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Abstract

The practical use of Quantified Boolean Formulas
(QBFs) often calls for more than solving the validity
problemQBF. For this reason we investigate the cor-
responding function problems whose expected outputs
are policies. QBFs which do not evaluate to true do
not have any solution policy, but can be of interest nev-
ertheless; for handling them, we introduce a notion of
partial policy. We focus on the representation of poli-
cies, considering QBFs of the form∀X ∃Y Φ. Because
the explicit representation of policies for such QBFs can
be of exponential size, descriptions as compact as pos-
sible must be looked for. To address this issue, two ap-
proaches based on the decomposition and the compila-
tion of Φ are presented.

Introduction
A Quantified Boolean Formula (QBF) consists of a classical
propositional formula together with an ordered partition of
its variables, corresponding to quantifier alternations, such
as, for instance,∃{a} ∀{b, d} ∃{c} (a ∧ ¬c) → (b ∧ d).
Any QBF evaluates to true or false; it evaluates to true if
and only if the corresponding statement where quantifiers
on variables bear actually on thetruth valuesof these vari-
ables, holds, and in that case the QBF is said to bevalid
(as it is the case for the latter instance).QBF is the de-
cision problem consisting in determining whether a given
QBF is valid. Solving the decision problemQBF has be-
come for a few years an important research area in AI.
Several explanations for this can be advanced, including
the fact that many AI problems whose complexity is lo-
cated inPSPACE can be expressed and then solved byQBF
solvers (Eglyet al. 2000). Accordingly, many such solvers
have been developed for the past few years (see among oth-
ers (Cadoli, Giovanardi, & Schaerf 1998; Rintanen 1999b;
Feldmann, Monien, & Schamberger 2000; Giunchiglia, Nar-
izzano, & Tacchella 2001; Letz 2002; Zhang & Malik 2002;
Pan & Vardi 2004); see also (Littman 1999; Majercik &
Littman 1999) for a probabilistic version of QBF.

Obviously, QBFs can be viewed as planning problems un-
der incomplete knowledge and feedback as well as sequen-
tial two-player games with complete information. Clearly
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enough, when QBFs are used to represent such problems,
what is expected is more than simply solvingQBF. Indeed,
solving the decision problem only enables telling whether
there exists a winning strategy or a valid plan; in practice,
one would also like to determine such a plan (that we call a
solution policy) or at least, an approximation of it. There-
fore, the aim becomes solving thefunction problemassoci-
ated with QBFs, denoted byFQBF.

While this function problem is nothing really new (it has
been considered before in (Kleine-Büning, Subramani, &
Zhao 2003; Liberatore 2005), as well as in (Chen 2004)
in the close framework of quantified constraint satisfaction
problems (QCSPs)), this paper investigates new issues.
First, when no solution policy exists, we search forpar-
tial policies that solve the problem “as much as possible”.
Then, we introducerepresentation schemesof such policies.
Lastly, we investigate the search forcompact policies, fo-
cusing on QBFs of the form∀X ∃Y Φ. Because the explicit
representation of policies for such QBFs can be of exponen-
tial size, descriptions as compact as possible are looked for.
This issue is addressed by two approaches, based respec-
tively on thedecompositionand thecompilationof Φ.

Formal Preliminaries
In the rest of the paper,PROPPS denotes the propositional
language built up from a finite setPS of symbols, the usual
connectives and the Boolean constants>, ⊥ in the stan-
dard way.~x is an instantiation of variables fromX ⊆ PS
(also referred to as anX-instantiation) and2X is the set
of all possibleX-instantiations. Thus, ifX = {a, b, c},
~x = (a,¬b, c) is anX-instantiation. IfX andY are two
disjoint subsets ofPROPPS , (~x, ~y) is the concatenation of
~x and~y: in this instantiation, each variable ofX (respec-
tively Y ) takes the value indicated by~x (respectively~y).

For Φ ∈ PROPPS and~x ∈ 2X , we denote byΦ~x the
formula obtained by conditioningΦ by ~x; this formula is
obtained fromΦ by replacing occurrences of each variable
x from X by> (respectively⊥) if x ∈ ~x (respectively¬x ∈
~x). For any setsE andF , E → F denotes the set of all total
functions fromE to F .

