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Abstract. This paper is an attempt to cast both uncertainty and time in a logical
framework. It generalizes possibilistic logic, previously developed by the authors,
where each classical formula is associated with a weight which obeys the laws of
possibility theory. In the possibilistic temporal logic we present here, each formula
is associated with a time set (a fuzzy set in the more general case) which represents
the set of instants where the formula is certainly true (more or less certainly true in
the general case). When a particular instant is fixed we recover possibilistic logic.
Timed possibilistic logic generalizes possibilistic logic also in the sense that we
substitute the lattice structure of the set of the (fuzzy) subsets of the temporal scale
to the lattice structure underlying the certainty weights in possibilistic logic. Thus
many results from possibilistic logic can be straightforwardly generalized to timed
possibilistic logic. Illustrative examples are given.

1. Introduction

Although temporal knowledge may be pervaded with imprecision and uncertainty as
any kind of knowledge, there have been very few works trying to handle uncertainty in
temporal reasoning ; among exceptions let us mention Kandrashina [26] who tried to
characterize approximate equality and inequality relations between time points in an axiomatic
manner, Fall [21] who propagates uncertainty and imprecision along the temporal axis using
belief functions, Dutta  [19], [20] who has more recently modeled the lack of knowledge
about events by means of fuzzy sets of time intervals, and Dean and Kanazawa [8] who use
a probabilistic model for representing the propensity of a formula to persist in being true.
Also, Borillo and Gaume [6] allow for a non-graded treatment of incomplete information in a
calculus of events.

This situation seems to be mainly due to the fact that the handling of time and the
management of uncertainty are two distinct important issues, each of them raising its own
specific problems whose solutions require a lot of research efforts. However a proposal has
been made for the representation of imprecise or uncertain temporal knowledge in the
framework of possibility theory (see [15]) where fuzzily-known dates, time intervals with
ill-known bounds, uncertain precedence relations between events can be handled.
Nevertheless the above-mentioned proposal was not formalized in a logical framework but
was rather based on Zadeh's [31] approach to approximate reasoning using possibility
distributions for the representation of fuzzy incomplete knowledge. In the meantime a so-
called possibilistic logic (Dubois and Prade [13], Dubois, Lang and Prade [9], [11], [27])
has been developed for the treatment of uncertain formulas and has been shown to logically
embed an important part of Zadeh's approximate reasoning machinery [10].

Logical formalisms for the treatment of time (e.g. Bestougeff and Ligozat [5]) can be
classified in three categories :
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(i) classical logic approaches where time is handled as an ordinary logical variable and
where the specificity of time is not acknowledged ;

(ii) modal logics where time indexes the worlds where a formula is true and modal
operators capture the notions of past and future (e.g. Audureau, Enjalbert and Fariñas
del Cerro, [3]) ;

(iii) reified logics (McDermott [28], Allen [2]) where for instance the time interval in which
a formula holds for true is explicitly associated to the formula. This approach, which
presents obvious advantages, is very commonly used in Artificial Intelligence (e.g.
Shoham [29], Joubel and Raiman [25]).

What is proposed in this paper is a kind of reified temporal logic which can be
viewed as a generalization of possibilistic logic, and which as such can deal both with time
and uncertainty in a unified manner. A possibilistic formula is a pair composed of a classical
logic formula and a certainty degree between 0 and 1 which is interpreted as a lower bound
of a necessity measure and which, as such, is governed by the axiomatics of these measures.
A timed formula is similarly a pair made of a classical logic formula and a set-representation
of a time period in which the formula is certainly true ; the time period can be more generally
a fuzzy set of time points. The degree of membership of a time-point is then viewed as the
degree of certainty of the formula at this time point. The algebraic structures which underlie
the second element of the pair have common properties in possibilistic logic and in timed
possibilistic logic, namely it is a lattice structure. It enables us to generalize results of
possibilistic logic to timed possibilistic logic. The word "timed" is used here as being more
specific than "temporal" : temporal reasoning is more general than "timed logic" since the
latter only handles "timed formulae" while the former is supposed to handle statements about
time like precedence constraints.

The paper is organized as follows : Section 2 gives the necessary background on
possibilistic logic ; Section 3 presents a timed logic where formulas are associated with
ordinary time sets, while Section 4 considers a fuzzy timed logic. Examples illustrate the
approach.

2. Possibilistic Logic

In this section we give the formal definitions and the main results of possibilistic
logic (see [11] for a complete exposition).

2.1. Possibilistic Logic : Basic Ideas

From now on, L  will denote a propositional or first-order logical language,
consisting of closed well-formed formulae (in the classical sense). Let Ω be the set of
interpretations for this language.

A possibility distribution on Ω is simply a function π from Ω to [0,1] ; π is said to be
normalized  if and only if ∃ ω ∈ Ω such that π(ω ) = 1 ; the quantity SN(π) =

1 – sup{π(ω) | ω ∈ Ω} is called sub-normalization degree of π ; it is equal to 0 if π is

normalized. π reflects the available knowledge and π(ω) estimates the extent to which it is

possible that the interpretation ω corresponds to the one underlying the real world. Since Ω



is exhaustive, π should be normalized : at least one interpretation should be fully possible. A
possibility distribution encodes a preferential ordering among the interpretations ; see [16].

A possibility distribution π on Ω gives birth to two functions from L to [0,1], called
possibility and necessity measures [30],[14] and denoted respectively by ∏ and N, defined
by :

∏ : L → [0,1] (∀ϕ ∈ L)   ∏(ϕ) = sup{π(ω) | ω . ϕ}

N : L → [0,1] (∀ϕ ∈ L)   N(ϕ) = 1 – ∏(¬ϕ)

= inf{1 – π(ω) | ω . ¬ϕ}.

While the possibility estimate ∏(ϕ) measures the extent to which ϕ is compatible with
the available knowledge (describing what we know about the real world), the dual necessity
(or certainty) measure N(ϕ) estimates to what extent ϕ is entailed by the available
knowledge.

A possibility measure ∏ satisfies the following properties :

(i) ∏(⊥) = 0 ; ∏(T) = 1

(ii) ∀ϕ, ∀ψ, ∏(ϕ ∨ ψ) = max(∏(ϕ),∏(ψ))1

where ⊥ and T denote contradiction and tautology respectively. We emphasize that we only

have ∏(ϕ ∧ ψ) ≤ min(∏(ϕ),∏(ψ)) in the general case, and ∏(ϕ ∧ ψ) is not a function of

∏(ϕ) and ∏(ψ) only. This completely departs from fully truth-functional calculi like

multiple-valued logics. Axiom (ii) is then equivalent to ∀ ϕ , ∀ ψ , N(ϕ  ∧  ψ ) =

min(N(ϕ), N(ψ)) and, as a consequence, letting ψ = ¬ϕ, we get N(ϕ) > 0 ⇒ ∏(ϕ) = 1.

