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1. Introduction

Possibilistic logic is a logic of uncertainty tailored for reasoning under incomplete evidence
and partially inconsistent knowledge. At the syntactic level it handles formulas of propositional
or first-order logic to which are attached numbers between 0 and 1, or more generally elements
in a totally ordered set. These weights are lower bounds on so-called degrees of necessity ©
degrees of possibility of the corresponding formulas. The degree of necessity (or certainty) of a
formula expresses to what extent the available evidence entails the truth of this formula. The
degree of possibility expresses to what extent the truth of the formula is not incompatible with
the available evidence.

At the mathematical level, degrees of possibility and necessity are closely related to fuzzy
sets (Zadeh, 1965, 1978a), and possibilistic logic is especially adapted to automated reasonin:
when the available information is pervaded with vagueness. A vague piece of evidence can be
viewed as defining an implicit ordering on the possible worlds it refers to, this ordering being
encoded by means of fuzzy set membership functions. Hence possibilistic logic is a tool for
reasoning under uncertainty based on the idea of (complete) ordering rather than counting,
contrary to probabilistic logic.

To figure out how possibilistic logic could emerge as a worth-studying formalism, it might
be interesting to go back to the origins of fuzzy set theory and what is called "fuzzy logic".
Fuzzy sets were introduced by Zadeh (1965) in an attempt to propose a mathematical tool
describing the type of model people use when reasoning about systems. More particularly,
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Zadeh focused on the presence of classes without sharp boundaries in human-originatec
descriptions of systems, and fuzzy sets are meant to represent these classes ; the idea is to tL
class membership into a gradual notion instead of the usual all-or-nothing view.

Then a fuzzy set F on a referential @eis simply described by a membership functign
that maps elements of Q to the unit interval [0,1], O standing for non-membership, 1 for
complete membership, and numbers in between for partial membership. The choice of the unit
interval for a membership scale L contains some arbitrariness. It has been motivated by the fac
that set characteristic functions take values in the pair {0,1} usually. Clearly any sub-interval of
the reals can be used instead, includingself, once completed byos-and +eo. But more
abstract scales might fit as well such as any finite chain, any totally ordered set L. Clearly, a
real interval is the most simple example of a totally ordered set L such #hatL, b [ L,
a<b, therdcOL, a<c<b. This property, (which is not satisfied by a finite chain) ensures a
smooth membership gradedness. The particular choice of the unit interval also makes sense i
the scope of comparing fuzzy sets and probability (e.g. Dubois and Prade, 1989).

Based on the notion of membership function, it is easy to extend many mathematical
definitions pertaining to sets over to fuzzy sets. Set-theoretic operations for fuzzy sets were
thus defined as follows (Zadeh, 1965)

union FO G : HEOG = Max{Up,HG) (2)
intersection M G:  HPEAG = MINMUEMNG) (2)
complementatior : UE=1-pF 3)

Note that (1) and (2) just require a lattice structure for the membership scale (Goguen, 1967)
while (3) further requires some order-reversing mapping on the lattice. The justification for
these definitions in the unit interval came a long time later (e.g. Dubois and Prade (1985a) for a
survey). Subsequently relations were extended into fuzzy relations, especially equivalence anc
ordering notions were turned into so-called similarity and gradual preference relations (Zadeh,
1971).

Considering the usual assimilation between predicates and their extensions as sets, it is nc
surprizing that fuzzy set-theoretic operations were quickly interpreted as logical connectives. In
other words, the natural connections between set theory and logic has led to a similar
connection between fuzzy set theory and multiple valued logic at least at the naive level. This
state of facts prompted a revival of multiple-valued logic inspired by the birth of fuzzy sets, and
the name "fuzzy logic" was coined in the seventies by R.C.T. Lee (1972) who tried to extend
the resolution rule to a multiple-valued logic that handle clausal forms by means of the three
truth-functional basic fuzzy set connectives given above. This path was followed later on by



Mukaidono (1982), and gave birth to logic programming tools (Mukaidono et al., 1989 ; Orci,
1989 ; Ishizuka and Kanai, 1985). Another important trend in the multiple-valued logic view of
fuzzy sets stems from a seminal paper by J. Goguen (1969). In this work, directly inspired by
Lukasiewicz logic, the author points out the difficulty to produce a syntax for the logic of vague
concepts, when this syntax is in fact the one of classical logic. Ten years later Pavelka (1979)
found a solution to Goguen's problem by introducing truth values in the language (see also
Novak, 1990). Apart from these two "schools" of fuzzy logic, still other works have been
published on the relationship between multiple-valued logics and fuzzy sets (see Dubois, Lang
and Prade (1991a) for a survey).