Let k be a positive integer andq ∈ {∃,∀}. A QBF is a
(k + 3)-upleP = 〈k, q,Xk, ..., X1,Φ〉 where{X1, ..., Xk}
is a partition of the set of propositional variables occurring
in Φ ∈ PROPPS . P = 〈k, q,Xk, ..., X1,Φ〉 is valid if and



only if one of the following three conditions is true:

1. k = 0 andΦ = >;

2. k ≥ 1, q = ∃, and there exists anXk-instantiation~xk ∈
2Xk such that〈k − 1,∀, Xk−1, ..., X1,Φ ~xk

〉 is a positive
instance ofQBFk−1,∀ ;

3. k ≥ 1, q = ∀, and for eachXk-instantiation~xk ∈ 2Xk ,
〈k − 1,∃, Xk−1, . . . , X1,Φ~xk

〉 is a positive instance of
QBFk−1,∃ .

QBFk,q is the set of all QBFs of rankk and first quantifier
q. QBFk,q is the subproblem ofQBF where only formulas
from QBFk,q are considered.

Policies
Intuitively, a policy is a function mapping instantiations of
each group of universally quantified variables into instantia-
tion of the group of existentially quantified variables imme-
diately following it.

Definition 1 (total policy) The setTP (k, q,Xk, ..., X1)
of total policiesfor QBFs from QBFk,q is defined inductively
by:

• TP (0, q) = {λ}1;
• TP (k,∃, Xk, ..., X1) = {~xk ;πk−1 | πk−1 ∈ TP (k −

1,∀, Xk−1, ..., X1)};
• TP (k,∀, Xk, ..., X1) = 2Xk → TP (k −

1,∃, Xk−1, ..., X1).

For instance, a policy ofTP (1,∃, X1) has the form
(~x1;λ), i.e., ~x1 (an X1-instantiation);TP (1,∀, X1) is re-
duced to a unique policy: the constant function which maps
anyX1-instantiation toλ. A policy of TP (2,∀, X2, X1) is
a total function from2X2 to 2X1 .

Definition 2 (satisfaction) A total policy π of
TP (k, q,Xk, ..., X1) satisfiesP = 〈k, q,Xk, ..., X1,Φ〉,
denoted byπ |= P , if and only if one of these conditions
holds:

• k = 0 andπ = λ, andΦ ≡ > ;
• k ≥ 1 and q = ∃ and π = (~xk;π′) with π′ |= 〈k −

1,∀, Xk−1, ..., X1,Φ~xk
〉 ;

• k ≥ 1 andq = ∀ and for all~xk ∈ 2Xk we haveπ(~xk) |=
〈k − 1,∃, Xk−1, ..., X1,Φ~xk

〉.
Example 1 〈3,∃, {a}, {b}, {c, d}, (a → (c ∧ d)) ∧ (b ↔

¬c)〉 is satisfied byπ = ¬a;
[

(b) 7→ (¬c, d)
(¬b) 7→ (c, d)

]
.

Proposition 1 (folklore) P = 〈k, q,Xk, ..., X1,Φ〉 is a
positive instance ofQBFk,q if and only if there exists a total
policy π ∈ TP (k, q,Xk, ..., X1) such thatπ |= P . Such a
π is called a solution policy forP .

Now, asking for a solution policy is often too much de-
manding. For instance, let us considerP = 〈2,∀, {a, b},

1λ represents theempty policy. The operator “;” represents the
sequential composition of policies.π; λ is typically abbreviated as
π.

{c}, (a → c) ∧(b → ¬c)〉: P is not valid because the in-
stantiation(a, b) makesΦ unsatisfiable: thus, if nature plays
(a, b), the agent cannot do anything leading to the satisfac-
tion of Φ. On the other hand, if nature plays anything but
(a, b) then the agentcando something satisfactory, namely,
(a,¬b) 7→ c, (¬a, b) 7→ ¬c, (¬a,¬b) 7→ c (or¬c).

Definition 3 (partial policy) The setPP (k, q,Xk, ..., X1)
of partial policiesfor the QBFP = 〈k, q, Xk, . . . , X1〉 is
defined inductively as follows:

• PP (1,∃, X1) = 2X1 ∪ {×} ;
• PP (1,∀, X1) = 2X1 → {λ,×} ;
• PP (k,∃, Xk, ..., X1)

= {~xk;πk−1 |πk−1 ∈ PP (k−1,∀, Xk−1, .., X1)}∪{×};
• PP (k,∀, Xk, ..., X1) = 2Xk → PP (k −

1,∃, Xk−1, ..., X1).
× represents failure. Any partial policy fromPP (k −

1, q,Xk−1, .., X1) used to define a partial policyπ of rank
k along the definition above is called aninternal policyof
π. It is a universal internal policywhenq = ∀, and an
existential internal policyotherwise.