Moreover we only have N(ϕ ∨ ψ) ≥ max(N(ϕ), N(ψ)) by duality. We adopt the following
conventions :

• N(ϕ) = 1 means that, given the available knowledge, ϕ is certainly true.

• 1 > N(ϕ) > 0 that ϕ is somewhat certain and ¬ϕ not certain at all (since the axioms imply

that ∀ϕ, min (N(ϕ), N(¬ϕ)) = 0).

• N(ϕ) = N(¬ϕ) = 0 (equivalent to ∏(ϕ) = ∏(¬ϕ) = 1) corresponds to the case of total

ignorance ; it expresses that, from the available knowledge, nothing enables us to say if ϕ
is rather true or rather false.

• 0 < ∏(ϕ) < 1 (equivalent to 1 > N(¬ϕ) > 0) means that ϕ is somewhat impossible, i.e.

that ¬ϕ is somewhat certain and ϕ not certain at all.

• ∏(ϕ) = 0, means that ϕ is certainly false.

The use of min and max operators suggests that the precise values of the necessity (or
possibility) degrees is not so important, the essential being the ordering on the formulae
induced by the numbers.

1 In the case L  is infinite (e.g. in the first order case), (ii) has to be replaced by the more general (ii')
∏(∨i∈I ϕi) = supi∈I ∏(ϕi).



We point out that possibilistic logic is not a fuzzy logic strictly speaking, since fuzzy
logic assigns degrees of truth in [0,1] to vague (non-classical) formulae, measuring their
conformity with the reference knowledge, generally supposed to be complete. A statement
like "it is 0.7-true that John is tall", which may be translated in fuzzy logic, by
Truth(Tall(John)) = 0.7, expresses that the conformity of John's height with the
interpretation of the vague predicate "tall" is 0.7, i.e. that, knowing John's height precisely,
it is rather true that John is tall. Whereas the statement "it is 0.7-certain that the contract will
be signed" may be translated in possibilistic logic, by N(Signed(contract)) ≥ 0.7, expressing
that the non-vague event "the contract will be signed" is rather certain, and not rather true.

2.2. Possibilistic Logic : Language and Semantics

Let us define a necessity-valued formula as a pair (ϕ α), where ϕ is a classical

propositional or first-order closed formula of L, and α a valuation in [0,1]. A necessity-
valued knowledge base is then defined as a finite set (in the conjunctive meaning) of
necessity-valued formulae ; these are the basic elements of the language of necessity-valued
possibilistic logic, which is a fragment of (general) possibilistic logic. The latter also
involves possibility-valued formulae ; see [11], [27].

Let us now consider the semantic aspects of necessity-valued logic. Necessity-valued
formulae will be interpreted by means of possibility distributions. Let π be a possibility
distribution on Ω (not necessarily normalized), and (ϕ α) a necessity-valued formula. Then
we define the notion of satisfaction by :

π . (ϕ α)   iff   N(ϕ) ≥ α

where N is the necessity measure induced by π. If F = {(ϕ1 α1), …, (ϕn αn)} is a set of

necessity-valued formulae then

π . F   iff   ∀ i ∈ {1, …, n}, π . (ϕi αi).

Then, the notion of logical consequence is defined in a very natural way : F being a set of
necessity-valued formulae and (ϕ α) a necessity-valued formula,

F . (ϕ α)   iff   ∀π, π . F implies π . (ϕ α)

i.e. the set of possibility distributions satisfying F is included in the set of possibility
distributions satisfying (ϕ α).

Thus, the models of a set of necessity-valued formulas F are possibility distributions
on the set Ω of all interpretations for L. Measuring the consistency of F consists then in
evaluating to what degree there is at least an interpretation completely possible for F, i.e. to
what degree the set of possibility distributions satisfying F contains normalized possibility
distributions ; the quantity2 Cons(F) = supπ.F supω∈Ω π(ω) will be called consistency

degree of F, and its complement to 1,

2 The notations supπ.F, supω∈Ω express that the supremum is taken among π such that π . F, and
among ω such that ω ∈ Ω respectively.



Incons(F) = 1 – supπ.F supω∈Ω π(ω) = infπ.F SN(π)

is called the inconsistency degree of F. Thus, necessity-valued logic enables the gradation
of inconsistency. If Incons(F ) = 0 then F  will be said completely consistent ; if
Incons(F) = 1 then F will be said completely inconsistent, and if 0 < Incons(F) < 1 thenF will be said partially inconsistent. It easily comes down (see [27], [11] for the proofs) that

Proposition 2.1. : Incons(F) = inf{N( ⊥) | π . F} where N is the necessity measure
induced by π.

Proposition 2.2. : let F = {(ϕ1 α1), ..., (ϕn αn)} be a set of necessity-valued formulas and
let us define the possibility distribution π*F by

π*F(ω) = min{1 – αi | ω . ¬ϕi, i = 1, …, n}

= 1 if ∀i, ω . ϕi ;

then for any possibility distribution π on Ω, π satisfies F if and only if π ≤ π*F, i.e.

∀ ω ∈ Ω, π(ω) ≤ π*F(ω). π*F is said to be the least specific (i.e. the largest) possibility

distribution satisfying F.

Corollary 2.3. : F . (ϕ α) iff π*F . (ϕ α).

Corollary 2.4. : Incons(F) = 1 – supω∈Ω π*F(ω) = SN(π*F).

Then, computing the inconsistency degree of F reduces to compute the degree of
subnormalization of the possibility distribution π*F. The quantity π*F(ω) represents the

compatibility degree of ω with F.

The inconsistency degree of a possibilistic knowledge base can be seen as a threshold
below which any deduction is trivial : indeed, if Incons(F) = α, then any possibility

distribution satisfying F verifies N(⊥) ≥ α and a fortiori for any formula ϕ, N(ϕ) ≥ N(⊥) ≥
α ; thus, any deduction whose form is F . (ϕ β) with β ≤ α is trivial. Allowing non-trivial
deductions only makes the consequence operator nonmonotonic (see [16] for a connection
with nonmonotonic logics).

A lot of results can be proved about deduction in necessity-valued logic. They can be
found in [11] or [27]. The most important ones extend deduction and refutation to
possibilistic logic :

Proposition 2.6. (deduction) : F ∪ {(ϕ 1)} . (ψ α)   iff   F . (ϕ → ψ  α).

Corollary 2.7. (refutation) : F . (ϕ α)   iff   F ∪ {(¬ϕ 1)} . (⊥ α).



Thus, if we want to know whether (ϕ α) is a logical consequence of F or not, it is

sufficient to compute the inconsistency degree of F ∪ {(¬ϕ 1)}, which is equal to the

largest α such that F . (ϕ α).

