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in this paper an extension of the resolution principle to uncertain
clauses is proposad. Lincariainly ia here estimated in terms of necessity
measuras introduced in the framawork ol possibilty theory. A refutation
method using a linear strategy is presented. & makes use of an ordared
search method {with a non-additive evaluatan function) in erder to praduce
an optimal rafutation, which enablas us 10 obtain the greatest possible kewar
bound for the necessity measura attached to the clavsa to prove An
iHustrative sxample is given. Further wansons of the propased approach,
asspacislly to cope with inconsistent sets of clauses, are mantionsd.

1 - Introduciion

Logic programming i a well-established, cohergnt approach to
automated reasoning in artificial intaligence, whan proposilions are not
uncertain and pradicates are nat vague. Wha! we propose hare, is to extend
the logic programming approach in order to deal wih uncertairty w & non-ad
hoe mnd sfficiert manner. First of sl 1t is important to distinguish betwesn
uncertain propositions end fuzzy ones. An uncerlain {non-fuizy}
proposition is a proposiion in tha usuat aenge of binary kgic, for which the
available knowladgs does no! snablex um 1o establish with complete
cartainty thet the proposition is trus or is talse. Such a proposition has only
two posaible degrees of truth, namaly “true” or Yalge”, but numaerical
maasures of uncertainty can be used for estimatng the extant to which the
proposiion can ba balisved 1o be true or to be false. Conirastedly, a
propasltion will be fuzzy as soon as t involves a vague predicate. Than
sxcluded-middle or contradiction laws no longer hold ganerally for such
propouitions. Only fuzzy propositions may have an inlermediary degras of
truth (e.9. the truth of “John is young™ knowing that John 18 45 years old,
can be a madter of degres in & given context). See [6).

in the foliowing we only consider the casa of unceran
propositions. Their uncartainty will be represented by means of possibility
and necessiy mansures [14] [4]. The appropristensss of this model with
respact 1o oiher mathemalically-founded framework for handling
uncertainty, will be smphasized. First the exiansion of the rasalution
principle and of the refutation method 1o clauses weighted by necessity
maasures, which has been recently proposed by two of the authars [5), 15
briafly recalled. Than a finear straiegy making use of an ordered search
maethod in proposed in order 1o abtain the best possible estimaton about the
uncsriainty of a propasition to evaluate, An illusirative sxampls is gven
Further exiansions of the proposad approach, especially to cope wih
inconsistent sste of clauses, are brisfly mentioned.

2 - Baaolition in the prasence of uncerainty

2.1, Lincenaln prooosiions

Let (P, v, A, ) ba a Boolean algetira of prapositions. A possibility
measure [] delined on P satisfiea the followirg axioms [14), [4]

Moj=0; M) =1; ¥p, ¥q, Mpvaq) = max{TI{p). [Ha)l, i
whare 0 {resp. 1) denctas tha sver-false (1esp. sver-rue} propesition ; i.e.
¥Yp&P,pa—p=0andpv—p=1.[lip) which belongs to the real interval
{0.1] Is an satimate of tha dagres of possibilty that the propasiion p it frue.
By duality & nacaasity measure N i3 associated with a posatbility maasure
[T according to & definition [3} which extends the usual relationship betwaen
poasibility and necessity in modal logic ; namely N satisfies

¥ p. Nip) = 1-TH-p) {2
N{0)=0; Nit}m ¥ ; ¥ p, ¥ q. Nip A ) = min{N{p), N(g)} 3
N{p) is the axtent to which the proposition p can be considerad as
necessarily (or certalnly) true with reapect 1o the current stale of knowledge
; note that, due 1o (3}, as s00n a8 Nip} > 0, then N{-p) = C, i.a. twe oppasite
propositions cannat be simulianeoualy considered as somewhat cartainly
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rue. When the proposiien p is known or proved to be true, we have Nip) = 1
for aquivalently TT(—p) = &) ; it entails JI(p} = 1, but [I(p) = * is not &
sufficiant condition for assaring that p 18 trus. When the propoaition p is
known ar proved to be false, —p is true and we have N{—p) = 1 {or
aquivatently [1(p) = 0}. In case of twotel ignarance about the truth or the
iaisty of p, we have [T(p] = 1, N{p} = 0. Note that we only have tha follawing
inequalities
¥ p. ¥ q, Njp v q) 2 max({N{p), N{a}} ; TTip » q} < min{T}{p), T}(a)) {4