Interestingly enough, Zadeh himself did not participate to these logical developments, but
started focusing on the representation of vague aspects in natural languages. In his (1975a) h
introduced the concept of fuzzy restriction, as a fuzzy relation that restricts the possible values
of a vector of variables in a flexible way, and developed a calculus of fuzzy relations which
extends all basic notions of constraint propagation, and can be viewed as a pioneering work ir
hypergraph-based methods for reasoning under uncertainty (e.g. Shafer and Shenoy, 1990
Quite at the same time, fuzzy truth-values were proposed as a means to evaluate the truth of
vague statement, in the face of another vague statement that is taken as the reference. Zad:
(1975b) names "fuzzy logic" a logic that handles vague statements and fuzzy truth-values. At
this point a misunderstanding apparently grew up between Zadeh and the community of
logicians. "Fuzzy logic" after Zadeh was severely criticized (Morgan and Pelletier, 1977 ;
Haack, 1979) for basically two reasons : first, Zadeh's fuzzy logic was claimed not to be a
logic. Indeed it has no syntax, and the problem of developping a syntax for a logic of vague
concepts has indeed never been addressed by Zadeh who adopted a computational view ¢
fuzzy reasoning, based on non-linear programming. A second critique addressed the usefulnes
and meaningfulness of fuzzy truth-values, and the question of truth-functionality. Zadeh's
works were viewed as a debatable attempt to extend truth-functional logics beyond classical
logic, and fuzzy truth-values as a strange and gratuitous extension of numerical truth-values,
whose meaning has ever been controversial for logicians themselves. Apparently, Zadeh's
main thrust, namely that a truth-value was a local notion (Bellman and Zadeh, 1977), pertaining
to a state of knowledge itself expressed in fuzzy terms, was missed, perhaps due to the tern
"fuzzy logic" that was used by other researchers to denote multiple-valued logic.

In his (1978a), Zadeh introduced the measure of possibility as a scalar index that evaluates
the consistency of a fuzzy proposition with respect to a state of knowledge expressed by mean:
of a fuzzy restriction. Attempts at introducing a non-probabilistic view of uncertainty, similarly
to Zadeh's approach can be traced back to a proposal by Shackle (1961) which was neve
completely formalized. The notion of fuzzy restriction corresponds to a radical change in the
semantics of the membership function. A fuzzy restriction is a fuzzy pessiblevalues, and



its membership function is thus called a possibility distribution. Soon after, the dual notion of
certainty (Zadeh, 1979a) or necessity (Dubois and Prade, 1980) was introduced as a scala
evaluation of the strength of entailment of a fuzzy proposition from a given fuzzy restriction. At
this point, it became patent that Zadeh's "fuzzy logic" was not just another multiple-valued
logic, but rather an approach to reasoning under uncertainty and incomplete knowledge
described by fuzzy restrictions — what Zadeh (1979b) called "approximate" reasoning.
Moreover the basic scalar evaluations, possibility and necessity, are not truth-functional.
Possibility and necessity valuations could then play a role similar to probabilities in logic ; in
particular, they could come on top of a classical logic language. Instead of considering a
probability distribution on a set of possible worlds (or interpretatiorm)saibilitydistribution

can be considered. The result is possibilistic logic. As it will be seen, a possibility distribution
on a set of possible worlds expresses a preference ordering among the worlds. Thus the
semantics of possibilistic logic departs from the semantics based on a similarity relation
between worlds, recently proposed by Ruspini (1991). Ruspini's semantics rather looks as &
fuzzy set extension of the logic of rough sets (Farifias del Cerro and Orlowska, 1985) which
implements a semantics induced by an equivalence relation modelling indiscernibility (Pawlak,
1982).