Definition 4 (sound policy) A partial policyπ ∈ PP (k,
q, Xk, ..., X1) is soundfor P = 〈k, q, Xk, ..., X1, Φ〉 if and
only if one of these conditions is satisfied:

1. q = ∃ andπ = × ;
2. (k, q) = (1,∃), π = ~x1 and~x1 |= Φ ;
3. (k, q) = (1,∀) and∀~x1 ∈ 2X1 , π(~x1) = × or (π(~x1) =

λ and~x1 |= Φ) ;
4. k > 1, q = ∃, π = ~xk;πk−1 and πk−1 is sound for
〈k − 1,∀, Xk−1, ..., X1,Φ~xk

〉 ;

5. k > 1, q = ∀, and for any~xk ∈ 2Xk , π(~xk) is sound for
〈k − 1,∃, Xk−1, ..., X1,Φ~xk

〉.
While only valid QBFs have solution policies, it is clear

that all QBFs have sound partial policies.

Example 2 P = 〈2,∀, {a, b}, {c}, (a∨b)∧(a → c)∧(b∨c)〉
has no solution policy. Here is a sound policy forP :

π =

 (a, b) 7→ c
(¬a, b) 7→ c
(a,¬b) 7→ c
(¬a,¬b) 7→ ×


Intuitively, the best policies among the sound ones are

those built up from internal policies where× is used as less
as possible:

Definition 5 (maximal sound policy) Letπ andπ′ be two
partial policies ofPP (q, k,Xk, ..., X1). π is at least as cov-
ering asπ′, denoted byπ w π′, if and only if one of the
following conditions is satisfied:

• q = ∃ andπ′ = × ;
• q = ∀, k = 1 and for all~x1 ∈ 2X1 , eitherπ′(~x1) = × or

π(~x1) = λ ;

• q = ∃, π = [~xk;πk−1], π′ = [ ~x′k;π′k−1], andπk−1 w
π′k−1 ;

• q = ∀, k > 1 and for all~xk ∈ 2Xk , π(~xk) w π′(~xk).



w is a partial preorder (reflexive and transitive relation);π
is a maximal soundpolicy for a QBFP if and only ifπ is
sound forP and there is no sound policyπ′ for P such that
π′ w π andπ 6w π′.

Example 3 P = 〈2,∀, {a, b}, {c}, (a∨b)∧(a → c)∧(b∨c)〉
has two maximal sound policies:π as reported in Example
2, andπ′ identical toπ except that it maps(¬a, b) to¬c.

Clearly, every QBFP has a maximal sound policy; fur-
thermore, if a solution policy forP exists, then solution poli-
cies and maximal sound policies coincide.

Policy Representation
It is essential to distinguish between the notion of policyπ
per seand the notion ofrepresentationσ of a policy. Indeed,
policies may admit many different representations, and two
representations of the same policy can easily have differ-
ent sizes, and can be processed more or less efficiently (e.g.
computing the image of an instantiation by a given universal
internal policy can be more or less computationally demand-
ing).

A representation schemeS for policies is a finite set of
data structures representing policies. Associated with any
representation schemeS is an interpretation functionIS
such that for anyσ ∈ S, π = IS(σ) is the policy rep-
resented byσ. The simplest representation scheme is the
explicit one: the representation of a policy is the policy it-
self (so the corresponding interpretation function is iden-
tity). Accordingly,π also denotes the explicit representation
of policy π. Within the explicit representation of a policy
π, every universal internal policyπ′ is represented explic-
itly as a set of pairs (this is the representation we used in
the examples reported in the previous sections). Another
representation scheme for total policies consists of circuits
(Liberatore 2005): to each existentially quantified variable
x ∈ Xi of a QBFP = 〈k, q,Xk, ..., X1,Φ〉 is associated
a circuitCx whose inputs are all the universally quantified
variablesY from

⋃k
j=i+1 Xj . For each instantiation~y of

those variables,Cx gives the corresponding value ofx.
The next proposition makes precise the connection be-

tween the decision problemQBF and the function problem
FQBF. It shows that explicit representations of total policies
are certificatesfor QBF, i.e., data structures from which a
polytime verification of the validity of positive instances is
possible. To be more precise:

Proposition 2 There is a polytime algorithm whose input is
the explicit representation of a policyπ ∈ TP (k, q, Xk,
..., X1) and a QBFP = 〈k, q,Xk, ..., X1,Φ〉 and which
returns1 if π is a solution policy forP and0 otherwise.