Tha corresponding equalities do not hald in general. Indeed, for instance for
g = —p, we hava []{p » ~p) = 0, while we may have [Tip) » 0 and [1(~p) » ©.
Mota genarally, it can ba proved that if o antails g, i.e. p — g = 1, then T(q)
2 II(p} and Nig} = Nip) whare q -+ p stands for —p v q. The inequalties {4)
depart from many - valued logic where we have truth - functonalty, e
wp ~ q) = min{vip), wql). v(p v q) = max(v(p), viq)) and ¥{—p) = 1 - ¥(p}
which diffars from (2}, whare v(p) etands lor the degres of truth of
proposition g This degree of truth can be related 1o the memberahip
tunctionis} of the tuzzy set|s) which reprasent the fuzzy predicate(s)
involved in p Besides [I{p) and N(p) can be obtained as the result of a
pattern matching procadurs (1] betwesn the contenta of the propoaition p
reprasentad by maeans of ordinary ssls and the contants of the availabla
knowledge reprasented In tarms of poasibility distributions ; see [B].

Moreover necessity measures can be extended to lormulas

invalving predicates, by postulating that

N(¥ xP{x)} = inf {N{P{x)}|x& D) (5)
where P is a predicale and D is the domain of variabie x. Nots that (5} is in
agraement with [3) when D 1 finite, since then ¥ x P(x) ls equivalent to the
conjunclion P{ay) 4.~ Pla,} whara D = {ay,..., a5},

Possibility and necensity measures are an mlternative 10 prabability
measuras lor representing uncartaimy ; they anablie us to distinguish
betwaan ihe 1012l lack of cartamty in the truth of p (Nip} = 0) and the total
caftainty that p is false [[1(p) = D), while i probabilty we have Probip) = 0
<= Prob(—p} = 1.

22 i

The resclution principle {Robinsan [91) corresponds to the following
pattern of reasoning in tha propositional casa

pvg —@Rvrkgvr (8)
q v ris called tha rasolvent of the parent clauses p vq and —p vr, The
pattern (6) can be generalizad 10 uncertain propositions under the form [5]

WN(pva)za, N(-pvrizp then Nigvrzminfe,p) (7)

Fora = f =1, the pattern (6) is recovered. Note that the valuss of N{p v g}
and of N(—p v r) can ba indepandantly assigned except if = r = 0, where we
must have min{N{p), N(—p}) = 0 due to (3). ! wa know that Nijp A q) 2y we
can distribute the lower bound yon the elemantary clauses p and q, i.e. we
hava N{g) = yand Nip} 2 y. using (3. In case the available information gives
Iower bounds on the literals of a clause, e.g. N(p) 2y and N{g) 2 8 owing to
{(4) wa obtain a lower bound on the necessiy measure aliached to the
clause p v g, namaly N(p v q) 2 max(y,5). in the following we attach the
graatest known lower bound of e necessity measura to & clauss ; by
convanlion this numbar will be written batwesn parsntheses efter the
clauss. Nole that we do no! take inlo account upper bounds on neceseiy
maasures in cur approach. Indeed N(p) < y s poor information aince It is
aquivalent 1o [T{—p) 2 1 - y, which lsaves J]{p) complataly indetarminaia.