2.3 . Clausal Form and Resolution

A necessity-valued clause is a necessity-valued formula (c α) where c is a first-order

clause. A necessity-valued clausal form is a finite set of necessity-valued clauses. If (ϕ α) is

a necessity-valued formula and if {c1, …, cn} is a clausal form of ϕ then a clausal form of

(ϕ α) is {(c1 α), …, (cn α)} ; if F is a set of necessity-valued formulas then the set of

necessity-valued clauses C obtained by replacing each necessity-valued formula by one of its
clausal forms, is the clausal form of F, and is proved to have the same inconsistency degree
as F. The resolution rule for necessity-valued possibilistic logic is the following :

(c1 α1) , (c2 α2) ; (c' min (α1, α2))

where c' is a resolvent of clauses c1 and c2. Possibilistic resolution for necessity-valued

clauses is proved to be sound and complete for refutation, i.e. if Incons(C) = α then there is

a deduction of (⊥ α), called an α-refutation, from C, and this refutation is optimal, i.e. there

is no β-refutation from C where β > α. See [11].

Let us notice first that the semantics of possibilistic logic only requires the definition
of necessity measures on a logical language L. Furthermore, to define these necessity
measures from L to [0,1] we only needed three operations on [0,1] : the minimum and
maximum operators (which underlie the ordering structure) and the order reversing operation
(1 – (⋅)) . Thus, from a theoretical point of view, a straightforward generalization is to map
possibility distributions and necessity measures, no longer into [0,1] but more generally into
any complete distributive lattice L. In such a case we shall use the name "lattice-based
logics".

In the following, we shall use the Boolean lattice L = 2T, where T is a given set,
equipped with the set intersection, union, and complementation (the ordering being the set
inclusion). The reference set T will be interpreted in the rest of the section as a temporal scale
(discrete or continuous) : T will be assumed to be totally ordered ; for the sake of simplicity
we assume that T is a real closed interval T = [Tmin, Tmax] where Tmin and Tmax may be
equal to -∞ or +∞. In Section 4, instead of 2T, we shall work with the set [0,1]T of fuzzy
subsets of T.

3. A Reified Temporal Logic as a Lattice-Based Possibilistic Logic

Now we actualize the definitions of Section 2, in the framework of Boolean-valued
possibilistic logic, keeping in mind the temporal interpretation. L still denotes a logical
propositional or first-order language, Ω the set of interpretations associated with L. The
valuation lattice L is the Boolean lattice 2T, equipped with the inclusion ordering (Û) (note
that this symbol will denote non-strict inclusion), the union (∪), intersection (∩), and
complementation (denoted by an overbar) operations.



A temporal possibility distribution (or temporal distribution, for short) on L is a
mapping π : Ω → L ; π is said to be normalized iff ∪{ π(ω), ω ∈ Ω} = T ; otherwise, the
subnormalization  level of π is defined as :

SN(π) = ∪ {π(ω), ω ∈ Ω} = ∩ {π(ω), ω ∈ Ω}.

A temporal (possibility) distribution is then an allocation of a set of time instants to
each interpretation. Writing down that π(ω) = τ means that at any instant t of τ the

interpretation ω is not excluded (it may be the actual state of facts at time t) and that at any

instant of äτ, ω is completely excluded. When π is normalized there is an interpretation that is
considered as possible at any time instant. If a temporal distribution is subnormalized then
there are instants t in T such that no interpretation may be the actual state of facts at time t :
hence these instants are in a situation of inconsistency. More precisely, the set of inconsistent
instants according to π is SN(π), also called inconsistency lapse of π.

The temporal possibility function induced by π is the mapping ∏ : L → L defined
by :

∏(ϕ) = ∪ {π(ω), ω . ϕ}.

It is the set of instants when ϕ is possibly true (or equivalently, when we do not know

explicitely that ϕ is false). The temporal certainty function induced by π is the mapping N :L → L defined by :

N(ϕ) = ∪ {π(ω), ω . ¬ϕ} = ∩ {π(ω), ω . ¬ϕ}.

As the relation N(ϕ) = ∏(¬ϕ) suggests, N(ϕ) is the set of instants when it is impossible that

¬ϕ be true, or equivalently, when it is explicitely certain that ϕ is true. Using ∏ and N we

can distinguish between the instants when we are sure that ϕ is true and the ones when it is
only possible. It can be checked that the following properties hold :

i) N(T) = T

meaning that tautologies are certain at any instant of T ;

ii) N(⊥) = SN(π) (= Ø if π is normalized)

meaning that contradictions are sure during an inconsistency lapse ;

iii) N(ϕ ∧ ψ) = N(ϕ) ∩ N(ψ)

meaning that ϕ ∧ ψ is certainly true when and only when both ϕ and ψ are certainly true ; in

particular, N(ϕ) ∩ N(¬ϕ) = N(⊥) = SN(π) ;

iv) N(ϕ ∨ ψ) Œ (N(ϕ) ∪ N(ψ))



meaning that ϕ ∨ ψ is certainly true whenever one of ϕ and ψ is known to be certainly true

(but generally N(ϕ ∨ ψ) ≠ N(ϕ) ∪ N(ψ)) ; for instance, if nothing is known about ϕ then

N(ϕ) = N(¬ϕ) = Ø and however N(ϕ ∨ ¬ϕ) = N(T) = T ;

v) if ϕ . ψ then N(ϕ) Û N(ψ)

i.e. N is monotonic with respect to logical entailment ;

vi) (N(ϕ) ∩ N(ϕ → ψ)) Û N(ψ)

which is a timed version of the modus ponens.

A timed certainty-valued formula (timed formula, for short) is a pair (ϕ τ) where ϕ is

a classical propositional formula and τ is a subset of T, i.e. τ Û T. Writing down (ϕ τ)

expresses that N(ϕ) Œ τ, i.e. that ϕ is certainly true at least during τ. In practice τ will be an
interval or a union thereof. A timed certainty-valued knowledge base is a finite set of timed
certainty-valued formulas.

It is clear that our timed (certainty-valued) logic is nothing but a reified temporal
logic, where the time component has been separated from the purely logical component.
From that point of view it is similar to what is done in Joubel and Raiman [25], where time
periods are considered as assumptions in an hypothetical reasoning system.

The semantics of the timed logic is easily defined, like in possibilistic logic : if π is a
temporal possibility distribution then

π . (ϕ τ) iff N(ϕ) Œ τ, where N is induced by π ;

π . {(ϕ1 τ1), …, (ϕn τn)} iff ∀i, π . (ϕi τi) ;

{( ϕ1 τ1), …, (ϕn τn)} . (ψ τ) iff π . {(ϕ1 τ1), …, (ϕn τn)} entails π . (ψ τ).

Let F = {(ϕ1 τ1), …, (ϕn τn)} be a timed certainty-valued knowledge base and ψ a
formula. Then the deduction problem is to find the greatest set of instants when, according toF, the formula ψ is certainly true. This set will be denoted by Cert(ψ ; F). It comes
immediately that

Cert(ψ ; F) = ∪ {τ , F . (ψ τ)} = ∩ {N(ψ) , N induced by π and π . F}.