This paper is organized as follows : Section 2 pursues the overview by introducing
background material on fuzzy set and possibility theory, including comparative possibility
relations that underlie possibility and necessity measures. Section 3 forms the main body of the
paper and presents formal aspects of a fragment of possibilistic logic where formulas are valuec
by a lower bound on their degree of necessity. It includes an axiomatization and a refutation
method based on extended resolution that is liable of implementation on a computer and
supports partial inconsistency. The remainder of Section 3 lays bare the existing links between
possibilistic logic and non-monotonic logics on the one hand, and belief revision on the other
hand. It is indicated that possibilistic logic can be cast in the frameworks of preference logics
after Shoham (1988), counterfactual logics after Lewis (1973) and epistemic entrenchment
theory after Gardenfors (1988). In the presence of partial inconsistency, possibilistic logic
behaves as a cumulative non-monotonic logic whose properties have been suggested b
Gabbay (1985), and studied by Makinson (1989) and Kraus et al. (1990). Section 4 considers
a richer possibilistic logic where formulas can be weighted by a lower bound on possibility or
necessity degrees. Then it briefly sketches some other potentially interesting extensions of
possibilistic logic, whereby the valuation set may become partially ordered, the weights may
become variable or convey the interpretation of costs, and the predicates may become vague
Section 5 describes some applications of possibilistic logic to truth-maintenance systems,
inconsistency handling in logical data bases, discrete optimization and logic programming.



2. Possibility theory

Let x be a variable taking its values in a set U. A possibility distributjoattached to x

describes a state of knowledge about the value of x. This value, although unknown, is
supposed to be uniquey is a mapping from U to the unit interval, such thgiu) = 1 for at

least one value u. The following conventions are adopted

T (u) = 0 means that x = u is impossible ;
T (u) = 1 means that x = u is completely allowed ;
T (u) > Ty (U') means that x = u is preferred to x = u'.

The normalization requiremerg(u) = 1 means that in U there is at least one value of x that is
completely allowed. Zadeh (1978a) explains how fuzzy sets give birth to possibility
distributions. For instance the sentence "John is tall* can be modelled by means of a fuzzy set f
on a set of sizes, which represents the set of possible values of John's size. Here U is the set "
sizes, x is the variable representing John's size, F the fuzzy set representing "tall" in a given
context, and the possibility distributiar is taken as equal {or. Following Zadeh (1979b),

the fuzzy set F is viewed as a fuzzy restriction "which serves as an elastic constraint” on the
value that may be assigned to the variable x.

In this view the sentence "John is tall" is considered as a piece of incomplete evidence, and
IS supposed to be the only available information about x. The advantage of using a fuzzy set in

the modelling of "tall" is to convey the information that if u > u', u is a better potential value for
X than u', (ifptg is an increasing membership function). More generally, the preference

expressed by means of the degree of possiuitiu) reflects the closeness of u to the

prototypes of the fuzzy set F. This view completely differs from another interpretation of "John
is tall" where the value of x iknown (say x = 1.78 m) and "tall" is used as a linguistic
substitute to this value. In this latter situation, a "degree of truth" of "John is tall* can be
computed (apl(1.78)) if needed, because the underlying information is complete. This is the
case of the multiple-valued logic understanding of fuzzy logic, where sentences can be attache(
degrees of truth ; however there is a danger to obtain the paradoxical situation where given &
membership function and a degree of truth, the size of John may be recomputed. This parado:
has often been the source of criticisms addressed to fuzzy set theory. It is completely obviatec
when a proposition like "John is tall", taken as a piece of evidence, is modelled as an elastic
constraint.

Possibility distributions are liable of interpretations that differ from membership functions of
fuzzy sets. Probabilistic interpretations include upper probability bounds, consonant random



sets (Dubois and Prade, 1988) and likelihood functions (Smets, 1982), and infinitesimal
probabilities (Spohn, 1988).

Let iy andtty be two possibility distributions attached to x. Thag,is said to be more
specific thantty (Yager, 1983) if and only ifty < 1ty. Specificity refers to the level of
precision of a possibility distribution. Whem, < 1Ty, T is more informative thamry.
Especially, ifug O U, Tik(ug) = 1 whilett(u) = O for u# ug, the state of knowledge is said
to be complete (we know that x p)u Contrastedly, a state of total ignorance is easily
expressed as(u) = 1,0 ud U. Of importance in possibility theory is the principle of
minimum specificity which says that given a set of constraints restricting the valuegpf X,
should be defined so as to allocate the maximal degree of possibility to éadh, in

accordance with the constraints. This principle points out that given a piece of evidence of the
form "x is F" where F is a fuzzy set, the equaliy = pg is only a consequence of the

constraintr < U acting on the values of x, together with the principle of minimal specificity.
Similar informational principles can be encountered in several non-monotonic inference
systems (e.g. in Pearl (1990) with the idea of compact ordering of defaults, with the rational
closure of a conditional knowledge base (Lehman, 1989), or when worlds are assigned to the
smallest sphere in a sphere system in conditional logic (Lamarre, 1992).