Lt S be a set of ground clausses. By RA(S) we mean the union of $
with the set of all ground clauses oblainable from 5 using one application of
the rasclution principia (i.¢. &ll the resoivents of the pairs of members ! 8},
Lat RR(S} ba result of iterating the rula n fimes. Than, dua 10 {7} and the



associativity of the min operation, we can state the following
Theorem [5]: Lat § = {Cy, Gyl L&t ¥ i = 1,m, N(C}) 2 - t.et C" denple

any clause in R"($). Then ¥ n 20, N(CM = min | _ m 2

This theorem expresses that the degree of certainty (expressed in
terms of necessity) of any logical consequence obtained by repeatedly
applying the resolution principle, will be at least equal to the one of the most
uncertain parent clause. This simple result agrees with our intuition.

N.B.1 : A pattern similar to (7) can be easily established for a set function g
which is a probability measure or more generally a Shafer [10] belief function
(see [51). Namely, we have

Rglpva)2ea, gl-pvri2p thenglgv )2 max(C, a+p- 1) (8)
The repeated application of (8) may lead to a lower bound which is not very
much informative, whatever is the quality of lower bounds attached to the
parent clauses This behavior does not exist with min. For necessity
measures, which are a particular case of Shafer belief functions [3], the
lower bound in (8) is improved since min(a,b) £ max(0, a + b-1), in [0,1]
MJL2 : Quite early in the development of fuzzy set theory, an extension of
resolution principle was proposed by Lee [7] for ground clauses in fuzzy
logic, where conjunction and disjunction are defined via min and max
operations as already mentioned. Basically, it was proved that if all the
truth-values of parent clauses are strictly greater than 0.5, then a resolvent
clause derived by the resolution principle always has a truth-value between
the maximum and the minimum of those of the parent clauses. See [5] for
further discussions. Moreover, due to the lack of contradiction law for fuzzy
propositions, the refutation cannot be easily extended as it is the case for
(7) (see next section). Recently another attempt has been made by Van
Emden [12] for introducing quantitative aspects in the framework of a
rigorous logic programming approach. However the meaning of the so-called
truth values, intermediary between 0 and 1, remains ill-defined since they
are not related to some axiomatically-based modelling of uncertainty such
as probability, Shafer evidence or possibility /necessity theories. Indeed
the propagation of the truth-values in [12] resembles somewhat to the ad
hoc treatment of certainty factors in MYCIN [11]

The resolution principle for predicate calculus can be stated in the
following way Let L7 be an atomic formula, i e a predicate symbol of degree
n followed by n terms (a constant is a term, a variable is a term, a function
bearing on terms is still a term). Let p[o] denote the clause obtained by
applying the set of elementary substitutions specified by o to the
occurences of variables in the clause p If the elementary substitution o4,
applied to the variables in L) and L,, make L2 identical to -.L1, then from
Ly v q and L2 v r the resolvent [q v } [01] can be deduced. From (5), it is

easy to see that the following pattern is valid
i N{¥ x P{x)} 2 @ than N{P{a)}za )

which extends the usual parlicularization mode of inference. Thus, the
substitution of a variable by a constant in a universally quantified
proposition can only increase the necessity degree attached to the
proposition. More generally from N(V x P(x)) £ a we can infer that N(V y
P(f(y))) £ a where f is a mapping ; note that N(V y P(f(y))) may be greater
than N(V x P(x)) since f is not necessarily onto. Thus the application of the
resolution principle for predicate calculus is compatible with a computation
of a lower bound of the necessity degree attached to the resolvent using (7)
and (9).

For instance if we know that N(3 x P(x)) > a and that N{¥ ¥ P{y} =
Qiy}y 2 B, this can be written in a logic programming style, using a Skolem
constant A, as

P(A) (o) i —Piy) v Qiy} (B)
from which we infer (applying the substitution A(y) that
Q(A) (min(a.P)); i.e. N(3zQ(z)) min(a.P)

This very simple example is considered by Nilsson [8] with a probabilistic
modelling of uncertainty, but is not dealt with by resolution.

