fine partial, but maximally sound policies for a QBF even
when it is not valid (other approaches would handle such
33 by concluding that it is impossible to find a solution pol-
icy); address the issues of the size of partial policies and
their compact representation; focus on the specific problem

reasons). The good point is that we can take advantage of @BF2v and show how techniques such as decomposition
existing decomposition techniques to achieve that goal, es- @1d compilation can be fruitfully exploited for computing
pecially those based on the notion of decomposition tree (see Maximally sound policies.

e.g. (Darwiche 2001)).

Example 7 Considerv{z, x2, x3}3{y1, y2, y3 } ¥, where
U= (21 V) A (3 < (11 = 32)) A (11 < 22) < y3).

3As briefly evoked in (Rintanen 1999a) (Section 6), such inde-
pendence properties help solviQgF instances.

(Kleine-Bining, Subramani, & Zhao 2003) investigate the
properties of QBFs having polysize solution policies of a
specific kind (e.g., when each variabley is a monotone
term — or a boolean constant — built up fréfwariables be-
forey in the prefix). Contrariwise to our work, no restriction
is put on the prefix of instances in their study; on the other



hand, it is not the case that every positive QBF (even when
from QBF, v) has a polysize solution policy; furthermore,
they do not consider partial policies. This shows their ap-
proach mainly orthogonal to ours.

(Chen 2004) defines the notion of decomposability of a set
of functions using policies in the QCSP framework; the main
purpose is to show that if an operatigris j-collapsible then
any constraint languagde invariant undey is j-collapsible
(Theorem 7), from which tractability results for QCSP3 (
are derived. Neither the notion of partial policy nor the prob-
lem of their representation are considered in (Chen 2004).

Closer to our work, (Liberatore 2005) considers the rep-
resentation issue for total policies using a circuit-based rep-
resentation scheme. The complexity of determining whether
a given QBF has a total policy representation, with size
bounded by a given integéris identified and shown hard,
even in the casé is in unary notation. In some sense,
our work completes (Liberatore 2005) by focusing on par-
tial policies, generalizing some results and focusing on other
representation schemes.
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