For every instanceP = 〈1,∃, X1,Φ〉 of QBF1,∃ (i.e., ev-
ery SAT instance), a solution policyπ for P is represented
explicitly by any model ofΦ overX1; obviously, such rep-
resentations of policies are certificates forQBF1,∃. Now,
for every instanceP = 〈1,∀, X1,Φ〉 of QBF1,∀, the so-
lution policy π for P is represented explicitly by the set
{(~x1, λ) | ~x1 ∈ 2X1}; again, this representation is a cer-
tificate forQBF1,∀. The same policyπ can be represented in
an exponentially more succinct way as the constant function

mapping anyX1-instanciation toλ; obviously, such an (non-
explicit) representation ofπ is not a certificate forQBF1,∀,
unlessP = NP; furthermore, the existence of a certificate
of polynomial size forQBF1,∀ would lead toNP = coNP,
hence the polynomial hierarchy to collapse. This example
clearly shows how different representations of the same pol-
icy may lead to different computational behaviours when the
purpose is to use the policy.

The Case ofSFQBF2,∀

We now focus on the practical resolution ofSFQBF2,∀, the
second function problem for QBFs fromQBF2,∀, which aims
at computing a maximal sound policy for a givenP . Why
the choice ofk = 2 and q = ∀? It is important, before
investigating more complexSFQBFk,q problems, to focus on
the problems at the first levels (which are already complex
enough, as we will see). The casek = 1 has received an
enormous attention;SFQBF2,∃ is not really new either, since
it reduces to an abduction problem. Things are different with
SFQBF2,∀, since (i) finding maximal sound policies becomes
here relevant and (ii) the size of the representation of a policy
becomes a crucial issue.

Polynomially compact and tractable schemes

In the case ofSFQBF2,∀, a partial policy forP = 〈2, ∀, X,
Y, Φ〉 is any mappingπ from 2X to 2Y ∪ {×}. Ideally, we
are looking for representation schemes for maximal sound
policies that are both polynomially compact and tractable:

Definition 6 (polynomially compact scheme) A policy
representation schemeS for maximal sound policies for
QBF2,∀ is said to bepolynomially compactif and only if
there is a polysize functionRS that associates eachP = 〈2,
∀, X, Y,Φ〉 ∈ QBF2,∀ to a representationσ ∈ S of a maxi-
mal sound policyπ for P .

Definition 7 (tractable scheme) A policy representation
schemeS for maximal sound policies for QBF2,∀ is said
to be tractableif and only if there exists a polytime algo-
rithm DS such that for anyσ ∈ S, DS computesπ(~x) =
DS(σ, ~x) for any~x ∈ 2X , whereπ = IS(σ).

Clearly, the explicit representation scheme for maximal
sound policies is not polynomially compact in the general
case. For instance, there exist instances of QBF2,∀ for which
any solution policy is injective, as in the following example:
∀{x1, . . . , xn}∃{y1, . . . , yn}

∧n
i=1(xi ↔ yi).

However, it is possible to encode the solution policiesπ
for the set of QBFs of this example (withn varying), using
data structuresσ of size polynomial inn and from which
π(~x) can be computed in time polynomial inn. See for in-
stance the policy description schemePD given in the next
subsection. This argues towards using implicit representa-
tion schemes for policies, but still, the existence of a poly-
nomially compact and tractable representation scheme for
maximal sound policies cannot be ensured:

Proposition 3 If a polynomially compact and tractable
representation schemeS for maximal sound policies for



QBF2,∀ exists, then the polynomial hierarchy collapses at
the second level2.

This theorem generalizes Theorem 5 from (Liberatore
2005) in two directions: considering maximally sound poli-
cies (instead of the proper subset of it consisting of total poli-
cies), and considering any tractable representation scheme
(and not only the so-called directional representation scheme
as in (Liberatore 2005)).