2.3. Refutation

A very popular way of using the resolution principle is the refutation
method, i.e. the proposition to be proved is assumed to be false, and its
negation is added to the set of ground clauses ; when the proposition is
actually true, the resolution principle enables the empty clause 0 to be
derived, thus establishing a contradiction. The refutation method can
provide conclusions which could not be derived by direct application of the
resolution principle. This procedure is valid when the initial set of clauses is
consistent. The refutation method can be extended to the case of uncertain
propositions. To do so, the negation of the proposition to prove is added to

the set of ground clauses, with a necessily degree equal 1o 1. We have the
following

Thaptem : The grade of neceseity obtained tor the amply clause, using the
ralutation method, corresponds 1o a lower bound of the grade of necessity
of the propasition 10 prove.

Prool ; Let © be the st of clauses C; {with their waighting) and q be the
proposition to svaluate. Let us suppose we have obtained N{0) 2z o
Obviously O with the waight o has bean produced by applicalion{s) of the

rasolution principle {uging (7) ang (3)} to tha set of tlauses €, U {-q] {wilh
N{-—q) = 1}, where C, » {C; | N{C)) 2 a}. Observe that 0 would be obtained as
well by application of the standard resolution principle 1o €U {-qg},
forgetting the weights. Hence g is a logical consequence ol €y, which
means that —(a; {Cje Col) vq =13 ie. Ni—(s [Cie Cyliva) =1 Now

N(n; [Cj e Cgl) = min; {NIC) | C; £ Gy} 2 o Applying {7) in the restncted torm
of the modus ponens, We senciude that Nig) 2 a. GQED.

N.B.3 :Let C" ba a set of uncertain clauses, and C the set of clauses
obtained by deleting the Lncertainty cosfficiants in ©°. Then C° is said 1o be
inconsistent if ang only it the uncertainty coefficients in C° violaie the
axioms of the adopted theory of uncertainty, here (3). Then the following
thaorem can ba proved ; ses [5].

Theoram : If all uncertain clauses in © are such that N{C)) 2 > {, than €°

15 consistent it and only # © 15 consisten! in the usual sense This
aquivalance is na langar trus with probability measures.

3-

We are interasted not only in obtaining the empty clause as in the
classical relutation method, but more particularly in reaching it with the
grealest possible lower bound on the associated nacassity. In order io have
a irae-like search graph, we use a linaar resoiution stratagy (see |2]). Such
a strategy only allows rasolutions between a cenler clausa CC issued from a
top center clause Cgy {chosen among the inial set of clauses € such that

C - {Cgl is consistent] and & side clause which is either a clause in C - {Col

or a center clause ancestor of CC. A sale (Le. a node) will be dafined by e
center clause and the set of s ancestor clausas. See Fig. 1.
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Cq will be chosen among the ¢lause|s) produced by the negalion of the
propositian 1o evaluate. Thus we have N{Cq} = 1. The cost associated with a
Cien

tink (CaCy...C)—— {CgCy...CiC,, 4) B W(TT ) whare w(Q’M) slands
for a known lower bound of N{C’j,4). Ci,y is obtained by application of the
resolution principle betwesn the center clause C; and the side clause 'y 4.
The global cost of a path Gy —+ G4 —...— Gj correzponding to a siate
Skt 18 Sy} = Min(@(Sy), wiC iy 42} = min {W[Cl],j = 1,14+ 1} whara S =
{Cg.....Cj). C; denolas a center clavse, and G'j a side clause. A waight
W{(Ci, 1) = 0{Si,1} & assigned o the rasolvent C, 4. [Cp...Cp} is a goat state
if Cp =0 and w{Cp) » 0. A steta (CyCy...Cj} Is expanded by producing all the
rasolvents of C; with {Cp,....Cj.1} U € - {Cpl. Tha search for the emply

clause with the greatest lower bound is aquivalent to the search for a path
whose cost is maximum {called by Yager [13] “path of laast resistance™ in
the framework of & possidilistic interpretation). In the following we use an
anakg of the A* - alporithm, whera tha sum |s replaced by tha min operation
I tha definkion of the avaluatien function 1(Sy) = minig(Sy), H{Sy) with Sy, =