Taking ψ = ⊥, Cert(⊥ ; F) = ∩ {SN(π) , π . F} is the set of instants which are
inconsistent according to any temporal distribution satisfying F. It will be called the
inconsistency lapse of F and denoted by Incons(F). Given a temporal distribution, from the
fact that if ϕ . ψ then N(ϕ) Û N(ψ) and since ⊥ . ϕ, it comes immediately that ∀ϕ ∈ L,

N(ϕ) Œ N(⊥) ; so Cert(ψ ; F) always contains Incons(F). As a consequence, F . (ϕ τ)

with τ Û Incons(F) is a trivial deduction. On the contrary, F . (ϕ τ) is non-trivial if τ is

not included in Incons(F), and completely non-trivial if τ ∩ Incons(F) = Ø. The non-trivial

part of a timed formula (ϕ τ) deduced from a timed knowledge base F is the timed formula



(ϕ  τ \ Incons(F)) where \ is the set difference. The greatest non-trivial set of instants

where, according to F, the formula ϕ is certainly true is

Cert*(ϕ ; F) = Cert(ϕ ; F) \ Incons(F).

Let us now give a simple characterization of the set of temporal possibility
distributions satisfying F. Let F = {(ϕ1 τ1), …, (ϕn τn)} then

     π . F iff ∀i, N(ϕi) Œ τi
iff ∀i, ∩ { ÄπÄ(Äω), ω . ¬ϕi} Œ τi
iff ∀ ω ∈ Ω, ∀ i ∈ {1, …,n} such that ω . ¬ϕi, ÄπÄ(Äω) Œ τi
iff ∀ ω ∈ Ω, ÄπÄ(Äω) Œ (∪ {τi, ω . ¬ϕi})

iff ∀ ω ∈ Ω, π(ω) Û (∩ { Äτi, ω . ¬ϕi})

iff ∀ ω ∈ Ω, π(ω) Û πF*(ω) where

πF*(ω) = ∩ { Äτi, ω . ¬ϕi}

     (= T if ∀i, ω . ϕi).

Thus, the set of temporal possibility distributions satisfying F has a maximal element
πF*. This characterization is interesting because

Cert(ϕ ; F) = NF*(ϕ)

Incons(F) = NF∗(⊥) = SN(πF*)

where NF* is the temporal necessity function induced by πF*. The proof is similar to the
one in possibilistic logic [11], [27]. Thus, the knowledge of πF* is sufficient for the
deduction problem. πF* is the largest temporal distribution satisfying F, in a sense very

similar to the principle of minimum of specificity [17]. Indeed NF*(ϕ) contains all instants

when we are certain that ϕ is true (according to the knowledge contained in F) and all
instants when F is inconsistent, and only these instants.

Instead of focusing on the set of time instants where a given formula is certainly true,
we may dually consider the set of certainly true formulas at a given time t ∈ T. This set

defined as {ϕ | t ∈ NF*(ϕ)} is a deductively closed, possibly inconsistent set of classical
formulas representing what is known for sure at time t. It leads to a more intuituive view of
the given semantics. Instead of considering NF* : L  →  2T we may consider, in an
equivalent way, the collection of mappings (Nt*)t∈T defined from L to {0,1} by

Nt*(ϕ) = 
1 iff NF*(ϕ) contains t ;
0 otherwise.

It is clear that Nt*(ϕ) = 1 if and only if according to F, either it is certain that ϕ is true, or F
is inconsistent at time t. It easily comes that for all t, Nt* is a crisp (i.e. bivalued) necessity

measure, i.e. a mapping from L to {0,1} satisfying the axioms



Nt* (T) = 1

∀ϕ, ψ ∈ L, Nt*(ϕ ∧ ψ) = min(Nt*(ϕ), Nt*(ψ)).

Then considering both Nt*(ϕ) and Nt*(¬ϕ), four different situations may happen :

(i) Nt*( ϕ) = Nt*(¬ ϕ) = 1 ; since Nt*( ⊥) = min (Nt*( ϕ), Nt*(¬ ϕ)) = 1, which is

equivalent to t ∈ Incons(F) ; it means that F is inconsistent at time t ;

(ii) Nt*(ϕ) = 1 and Nt*(¬ϕ) = 0 ; it means that ϕ is certainly true at time t ;

(iii) Nt*(ϕ) = 0 and Nt*(¬ϕ) = 1 ; it means that ϕ is certainly false at time t ;

(iv) Nt*(ϕ) = 0 and Nt*(¬ϕ) = 0 ; it means that the truth value is completely unknown at
time t.

Thus for a given time instant t, temporal necessity-valued logic comes down to a
four-valued logic whose four "truth values" are true, false, unknown and inconsistent
(Belnap [4]).

Let us now come back to the semantics of timed logic. The following results can be
established in a similar way as in possibilistic logic :

Deduction theorem :F ∪ {(ϕ T)} . (ψ τ) if and only if F . (ϕ → ψ  τ)

Refutation theorem :F . (ϕ τ) if and only if F ∪ {(¬ϕ T)} . (⊥ τ)
or equivalently

Cert(F,ϕ) = Incons(F ∪ {(¬ϕ T)}).

Thus, if we want to know whether (ϕ τ) is a logical consequence of F or not, it is

sufficient to compute the inconsistency lapse of F ∪ {(¬ϕ T)}, which is equal to the union

of the sets of instants τ such that F . (ϕ τ).

As already pointed out, any deduction problem in timed logic comes down to
computing an inconsistency lapse, which is the set of instants when the knowledge behaves
inconsistently. In order to automatize the computation, we are going to define first a clausal
form equivalent to a set of timed formulas F, and then a resolution rule similar to those used
in (numerical) possibilistic logic.

Clausal form
A timed clause is a timed formula (c τ) where c is a propositional clause. A timed

clausal form is a finite set of timed clauses. It is possible to find a (propositional) timed
clausal form, for any (propositional) timed necessity-valued knowledge base :

Let F = {(ϕ1 τ1), …, (ϕn τn)} ;

For every i = 1, …, n, let {ci,1, …, ci,ni} be a clausal form of ϕi ;

Let C = ∪i=1,…,n (∪j=1,…,ni (ci,j  τi))



Then it can be proved that C is equivalent to F.

Resolution rule
Let (c τ) and (c' τ') be two timed clauses, and let c" be any classical resolvent (if any)

of c and c' ; then (c"  τ ∩ τ') is a resolvent of (c τ) and (c' τ'), which is formally written :

(c τ), (c' τ') ; (c"  τ ∩ τ').

In order to get a sound and complete procedure we must add a combination rule :

Combination rule
(c τ), (c τ') ; (c  τ ∪ τ').

Resolution, together with combination, enjoys the properties of soundness and
completeness for refutation :

Soundness and completeness of resolution & combination for refutation
∪ {τ, C ; (⊥ τ)} = Incons(C).