More generally, Zadeh's theory of approximate reasoning considers that the available
information pertaining to a situation is stored in a data base, and involves a,set, {,} of

variables that take their values op,Ws, ..., Un. The data base contains the representation of
pieces of information that define fuzzy restrictions onxWs x... x Up. Zadeh has devised a

method that systematically translates several kinds of natural language sentences into possibilit
distributions on Y x Uo x... x Up. This translation method called PRUF (Zadeh, 1978b) is

not described here ; for details see also Dubois and Prade (1980, 1991d). For the sake ©

simplicity, we shall assume that the available knowledge is described by means of m possibility
distributions 1tq, ..., T4y, that model m pieces of available knowledge in a data base D.
Answering a query may consist in computing the possibility distribmt)'@mat represents the

fuzzy domain of possible values gf Approximate reasoning is understood as a procedure
that computesty; from the knowledge ofty, ..., Ty,. This procedure involves three basic

steps (Zadeh, 1979b) :

— cylindrical extension : ify is a fuzzy restriction on the Cartesian prodkgtik Uk, the
cylindrical extension® of Tj on U = Uj x U x... x Up is
cr(u) =1g(uK)

where u = (k,Ukg), Uk is a vector of values of variableg,xk O K, uk is the
complementary vector of values of variablgsk K ;



— combination : the least specific possibility distribution inducedpym, ..., Tim is
TD = Minj=1 m CTy 4)

which represents the state of knowledge contained in @ =1, ..., Ty} ;

— projection : the marginal possibility distributia)u;gi attached to the variablg is defined by

Ty (Uj) = SURy ket TD(UL U, ... Uy) = SURy ket MiNi=1 m CT(U, ..., Un).

This kind of procedure for approximate reasoning involving cylindrical extension, combination
and projection operations has been applied to other theories of uncertain reasoning such a
belief functions (Shafer, 1976 ; Shafer and Shenoy, 1990) with a different combination step.
Clearly it offers a semantics for approximate reasoning but does not presuppose the existenc:
of a syntax.

Note that in (4), it may happen thagt(u) < 1,0u. Thenr is said to be subnormalized,
and subnormalization corresponds to a lack of consistency betjeen, ..., Tyy. The
degree of consistency of D is cons(D) = gup(u). In Section 3, the proposed framework

will cope with this situation.

Another natural type of query to a fuzzy data base D, is to check whether a given statement
S is a consequence oft{, T, ..., in}. Let ig be the possibility distribution which

represents the fuzzy restriction on U induced by the statement S. Zadeh (1979b) introduces the
notion of semantic entailment in possibility theory as follows : S follows from D =
{mq, T, ..., iy} if and only if p < g wheremp is given by (4). In other words, the
consequences of D should not be more specific than D.

The fuzzy truth-value of S is more generally defined as a possibility distribgtion [0,1]

such that (Zadeh, 1978b)
T (1) = SUR):t=mig(u) TD(Y)

This formula computes the fuzzy set ig(D) of the possible truth-values of S if the available
information D were precise, and in accordance with the constraipts.{, Tyn}. It is easy to
verify that

DentailsS < D < Tg - T <t

D entailsS = m<l-ng = TR{E)<1-t



where S denotes the statement opposite to S, represented byg1Fhe right-hand side
inequalities can thus be interpreted as follows : the fuzzy truth-vakiesh thatg(t) <t mean
“true”, while the fuzzy truth-values such tmg(t) < 1 — t mean "false". Indeedris = T then

T (t) = t, if Cu, ig(u) = t, and iffig = 1 —1p, thentg(t) = 1 — t if Cu, 1ig(u) = t. Whenrg is
the characteristic function of a subset A ofrt(t) = 0,0 t # 0,1 since S cannot be but true or

false. Moreover we can compute

(1) = suppA Tp(u)
T(0) = sugpa ().