{CgCy-. C;}, whats 9(S)} = W(C)) and h{Sy,) is an overestimale of the cost of
any path from G, 1o 0. We shall propose in the follawing various posaible
choleas for h{Sy). The next state 10 expand is chasen amornyg the pending
statea with the greatest i{Sy). Then we are certain that the algorithm siops,
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finde & goal stete ¥ any and that the first goal state which is cbtained is
optimal, as for a standard A® - algorithm. The procedurs we usa can be
viewsd s a heuristicaly guided Enear sirstegy. Wse have the foliowing
rasult.

Thagram : An optims! retuiation (i.e. a refutation which lexds to the smpty
clause with the grestest possible lower bound of the neceasity maasurs)
can be obtained using a linear wtrategy.

EBmol : Lot C° ba the subsel of € vsed in a considered optimal refutation.
Since C° - {Cq) Is conalstent, thera exists @ linear refutation from €', This

refutation is obviousty such thal wi0) 2 minpg o wiC) ; but I this inequaity
wirictly holds, only a proper subset of € would be useful in the reluiation,
which is contradictory. Hence wi{0}=ming. c'wiC} and consequently thers
exists an optimal finear refutation of C (since a linear refutation of €' is &
linsar refutation of C). Q.ED.

In order to be sure that the first relutation which ts obilained, # eny,
is optimal, the avaluation function must be admissible, |.e. hera h{Sy) must

be an over-estimate of the cost of any path from C;to @ where Sy -

{CgC1...Ci). An obvious possibla choice is ¥ k, hiSy) = 1 ("uniform cost®
aigarithm). For wny refutation developed from a clause C, lor any literal (of
C, wa have 1o use a clause C” whaere tha literal I is present &t a step ot
ancther in order to obtain the emply clause. Note that the argumants {which
may ba different) of [ and —I are not considered here. Thus a refutation
developed from G has a cost lesa than or equal to H{l) = max{w(C'), —le C°,
C'e R({T)}, ¥ . Ktoral of C where R(C) I the set of wll clauses produced from
€ {including 1he clauses in C). H{l) can ba sasily computed and is in faci a
static: function since we have
H{h « max{w(C), - € C',C € C}
Indead it G € R(C), one of #s ancestor slready including —. This is true in
panicular for the clause C* which maximizes H{l}, # C* « R{C). w{C"} can be
neither greater than the weight attachad to an ancester including —I, nor
smaler gince C* maximizes H{Y) and C* & R{C). Hance the result. Thus an
overestimate of the cost of a path to 0 developed rom & ctause G is
hy(S) e min| ¢ . maxiw(C). G’ e €, e C}m mfH{) | £ C)
with § = {C;;...C). An admissible evaluation function is then obtained 1y {5) =
min(w(C), hq(5}). Note that h4{S) depands only on C. In the following we
writa ,{C) and h{{C). A sequance of admissible evaluation functions can
then ba defined by
ho{Ch = 1 1p(C) = mintw(C), ho(C 1 p2 0
np,,{ca- ming cmnx{’lptC'). ~le € .CeC}pad
It can ba chacked that sny refutation using C has & cost less than or squal
10 1p{C), and than ¥ p, hp is stil an oversstimate, that ¥ p. hp,4{C) 2 hy{C),
end that hp(cl becomes sialionary when p incrensss. Howevsr the
computation of bp may be time consuming forp > 1.

M.B.4 : A subsumad ciause can ba siiminmed only i the clavss which
subsumes it has & grester or equal weight. Indeed for inatance Pix)
subsumes P(a), but an oplimal refutation of {P(x} (0.5) ; P{a} (0.B) ; —P(a)
(1)} leads to O with & weight equal to 0.8 while from {P(x) (0.5) ; ~P{a) (1},
wa ondy obtain a lower bound equat to 0.5.