Technically, this result means that in order to find the inconsistency lapse, an
elementary algorithm consists in finding all the resolution paths leading to the empty clause,
and then combining them all by computing their least upper bound. Of course, it is not
always necessary to find all paths (for example, in the case where there exists a deduction of
the empty clause with weight τ such that τ = Incons(C), only this refutation is necessary).
An open problem is the designing of efficient algorithms based on ordered search methods in
order to compute inconsistency lapses.

Example 1

Consider the following pieces of information :

John stayed in the office until 9.00 am ± 5 mn and certainly not afterwards
Mary stayed in the office from 8.50 am ± 10 mn and certainly not before

John and Mary never met in the office this morning.

In order to translate them into timed formulas, we will slightly rewrite this information : let
us take the interval T = [8.00, 10.00] as temporal scale (assuming that nothing changes
between 8.00 and 8.40 and between 9.05 and 10.00) ; the first two sentences will be
expressed as

"John was in the office" is certainly true between 8.00 and 8.55
"John was not in the office" is certainly true between 9.05 and 10.00

"Mary was in the office" is certainly true between 9.00 and 10.00
"Mary was not in the office" is certainly true between 8.00 and 8.40

whilst the last one is expressed in the form

"John was not in the office or Mary was not in the office"
is certainly true between 8.00 and 10.00.



Note that writing that "John was not in the office" is certainly true between 9.05 and
10.00 is another way to express that "John was in the office" is possibly true between 8.00
and 9.05. Nothing is said about what happened to John between 8.55 and 9.05. He may
have come in and get out of his office several times.

Let us now translate the five last sentences by means of timed formulas. For the sake
of simplicity, we use closed intervals for modeling them. Assuming that the literals J (resp.
M) means that John (resp. Mary) is at the office"; the formulas of the corresponding
knowledge base F are

(J [8.00, 8.55])
(¬ J [9.05, 10.00])
(M [9.00, 10.00])
(¬M [8.00, 8.40])
(¬J ∨ ¬M [8.00, 10.00])

We can now compute the temporal distribution πF*, knowing that

πF*(ω) = ∩ { Äτi, (ϕi τi) ∈ F, ω . ¬ϕi}).

Let us respectively denote J ∧ M, J ∧ ¬M, ¬J ∧ M, ¬J ∧ ¬M the four interpretations of Ω
meaning respectively that "J and M are given the value true", "J is given the value true and M
the value false", etc. Then using the notations [a,b[, ]a,b[ for intervals open in b, open both
in a and in b respectively, we have

πF*(J ∧ M) = [8.00, 9.05[ ∩ ]8.40, 10.00] ∩ Ø = Ø

πF*(J ∧ ¬M) = [8.00, 9.05[ ∩ [8.00, 9.00[ = [8.00, 9.00[

πF*(¬J ∧ M) =]8.55, 10.00] ∩ ]8.40, 10.00] = ]8.55, 10.00]

πF*(¬J ∧ ¬M) =]8.55, 10.00] ∩ [8.00, 9.00[ =]8.55, 9.00[

Since ∪ω πF*(ω) = [8,10], the inconsistency lapse of F is Incons(F) = Ø, i.e. F never

behaves inconsistently.

We may now compute the time intervals in which some formulas are certainly or
possibly true :

    NF*(J)   = πF*(¬J ∧ M) ∩ πF*(¬J ∧ ¬M)

= [8.00, 8.55] ∩ ([8.00, 8.55] ∪ [9.00, 10.00])
= [8.00, 8.55]

    NF*(¬J) = [9.00, 10.00]
    NF*(M) = [9.00, 10.00]
    NF*(¬M) = [8.00, 8.55].

Thus, "John is in the office" is

- certainly true during [8.00, 8.55] ;
- certainly false during [9.00, 10.00] ;
- unknown (possibly true and possibly false) during ]8.55, 9.00[ ;



this is stronger than the information explicitly written in the knowledge base (according to
which "John is in the office" was certainly false during [9.05, 10.00] only).

Example 2

This example is somehow more complex than the first one since it involves
contradictory information. Consider the following pieces of informations

John stayed in the office until 9.15 ± 10 mn and certainly not afterwards
Mary stayed in the office from 8.45 ± 10 mn and certainly not before

Between 9.00 and 9.10 there was exactly one person
(among John and Mary) in the office

which, in a manner similar to Example 1, gives the set G of timed formulas

(J [8.00, 9.05] )
(¬ J [9.25, 10.00])
(M [8.55, 10.00])
(¬M [8.00, 8.35] )
((¬J ∨ ¬M) ∧ (J ∨ M) [9.00, 9.10])

as represented on Figure 1.

The temporal distribution πG* is then :

           πG*(J ∧ M) = [8.00, 9.25[ ∩ ]8.35, 10.00] ∩ ([8.00, 9.00[ ∪ ]9.10, 10.00])

= ]8.35, 9.00[ ∪ ]9.10, 9.25[

           πG*(J ∧ ¬M) = [8.00, 9.25[ ∩ [8.00, 8.55[ = [8.00, 8.55[

πG*(¬J ∧ M) = ]8.35, 10.00] ∩ ]9.05, 10.00] = ]9.05, 10.00]

πG*(¬J ∧ ¬M) = ]9.05, 10.00] ∩ [8.00, 8.55[ ∩ ([8.00, 9.00[ ∪ ]9.10, 10.00]) = Ø

false unknown true inc. false unknown false

N(J)

N(¬M)

N*(J)

N*(¬M)

N(¬J) 

N(M)

N*(¬J)

N*(M)

N*(¬M)

N*(¬J)

The
knowledge

base

obtained
conclusions

History of J ∧ M

8.35 8.40 8.45 8.50 8.55 9.00 9.05 9.10 9.15 9.20 9.25

N[(M ∨ J) ∧ (¬M ∨ ¬J)] 

Figure 1



Let us compute the inconsistency lapse of πG*.

∪ω πG*(ω) = [8.00, 9.00[ ∪ ]9.05, 10.00]

Hence
Incons(G) = SN(πG*) = [9.00, 9.05]

Thus the knowledge base behaves inconsistently between 9.00 and 9.05, due to the fact that
it is explicitely written in G that both John and Mary are in the office and that there is exactly
one person in it during this time interval. Then we have (see Figure 1 where N* is short for
NG*)

NG*(J) = [8, 9.05]

NG*(¬J) = [9, 9.10] ∪ [9.25, 10.00]
NG*(M) = [8.55, 10.00]

NG*(¬M) = [8, 8.35] ∪ [9.00, 9.05]

NG*(J ∧ M) = [8.55, 9.05]

NG*(¬J ∨ ¬M) = [8, 8.35] ∪ [9.00, 9.10] ∪ [9.25, 10.00]

but since G is partially inconsistent, we have to drop out the inconsistent instants in order to
keep only the non-trivial part of these deductions. For instance,

Cert*(J ∧ M) = NG*(J ∧ M) \ Incons(G) = [8.55, 9.00]

Cert*(¬J ∨ ¬M) = [8, 8.35] ∪ ]9.05, 9.10] ∪ [9.25, 10.00]

Lastly, let us focus on J ∧ M ; according to the last equalities, the state of knowledge V*t
about J ∧ M when considering a given instant t is

V* t(J ∧ M) = 

inconsistent ∀ t ∈ [9.00, 9.05]

true ∀ t ∈ [8.55, 9.00[

false ∀ t ∈ [8.00, 8.35] ∪ ]9.05, 9.10] ∪ [9.25, 10.00]

unknown ∀ t ∈ ]8.35, 8.55[ ∪ ]9.10, 9.25[

which is represented in Figure 1.