Given Proposition 3, it seems reasonable to look for rep-
resentations of policies, which areas concise as possible,
and especially more concise than the explicit representa-
tions, provided that they are tractable:

Definition 8 (tractable representation) A representation
σ of a policyπ for a QBFP = 〈2,∀, X, Y, Φ〉 ∈ QBF2,∀ is
said to betractableif and only if there exists an algorithm
DS,σ such that for any~x ∈ 2X , DS,σ computesπ(~x) =
DS,σ(~x) in time polynomial in|σ|+ |~x|.

The decomposition approach
We present two ways of decomposing the search for a max-
imally sound policy into easier subproblems. The first one
is based on the observation that it is often needless looking
for a specificY -instantiation for eachX-instantiation: some
Y -instantiations may cover large sets ofX-instantiations,
which can be described in a compact way, for instance by
a propositional formula. In order to formalize this, we intro-
duce the notion ofsubdecisionand how to merge them.

Definition 9 (subdecision) An instantiation ofsome(not
necessarily all) variables ofY (or equivalently, a satisfiable
termγY onY ) is called asubdecision. The set of all subde-
cisions is denoted by3Y (as each variable can be mapped to
true, false or undefined). A(partial) subpolicyfor ∀X∃Y Φis
a mappingπ : 2X → 3Y ∪{×} assigning a subdecision (or
×) to eachX-instantiation. Themergingof subdecisions
is the commutative and associative internal operator′′.′′ on
3Y ∪ {×} defined by:

• γY .λ = λ.γY = γY ;

• γY .× = ×.γY = ×;

• if γY , γ′Y are two terms onY , then

γY .γ′Y =
{

γY ∧ γ′Y if γY ∧ γ′Y is satisfiable
× otherwise .

The empty decisionλ is assimilated to the empty term>.
Themergingof two subpoliciesπ1, π2 is the subpolicyπ1 �
π2 defined by:
∀~x ∈ 2X , (π1 � π2)(~x) = π1(~x).π2(~x).

Definition 10 (policy description) Thepolicy description
scheme PDis a representation scheme for maximal sound
policies for QBF2,∀, defined inductively as follows:

• λ and× are inPD;

• any satisfiable termγY onY is in PD;

2We have also derived the stronger result according to which,
under the same assumptions,NP ⊆ P/poly holds; due to space
limitations, we refrain from presenting it.

• if ϕX is a propositional formula built onX and σ1, σ2

are inPD, then
if ϕX then σ1 else σ2 is in PD;

• if σ1 andσ2 are inPD, thenσ1 � σ2 is in PD.

Now, the partial subpolicyπσ induced by a descriptionσ ∈
PD is defined inductively as follows; for every~x ∈ 2X :

• πλ(~x) = λ andIPD(×)(~x) = ×;
• πγY

(~x) = γY ;

• πif ϕX then σ1else σ2
(~x) =

{
πσ1(~x) if ~x |= ϕX

πσ2(~x) if ~x |= ¬ϕX

• πσ1�σ2(~x) = πσ1(~x).πσ2(~x).

We abbreviate (if ϕ then σ else ×) into
if ϕ then σ and (if ϕ1 then σ1 else...else
if ϕn then σn) into (Case ϕ1: σ1; . . .; ϕn: σn End).

Example 4 Letσ1 = if x1 ↔ x2 then y1 else ¬y1,
σ2 = if x1 then ¬y2, andσ = σ1 � σ2. The corre-
sponding policies are given by

πσ1 πσ2 πσ

(x1, x2) y1 ¬y2 (y1,¬y2)
(x1,¬x2) ¬y1 ¬y2 (¬y1,¬y2)
(¬x1, x2) ¬y1 × ×

(¬x1,¬x2) y1 × ×

Proposition 4 PD is a tractable representation scheme for
maximal sound policies for QBF2,∀.

Example 5 A tractable representation inPDof the solution
policy for
∀x1 . . . xn∃y1 . . . yn

∧n
i=1(xi ↔ yi) is σ =

�n
i=1((if xi then yi)� (if ¬xi then ¬yi))

Proposition 5 Let P = 〈2,∀, X, Y, Φ〉 and let
{ϕX

1 , ϕY
1 , . . . , ϕX

p , ϕY
p } be2p formulas such that

Φ ≡ (ϕX
1 ∧ ϕY

1 ) ∨ . . . ∨ (ϕX
p ∧ ϕY

p ).
Let J = {j | ϕY

j is satisfiable} = {j1, . . . , jq} and for
everyj ∈ J , let ~yj |= ϕY

j . Then the policy represented by
the description

σ = Case ϕX
j1

: ~yj1 ; . . . ; ϕX
jq

: ~yjq
End

is a maximal sound policy forP .