4 - Exampig
Let us consider the following knowledga base
C1  H Robert atlends a masting, then Mary doss not ; C2 Robenl comes at
the meating to-morrow ; C3 if Baatrix comes to-morrow, it is likely that the
menting will ot be quiet ;: C4 Perhaps Seatrix comes to-momow ; C5 I Abert
comes 1o morrow and Mary doea nol, then it s almoat cartaln that the
maesting will not be quist ; CB It is Ikely that Mary or John will come 1o-
matrow ; C7 H John comes to-marrow It Is rather lkely that Albert wil come.
This can ba representsd by the following weighted clauses ; firat
namas are codad by the initial and m denotes the mesting to-marmow
C1 : =R(x) v -Mx) {13 ; C2 : R{m) {1} ; C3 : 2B{m} v —quiel{m) {0.8} ; C4 :
B(m} {0.3) ; C5 : M{m) v —A{m} v —quiat(m) (0.8) ; C& : M{m) v J{m) (0.8} ; C7
t —l{m) v A{m) {0.7).
Note that the weights have esseniislly an ordinal valug since thay are
combined by the min operation. This makes their elicitation easier. If we
want 16 1ry to prove that the meeting to-morrow will not ba quiet, wa add the
clause CO : quls(m) {1). Then it can be checked that there exisl two
possible relutations pictured on Figure 2.
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The procedure described in section 3 (prassntly running on = micro-
compuler} yields the oplimai path which snables us 1o conclude that the
maating will nat be quist, with & necessity degree s leas! equalto 0.7, In our
sxampie it may seem interesting 1o produce the two rafutstions since it
lsads to two distinct justifications ; we might even think o! some
reinforcemant of the cantainty degres of the conclusion, but this is out of the
scope of a purely logical approach.

Nota that sn unceriair clause {i.». with & waight atrictly less than 1),
involving variables such as —P{x} — Q{x) {a) should be understood as

N(Y x P(x) v Qfx)) 2 a, L.e. as an uncersin conjacture which sithar hoids for
all x or for which thare sxists an unknown proportion of counter-examplea.
This is quite ditferent from a defaull ruls whose sxceptions wre by dehnition
not often encountered, Howaever, once instantiated tha clause considered
abova gives —P(a} — Q(a) (&), where cc can then be viewsd as a lower bound
of tha a priori degres of carlainty that tha valve of ¥, here a, does not
corrspond to an sxcegtional case.

g

A knowiedge base provided by a human may be incongistant, We
can deline the degres of inconsistency of a eet of clauses C us the
greatest waight with which the sampty ciause can be obtainad by resolution
fram C. Let  ba this degree. Note that the subset of clsusaes in € with a

weigh! strictly praater than o is consistent. Than if by optimal refutation we
oblain fram C U {~C (1)}, whete C is a clauae 1o prove, tha empty clause

with & weight B > c, then we can concluda that N{C) 2 § ; in his case the

proof of C uses only a consislen! pan of €. When = o {obviously Bc o is

Impossibile), the consistent part of C defined by Lhe clauses with a weight
strictly greater than o is not eutficient for proving C and then we have to try
16 find anothar consistent subpart of C from which i is possible to establish
C. This ia a topi; for further ressarch.

Anothar 1opic of resenrch 18 the tomplatensas of the extended
rasolulion principle. For this purpose we nead ta interpral a piece of
krowledge such as N(pj 2 o > 0. An interpratation is then & fuzzy sel whare
any mode: of p has a degrea of membarship equal 1o 1 and any modal of —p
has a degree of membarship at moat equalio 1 -a.

A funhaer topic of research will be 1o accomodate vague predicatas
in our framawork. An idea for doing this might be la appraximaete a vagus
alatement by a collection of weighted, non-vague statements (since a luzzy
set can be approximated by a finite collection of nasted ordinary subsats).
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