These results can be obtained using refutation by resolution :

(i) computing the maximal set of instants τ such that G . (J ∧ M  τ) comes down to

compute Incons (G ∪ {(¬J ∨ ¬M  T)}). Let us consider the clausal form C of G where

the last formula ((¬J ∨ ¬M) ∧ (J ∨ M) [9.00, 9.10]) has been transformed into

{ (¬J ∨ ¬M [9.00, 9.10]), (J ∨ M [9.00, 9.10])} ; let us then add (¬J ∨ ¬M T) to C
and let us find all deductions of the empty clause (Figure 2).

(¬ J  ∨  ¬ M [8,10]) (J  [8,9.05])

(¬ M  [8,9.05]) (M  [8.55,10])

(⊥  [8.55,9.05])

Conclusion : NG*(J ∧ M) = [8.55, 9.05]

Figure 2



(J  [8,10]) (¬ J  [9.25,10]) (¬ M  ∨  ¬J  [9,9.10]) (¬ M  [8,8.35])

(⊥  [9.25,10]) (¬ M  [9,9.10])

(¬ M  [8,8.35]  ∪ [9,9.10]) (M  [8,10])

(⊥  [8,8.35]  ∪ [9,9.10])

(⊥  [8,8.35]  ∪ [9,9.10]  ∪ [9.25,10])

Conclusion : NG*(¬J ∨ ¬M) = [8, 8.35] ∪ [9.00, 9.10] ∪ [9.25, 10.00]

Figure 3

(ii) computing the maximal value τ such that G . (¬J ∨ ¬M  τ) comes down to compute

Incons(G ∧  (J ∧  M  T)) where (J ∧  M  T) is equivalent to the two clauses
{(J T), (M T)} (Figure 3).

Remark
Among worth-considering extensions, we may think of existentially quantified time

instants, which would enable us for instance to deal with clipping problems like the
following one : "ϕ and ψ cannot be simultaneously true", i.e. (¬ϕ ∨ ¬ψ  T), "ϕ is true in the

interval [t1,x]", where t1 is a constant and x is unknown, i.e. ∃x (ϕ [t1,x]), "ψ is true in the

interval [y,t2]", where t2 is a constant and y is unknown, i.e. ∃y (ψ [y,t2]), where t1 < t2.

We want to establish that we should have x < y. Indeed resolution yields (⊥ [y,x]), i.e. the

knowledge base is consistent only if y > x, as well as (¬ϕ [y,t2]) and (¬ψ [t1,x]). This
extension requires symbolic treatment of time periods.

5. A Reified Temporal Logic : the Fuzzy Case 

It is not always realistic to assume that the interval where things happen are always
perfectly defined. In the previous section "John left the office between 9.05 and 9.25" meant
that it is completely possible that he left it at any time between 9.05 and 9.25, all instants
being equally possible, and that it is completely impossible that he left his office at a time
outside this interval. On the contrary we could wish to express that John left the office at
"about 9.15", meaning, for example, that all times between 9.10 and 9.20 are completely
possible, all times before 9.05 and after 9.25 completely impossible and, the closer to 9.05
(resp. 9.25) the less possible John left the office. This leads us to allow the interpretation of
pieces of knowledge as formulas being certain during a fuzzy time interval (Dubois and
Prade [15]), or more generally a fuzzy subset of the temporal scale.

The new structure is now defined as follows : T is still a temporal scale ; L = [0,1]T

is the lattice of fuzzy subsets of T, equipped with the fuzzy inclusion ordering : if ̀τ and ̀τ'



are two fuzzy subsets of T defined by their membership functions µ `τ and µ `τ' from T to

[0,1], then
`τ Û ̀τ ' iff ∀ t ∈ T, µ `τ(t) ≤ µ `τ'(t)

The lattice operators on L are the fuzzy intersection, union and complementation operators
which are defined respectively by

µ `τ ∩ ̀τ '(t) = min (µ `τ(t), µ `τ'(t))

µ `τ ∪ τ̀'(t) = max (µ `τ(t), µ `τ'(t))

µä`τ(t) = 1 – µ̀τ(t)

(L, ∩, ∪) is a complete distributive lattice but it is not Boolean since generally `τ ∪ ä`τ ≠ T and

`τ ∩ ä`τ ≠ Ø.

Now, the following definitions : temporal possibility distribution, temporal
possibility function, temporal certainty function, timed (certainty-valued) formula, timed
knowledge base , inconsistency lapse, logical consequence are formally the same as the ones
given in Section 3. Incons(F) is now a fuzzy subset of T, meaning that among inconsistent
instants, some are more inconsistent than others.

The resulting logical model is a fuzzy reified temporal logic that we shall name fuzzy
timed logic. Let N be a temporal certainty function in the fuzzy case. N(ϕ) is a (non

necessarily normalized) fuzzy subset of T. Then, given a formula ϕ and an instant t, the

membership degree of t to N(ϕ) estimates to what extent ϕ is certainly true at time t. Note
that this degree is meaningless if it is not strictly greater than the membership degree of t to
the inconsistency lapse of the knowledge base (see Section 2). Considering a fixed time t,
the mapping ϕ É µN(ϕ)(t) defines a necessity measure, satisfying the axioms given in

Section 2. Thus, an intuitive way to consider a fuzzy temporal necessity function is to view it
as a collection (indexed by time instants of T) of necessity measures Nt. Similarly, a fuzzy

timed knowledge base F = {(ϕi  ̀τi), i = 1,n} can be viewed as a collection of possibilistic

knowledge bases Ft = {(ϕi µ `τi(t)), i = 1,n}, indexed by t ∈ T, where Nt(ϕi) ≥ µ `τi(t). In

other words, fuzzy timed logic is also a timed possibilistic logic.