The interest of Proposition 5 is that onceΦ has been de-
composed in such a way, the resolution of the instance of
SFQBF2,∀ given byP = ∀X∃Y Φ comes down to solving
p instances ofSAT. Furthermore, it is always possible to
find such a decomposition – just take all instantiations ofX:
Φ ≡

∨
~x∈2X (~x ∧ Φ~x).

Of course, such a decomposition is interesting only if it
is not too large, i.e., if it leads to a reasonable number of
SAT instances to solve. LetN(Φ) the minimal number of
pairs of such a decomposition: the best case isN(Φ) =
1 and the worst isN(Φ) = 2min(|X|,|Y |). Finding a good
decomposition actually amounts to break the links between
X andY in Φ, the ideal case being when there are no links
between them, i.e., whenΦ ≡ ϕX ∧ϕY (or equivalently,X
andY are marginally conditionally independent with respect
to Φ (Darwiche 1997; Lang, Liberatore, & Marquis 2002)).



Furthermore, Proposition 5 immediately tells how to
compute a maximal sound policy in polynomial time for
∀X∃Y Φ whenΦ is in DNF. Interestingly, the problem of
computing a maximal sound policy (i.e., a solution policy
when the∀X∃Y Φ is positive) iseasier than the decision
problem of deciding whether∀X∃Y Φ is positive (coNP-
complete whenΦ is a DNF formula).

Example 6 Consider the instance ∀{x1, x2, x3}
∃{y1, y2}Φ, whereΦ = (x1 ∨ x2) ∧ (x3 ↔ (y1 ↔ y2)).
Written as such,Φ cannot be decomposed asΦ = ΦX∧ΦY ,
becauseX = {x1, x2, x3} and Y = {y1, y2} are not
marginally conditionally independent with respect toΦ.
However, instanciatingx3 breaks the links betweenX and
Y and gives the following equivalent form forΦ:

[(x3∧(x1∨x2))∧(y1 ↔ y2)]∨[(¬x3∧(x1∨x2))∧¬(y1 ↔ y2)]

then Proposition 5 applies and gives, for instance, the fol-
lowing maximal sound policy described compactly by

σ =

∣∣∣∣∣∣∣
Case

x3 ∧ (x1 ∨ x2) : y1 ∧ y2;
¬x3 ∧ (x1 ∨ x2) : ¬y1 ∧ y2

End

Note thatπσ(¬x1,¬x2, x3) = πσ(¬x1,¬x2,¬x3) = ×.
The second way of decomposing a problem into subprob-

lems is based on the observation that it may be the case that
some sets of variables fromY are more or less independent
given X w.r.t. Φ and therefore that their assigned values
can be computed separately.3 The following decomposition
result makes possible to compute subpolicies independently
on disjoints subsets ofY , and then merge these subpolicies.

Proposition 6 Let {Y1, Y2} be a partition ofY such that
Y1 and Y2 are conditionally independent givenX with re-
spect toΦ, which means that there exist two formulasϕX,Y1

and ϕX,Y2 of respectivelyPROPX∪Y1 and PROPX∪Y2

such thatΦ ≡ ϕX,Y1 ∧ ϕX,Y2 . Thenπ is a maximal sound
policy for∀X∃Y Φ if and only if there exist two subpolicies
π1, π2, which are maximal and sound for∀X∃Y ϕX,Y1 and
for ∀X∃Y ϕX,Y2 respectively, such thatπ = π1 � π2.

Proposition 6 can be used efficiently to reduce an instance
of SFQBF2,∀ into two (or several, when iterated) instances
of SFQBF2,∀ with smaller setsY . Ideally, Φ is already on
the desired form (i.e., there exists a partition that works);
however, in general this is not the case and we have then to
find a candidate partition{Y1, Y2} which isalmostindepen-
dent w.r.t.Φ givenX, and then break the links betweenY1

andY2 through case-analysis on a set of variables fromY ,
which must be chosen as small as possible (for efficiency
reasons). The good point is that we can take advantage of
existing decomposition techniques to achieve that goal, es-
pecially those based on the notion of decomposition tree (see
e.g. (Darwiche 2001)).