These indices correspond to the degrees of possibility that S is true and that S is false. Note the
the fuzzy truth value is local in the sense that it is relative to the state of knowledge described
by D. (1) corresponds to the notion of possibility measure af i, introduced by Zadeh
(1978a). A possibility measure is a set funcfipthat attaches to each subsetlA) a number

[1(A) O [0,1]. The basic axioms of a possibility measure are

MN@)=0 ;MU)=1
Mo Ai) = sugo T(A}) 5)

for any index set I. A possibility measure derives from a possibility distribotiamhich
verifiesJ u O U, miw(u) =[1({u}). Especially we can write

[1(A) = sugyoA Tix(u) (6)

[1(A) expresses to what extent there is a valieAithat may stand as a value of x. The dual
set function is called a necessity measure, is denoted N, and is defined by (Dubois and Prade
1980)

N(A) = 1 -[1(A) = infyga 1 —Ti(u) @)

whereA is the complement of A. N(A) evaluates to what extent all possible values of x belong
to A, i.e. to what extent one is certain that x belongs to A. A third quantity has been recently
emphasized by the authors (Dubois and Prade, 1992a), namely



A(A) = infyga Ti(U) (8)

which evaluates to what exteait elements in A are possible values for x. Noticeable properties
of possibility and necessity measures are as follows

N(A n B) = min(N(A),N(B)) ; [1(A O B) = max(1(A).[1(B)) 9)

but we only have inequalities N(B B) = max(N(A),N(B)),[1(A n B) < min([1(A),[1(B))
generally. Moreover

min(N(A),N(A)) =0 ; max[](A),[1(A)) = 1. (10)

These three degrees of uncertainty enable uncertainty-qualified statements of the form "x is
A is possible, certain, etc..." to be modelled in terms of sets of possibility distributions.

Especially, the piece of evidence "x is A is at leasertain” wherex [J [0,1], is equivalent
to the set of possibility distributiomssuch that

N(A) = infya 1 -T(U) = o (11)

It is easy to see that this set of possibility distributions has a greatest elggent
max@{a, 1 —a) wherepp is the characteristic function of A. By virtue of the principle of

minimum specificity, this greatest element is the best representation of the piece of information.

Contrastedly, the pieces of information "some u in A is at [@@stssible for x" and "all u
in A arey-possible for x", can be modelled by the sets of possibility distributions
respectively defined by the following inequalities :

[1(A) = sugoA Tu) =B (12)
A(A) = infypa T(u) 2 ¥ (13)

The maximal element of each set of possibility measures expresses the state of total ignoranc
m(u) = 1,0u, and is obviously not informative. Indeed knowing that some or all u in A are
possible for x does not prevent elementdifirom being possible too. Hence there is no
unique possibility distribution which may be a good representation of any of these sets. Note
that[](A) = A(A) so thatA(A) =y is more restrictive thaf](A) = y. In possibilistic logic we
consider possibility qualified statements of the fomi®) >  that express that A is consistent

with the available knowledge to some extent. Note that possibility distributions that satisfy (13)
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are such thatt(u) = min(y, pa(u)), Cu. Such a lower bound do not even exist with (12). At

any rate, (12) and (13) must be represented by means of a family of possibility distributions,
and not a single one as for (11).

When possibility distributions do not derive from probabilistic knowledge, the use of the
interval [0,1] to model degrees of possibility and necessity is not compulsory. It looks natural
for fuzzy numbers, i.e. possibility distributions of the real line, wing embodies proximity
notions, since membership grades then evaluates to what extent a value is close to a prototyp
value. But as said earlier, only a totally ordered structure is requested strictly speaking. It even
makes sense to consider possibility as a comparative notion, just as De Finetti (1937) did for
probability.

Namely letz be a relation defined on a finite Boolean algebraf subsets of U. & B
intends to mean "A is at least as possible as B". Fpand~|—| denote the strict ordering and
equivalence relations associatedzrq. The following set of axioms has been proposed by

Dubois (1986) for characterizing possibility relations

1) U>n @ (non triviality)

2) Azn @

3) AznB and B2 C imply A=z C (transitivity)
4) Azn BorBzn A (completeness)

Mm Az B implies A CznBUCOC

The last axiom([(]) is the crucial one. It means that if A is considered as at least as consistent as
B with the available knowledge, then[AC cannot be less consistent thanlEC. Note that

letting C =B leads to AJ B [ U so that A>f; B implies A B ~ U ; this means that if A

is at least as possible as B, then it is possible that B implies A (singg 4 only means that