The deduction and refutation theorems still hold in fuzzy timed logic, as well as the
resolution procedure. Let us point out that in order to select the non-trivial part of a deductionF . (ϕ ̀τ) we have to know Cert(ϕ ; F), Incons(F) and then to compute the fuzzy set-

difference Cert*(ϕ ; F) = Cert(ϕ ; F) \ Incons(F). There are several existing definitions for
this operation [12]. The question is how to define the fuzzy set-difference in accordance with
the algebraic structure of ([0,1]T, max, min, 1 – (⋅)) while preserving intuitive properties.
Especially, the non-trivial deduction in fuzzy timed logic must be in accordance with non-
trivial deduction in possibilistic logic. If F  is a possibilistic knowledge base with
Incons(F) = α > 0, then the non-trivial deduction operation |≈ is defined as follows

F

 

 |≈ (ϕ β) if and only if F

 

 

 

.

 

 

 

(ϕ β) with β > αF

 

 |≈ (ϕ 0) otherwise



Back to fuzzy timed logic viewing α as µIncons(F

 

)(t) and β as µCert(ϕ;F

 

)(t) for some

t ∈ T, the fuzzy set difference induced by the treatment of non-trivial deduction in the static
case is such that

µCert(ϕ;F

 

) \ Incons(F

 

)(t) = µCert(ϕ;F

 

)(t) Ô

 

 µIncons(F

 

)(t)

with β Ô

 

 α = 0 if β ≤ α and β Ô

 

 α = β otherwise. This definition has nice properties, i.e.

the non-trivial part Cert*(ϕ ; F

 

) verifies the two properties

• if Cert(ϕ ; F

 

) Û

 

 Incons(F

 

) then Cert*(ϕ ; F

 

) = Ø

• Cert(ϕ ; F

 

) ∪ Incons(ϕ ; F

 

) = Cert*(ϕ ; F

 

) ∪ Incons(ϕ ; F

 

)

Cert*(ϕ ; F

 

) is even the smallest fuzzy set that satisfies the above equality, i.e. β Ô

 

 α =

inf{x  | max(x,α) = max(β,α)}.  This fuzzy set difference operation has been introduced in

Dubois and Prade [12], noticing that in the crisp case B \ A = Á

 

{E | B Û

 

 A ∪ E},  which

yields β Ô

 

 α = inf{x, β ≤ max(α,x)} as well.

Example 3

This example is a fuzzification of Example 2. Consider the following pieces of
information

John stayed in the office until about 9.15 and certainly not afterwards
Mary stayed in the office from about 8.45 and certainly not before

Between 9.00 and 9.10 (strictly) there was exactly one person (among John and Mary)
in the office

Let us consider that the fuzzy temporal intervals representing "about t0" are "trapezoïdal"
fuzzy intervals (see Dubois and Prade [14]) of the form shown in Figure 4 (here for t0 =
8.45 and t0 = 9.15), meaning that if an event occurs at "about t0", it is completely possible

1

0 t

µ"about t0"(t)

t0 – 0.10

t0 – 0.05

t0 + 0.10t0

t0 + 0.05

Figure 4



that it actually occurs between t0 – 5 mn and t0 + 5 mn, completely impossible that it actually
happens before t0 – 10 mn or after t0 + 10 mn, and that the membership function of the
possibility it actually happens at time t is linearly increasing on [t0 – 0.10, t0 – 0.05] and
linearly decreasing on [t0 + 0.05, t0 + 0.10].

In a manner similar to Examples 1 and 2, the logical translation of the previous
sentences gives the set of fuzzy temporal necessity-valued formulas

9.109.05

where τ1 is(J  τ1)

( `τ1 is the fuzzy set of instants necessarily before "about 9.15", i.e. µ `τ1(t) =

inft≥s 1 – µ"about 9.15"(s) which is the necessity measure of "t before s" (t < s), where
possible values of s are restricted by µ"about 9.15" [15]).

9.259.20

where τ2 is(¬ J       )τ2

8.558.50

(M  τ3) where τ3 is

8.408.35

where τ4 is(¬ M     )τ4

9.109.00

where τ5 is((¬ J ∨ ¬ M) ∧ (J ∨ M)      )τ5

Let us first compute the fuzzy temporal possibility distribution πH* :

πH*(J ∧ M) = ̀Äτ2 ∩ ̀Äτ4 ∩ ̀Äτ5

πH*(J ∧ ¬M) = ̀Äτ2 ∩ Ä̀τ3

πH*(¬J ∧ M) = ̀Äτ1 ∩ Ä̀τ4

πH*(¬J ∧ ¬M) = ̀Äτ1 ∩ `Äτ3 ∩ `Äτ5



These objects are fuzzy subsets of T (they cannot be named "fuzzy intervals" since they are
generally not convex). Incons(H) is the fuzzy complementary of the union of these four
fuzzy subsets, i.e.

  Incons(H) = πH*(J ∧ M) ∪ πH*(¬J ∧ M) ∪ πH*(J ∧ ¬M) ∪ πH*(¬J ∧ ¬M)

    = (̀τ2 ∪ ̀τ4 ∪ ̀τ5) ∩ (̀τ2 ∪ ̀τ3) ∩ (̀τ1 ∪ ̀τ4) ∩ (̀τ1 ∪ ̀τ3 ∪ ̀τ5)

    = (̀τ2 ∪ ̀τ4 ∪ ̀τ5) ∩ ̀τ3 ∩ ̀τ1 ∩ (̀τ1 ∪ ̀τ3 ∪ ̀τ5)

    = ̀τ1 ∩ ̀τ3 ∩ (̀τ2 ∪ ̀τ4 ∪ ̀τ5) (using the peculiarities of the τi's)

    = (̀τ1 ∩ ̀τ2 ∩ ̀τ3) ∪ (̀τ1 ∩ ̀τ3 ∩ ̀τ4) ∪ (̀τ1 ∩ ̀τ3 ∩ ̀τ5)

    = ̀τ1 ∩ ̀τ3 ∩ ̀τ5 = ̀τ1 ∩ ̀τ5 (using the peculiarities of the τi's)

which is represented in Figure 5.

Let us now compute NH*(J) and NH*(M).

      NH* (J) =  πH*(¬J ∧ M) ∪ πH*(¬J ∧ ¬M) = (τ1 ∩ τ4) ∪ (τ1 ∩ τ3 ∩ τ5)

= (̀τ1 ∪ ̀τ4) ∩ (̀τ1 ∪ ̀τ3 ∪ ̀τ5) = ̀(τ1 ∪ ̀τ4) ∩ T = ̀τ1

whose non-trivial part is Cert*(J) = `τ1 \ Incons(H).

NH*(M) = ( `τ2 ∪ ̀τ3) ∩ (̀τ1 ∪ ̀τ3 ∪ ̀τ5) = τ̀3

NH*(J ∧ M) = NH*(J) ∩ NH*(M) = `τ1 ∩ ̀τ3

NH*(¬J ∨ ¬M) = Ä

 

πÄ

 

H

 

Ä

 

* Ä

 

(Ä

 

 JÄ

 

 ∧Ä

 

 Ä

 

M)   =   ̀τ2 ∪ ̀τ4 ∪ ̀τ5.