Example 7 Consider∀{x1, x2, x3}∃{y1, y2, y3}Ψ, where
Ψ = (x1 ∨ x2) ∧ (x3 ↔ (y1 ↔ y2)) ∧ ((x1 ↔ x2) ↔ y3).

3As briefly evoked in (Rintanen 1999a) (Section 6), such inde-
pendence properties help solvingQBF instances.

Ψ ≡ ΨX,y1,y2 ∧ ΨX,y3 , whereΨX,y1,y2 = Φ (from Exam-
ple 6) andΨX,y3 = (x1 ↔ x2) ↔ y3. Then, using the
policy descriptionσ determined in Example 6 and Propo-
sition 6,σ′ = σ � (if x1 ↔ x2 then y3 else ¬y3)
is the description of a maximal sound policy for
∀{x1, x2, x3}∃{y1, y2, y3}Ψ.

The compilation approach
It consists in generating first acompiled formσ of Φ using
any knowledge compilation algorithm.

Proposition 7 LetP = ∀X ∃Y Φ be a QBF and letσ be a
propositional formula equivalent toΦ and which belongs to
a propositional fragmentF enabling polytime clausal query
answering, polytime conditioning and polytime model find-
ing (see (Darwiche & Marquis 2001)).σ is a tractable rep-
resentation of a maximal sound policy forP .

Note that there is no policy representation scheme here.
Actually, within this compilation-based approach,σ alone
does not represent any policy forP but a specific maximal
sound policy forP is fully characterized by the way a model
of σ~x is computed for each~x.

Among the target fragmentsF of interest are all poly-
nomial CNF classes forSAT problem, which are stable by
conditioning (i.e., conditioning always leads to a CNF for-
mula belonging to the class). Indeed, for every formula
from such a class, polytime model enumeration is possi-
ble (see e.g. (Darwiche & Marquis 2001)). Among the
acceptable classes are the Krom one, the Horn CNF one,
and more generally the renamable Horn CNF one. Sev-
eral other propositional fragments can be considered, in-
cluding the DNF one, the OBDD one and more generally
the DNNF one since each of them satisfies the three require-
ments imposed in Proposition 7. Even if there is no guar-
antee that for everyΦ, the correspondingσ is polysize (un-
less the polynomial hierarchy collapses at the second level),
many experiments reported e.g., in (Boufkhadet al. 1997;
Darwiche 2004) showed the practical interest of knowledge
compilation techniques for clausal entailment; clearly, such
a conclusion can be drawn as well when the purpose is the
representation of tractable policies for QBFs from QBF2,∀.

Conclusion and Related Work
The specificities of our work are the following ones: de-
fine partial, but maximally sound policies for a QBFΣ, even
when it is not valid (other approaches would handle such
Σ by concluding that it is impossible to find a solution pol-
icy); address the issues of the size of partial policies and
their compact representation; focus on the specific problem
QBF2,∀ and show how techniques such as decomposition
and compilation can be fruitfully exploited for computing
maximally sound policies.

(Kleine-Büning, Subramani, & Zhao 2003) investigate the
properties of QBFs having polysize solution policies of a
specific kind (e.g., when each∃ variabley is a monotone
term – or a boolean constant – built up from∀ variables be-
forey in the prefix). Contrariwise to our work, no restriction
is put on the prefix of instances in their study; on the other



hand, it is not the case that every positive QBF (even when
from QBF2,∀) has a polysize solution policy; furthermore,
they do not consider partial policies. This shows their ap-
proach mainly orthogonal to ours.

(Chen 2004) defines the notion of decomposability of a set
of functions using policies in the QCSP framework; the main
purpose is to show that if an operationµ is j-collapsible then
any constraint languageΓ invariant underµ is j-collapsible
(Theorem 7), from which tractability results for QCSPs (Γ)
are derived. Neither the notion of partial policy nor the prob-
lem of their representation are considered in (Chen 2004).

Closer to our work, (Liberatore 2005) considers the rep-
resentation issue for total policies using a circuit-based rep-
resentation scheme. The complexity of determining whether
a given QBF has a total policy representation, with size
bounded by a given integerk is identified and shown hard,
even in the casek is in unary notation. In some sense,
our work completes (Liberatore 2005) by focusing on par-
tial policies, generalizing some results and focusing on other
representation schemes.
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