NH*(J ∧ M) and Cert*(J ∧ M) = NH *(J ∧ M) \ Incons(H

 

) are represented on

Figure 6.1. NH*(¬J ∨ ¬M) and Cert*(¬J ∨ ¬M) are represented on Figure 6.2. On Figure

6.3. we have represented Cert*(J ∧ M) and Poss*(J ∧ M) = Cert*(¬J ∨ ¬M) which is the

fuzzy set of time instants where J ∧ M is possibly true ; it can be seen on the Figure 6.3 that

Poss*(J ∧ M) contains Cert*(J ∧ M), which is in accordance with our intuition.

8.40 8.50 9.00 9.10 9.20 9.30

τ5τ1τ3

0

1

Figure 5 :                                       (       ) Incons(H) = τ1 ∩ τ5



8.40 8.50 9.00 9.10 9.20 9.30

Cert*(J ∧ M)

NF* (J ∧ M) = τ1 ∩ τ3
Incons(H) = τ1 ∩ τ5

1

0

Figure 6.1 : Cert*(J ∧ M)

8.40 8.50 9.00 9.10 9.20 9.30

N   *(¬ J ∨ ¬ M)F
Cert*(¬ J ∨ ¬ M)Incons(H)

1

0

Figure 6.2 : Cert*(¬J ∨ ¬M)

8.40 8.50 9.00 9.10 9.20 9.30

Poss*(J ∧ M) Cert*(J ∧ M) Cert*(¬ J ∨ ¬ M)

1

0

Figure 6.3 : Poss*(J ∧ M)

Lastly, let us check that Incons(H), NH *(J ∧ M) and NH *(¬J ∨  ¬M) can be
computed using refutation by resolution. This is done in Figures 7, 8, 9



• Figure 7 : collecting the fuzzy sets attached to ⊥ leads to

Incons(H) = (̀τ1 ∩ ̀τ2) ∪ (̀τ3 ∩ ̀τ4) ∪ (̀τ1 ∩ ̀τ3 ∩ ̀τ5) ∪ (̀τ2 ∩ ̀τ4 ∩ ̀τ5)

= Ø ∪ Ø ∪ (̀τ1 ∩ ̀τ3 ∩ ̀τ5) ∪ Ø

= ̀τ1 ∩ ̀τ3 ∩ ̀τ5 = ̀τ1 ∩ ̀τ5

(J  τ1)

(⊥  τ1 ∩ τ2) (M  τ3) (J ∨ M  τ5)

(⊥  τ3 ∩ τ4) (J  τ4 ∩ τ5)(⊥  τ1 ∩ τ3 ∩ τ5)

(⊥  τ2 ∩ τ4 ∩ τ5)
Ø

Ø

Ø

(¬J      )τ2 (¬ J ∨ ¬ M     )τ5

(¬ M                )τ1 ∩ τ5 (¬ M      )τ4

(¬ J      )τ2

Figure 7 : Incons(H)

• Figure 8 : (¬J ∨ ¬M T) has been added to H, and it leads to NH*(J ∧ M) = ̀τ1 ∩ ̀τ3

(J  τ1)

(M  τ3)

(⊥  τ1 ∩ τ3)

(¬ J ∨ ¬ M  [8,10])

(¬ M     )τ1

Figure 8 : NH*(J ∧ M)

• Figure 9 : (J T) and (M T) have been added to H and it leads to NH * (¬J ∨  ¬M) =

`τ2 ∪ ̀τ4 ∪ (̀τ3 ∩ ̀τ5) = ̀τ2 ∪ ̀τ4 ∪ ̀τ5.

(J [8,10]) (M [8,10)]

(⊥  τ2) (M  τ3) (⊥  τ4)

(⊥  τ3 ∩ τ5)

(⊥  τ2 ∪ τ4 ∪ (τ3 ∩ τ5))

(¬ J      )τ2 ¬ J ∨ ¬ M      )τ5 (¬ M      )τ4

(¬ M      )τ5

Figure 9 : NH*(¬J ∨ ¬M)



On the whole, timed logic makes possible to compute the fuzzy set of instants when
we are more or less certain that a proposition ϕ is true, and the fuzzy set of instants when we

are more or less certain that ϕ is false. By complementation, this latter fuzzy set yields the

fuzzy set of instants when ϕ is more or less possibly true (a fuzzy set which includes the first

mentioned one, since Nt(ϕ) > 0 entails ∏t(ϕ) = 1- Nt(¬ϕ) = 1). Then from these two fuzzy

sets, defined by Nt(ϕ) and ∏t(ϕ) when t varies, we can compute the fuzzy bounds of

intervals when ϕ is true ; see [15] for the definition of these bounds. Considering now two

formulas ϕ and ψ, describing events, we can then compute to what extent it is certain (in the

sense of a necessity measure) that, for instance, ϕ takes place before ψ, using the extension
of Allen's [1] interval relationships to fuzzily bounded intervals ; see [15] for details. Note
that a piece of information like "it is somewhat certain that ϕ takes place before ψ" can be
easily handled in standard possibilistic logic.

5. Conclusion

In this paper we have provided the basis for a reified temporal logic with a semantics,
while handling (graded) uncertainty. Timed possibilistic logic, as presented here, has some
limitations. Let us mention some of them. In our logic we cannot presently represent
information like "there exists at least an instant t in the time period τ where it is more or less

certain that ϕ is true". The evaluation of such a statement would require the use of a quantity

like supt∈τ Nt(ϕ). We cannot either express that for instance a sentence cannot become true

before another becomes false. Hence we cannot express symbolic precedence constraints as
in Ghallab and Mounir-Alaoui [23]. So the language is not rich enough to formulate planning
problems. The logic described in this paper is thus more adapted to handle timed information
such as observations issued from a dynamic world and whose reliability decreases with time.

Lastly, reified temporal logics are basically very simple and have a limited expressive
power with respect to modal temporal logic where past and future can be explicitly dealt
with. Since representations of possibilistic logic in a (multi-) modal logic framework have
been already explored (Dubois, Prade and Testemale [18], Fariñas del Cerro and Herzig
[22]), we may think of incorporating some possibilistic logic ideas in modal temporal logics
for grading modalities and still enhance their expressive power.

Another problem that can be addressed in a structure similar to possibilistic logic is
the case of a knowledge base whose contents stems from several sources. To do that, we
might change the temporal axis T into a set S of sources, and define N(ϕ) as the subset of

sources which claim that ϕ is certainly true. The same results as obtained here would be

arrived at. Besides, let us replace T by 2A, where A is a set of assumptions ; then L = 22A is
the set of all sets of assumptions, which may be interpreted as the set of all disjunctions of
conjunctions of assumptions, or, in the Assumption-based Truth Maintenance Systems
(ATMS) terminology [7], as the set of all labels, a label being a disjunction of environments.
This idea of viewing ATMS as a particular Boolean-valued logic has been studied by
Ginsberg [24].
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