A is totally possible, and A @ that A is totally impossible). It can be proved (Dubois,

1986) that any set-functidn : 8 - [0,1] such that

NU)=1:M@@)=0;
M(A) 2(B) = A>p B

IS a possibility measure and conversely. A dual relatiorsuch that A~c B means A is at
least as certain as B, is defined as

A zc Bifand only ifB 27 A
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i.e. A is more certain than B as longAss less possible thaB. The comparative certainty
relation satisfies axioms 1)-4) and the following characteristic one :

N) A 2c B impliesAn C>cBn C,0C

The only numerical counterparts of comparative necessity relations are necessity measure:
(Dubois, 1986). Note that if C A we obtain the claim that Ac B implies Bn A ~c @, i.e.

if A is at least as certain as B th@ncannot be certain whatsoever in the context B. Again,

A ~c @ means that A is uncertain, not that it is false. Comparative possibility relations seem to
appear for the first time in the works of D. Lewis (1973) in the framework of a conditional
logic of counterfactuals (see Section 3.7). Comparative certainty relations turn out to be at the
core of belief revision theory (Gardenfors, 1988) and so-called cumulative non-monotonic
reasoning (Gardenfors and Makinson, 1992) (see Section 3.10). It explains and comforts the
idea that possibilistic logic, as developed in the following sections is something natural and
potentially useful.

3. Possibilistic logic : the case of necessity-valued formulas

As said in Section 2, uncertain knowledge can be expressed in terms of certainty— and
possibility—qualified statements ; possibilistic logic handles syntactic objects expressing
inequalities resulting from these statements, i.e. constraints whose form is ejtheroNfor
certainty-qualified statements) py(¢) = a (for possibility-qualified statements) whepas a
closed first order logic formula. These objects, called possibilistic formulas, are the basic
objects of possibilistic logic ; an uncertain knowledge base is then a set of certainty— and
possibility—qualified statements, and will be logically represented as a set (i.e. a conjunction) of
possibilistic formulas.

This section is devoted to the study of a fragment of general possibilistic logic, where
knowledge bases consist onlyriacessity-qualifiedtatements. This fragment will be called
necessity-valued (possibilistic) logiafter the language is presented in Section 3.1, the
semantics will be studied in sections 3.2 to 3.5. Althayeyreralpossibilistic logic is a richer
framework since it enables the modelling of both necessity- and possibility-qualified
statements, the necessity-valued fragment is significant, since it is sufficient for modeling a
preference order upon formulae and as such, it entertains close links to the non-monotonic
reasoning approach based on preferential models (Section 3.9) and belief revision theory
(Section 3.10) ; moreover, it is simpler to deal with formal and algorithmic aspects by
restricting to this fragment rather than by considering the general formalism. Lastly, many of
the results shown in this section are easily extended to the case when possibility-qualified
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statements of the formM](¢) = a are allowed. This more general possibilistic logic is
considered in Section 4.

3.1. Language

A necessity-valued formulés a pair ¢ a) where¢ is a classical first-order closed
formula anda O (0,1] is a positive numberd (0) expresses that is certain at least to the
degreeq, i.e. N@) = a, where N is a necessity measure modelling our possibly incomplete
state of knowledge. The right part of a possibilistic formulagi,és called thevaluation of
the formula (or theveighy, and is denoted valj. Note that we do not consider weighted
formulas of the formd{ 0) sincellp, N(¢) = O.

A necessity-valued knowledge baisethen defined as a finite set (i.e. a conjunction)
of necessity-valued formula®L1l denotes the language consisting in necessity-valued

formulas. From now o * denotes the set of classical formulas obtained from a set of
possibilistic formulas#, by ignoring the weights ; thus, % = {(¢j aj), i = 1, ..., n} then
F*={¢j,i=1, ..., n}. It will be called thelassical projectiorof & .

The language we define as such can be considered as somewhat restrictive at two differen
levels : firstly, only conjunctions of necessity-valued formulas are considered, not disjunctions,
negations, universal and existential quantifications of possibilistic formulas, such as
(¢ a) O (P B), orlx (¢ a), etc. ; secondly, our language does not enable valuations to be
embedded, such asp(@) B).

A necessity-valued knowledge base may also be seen as a collection of nested sets o
(classical) formulasa being a valuation of (0,1], let us define tneutand thestrict a-cut of
&, denoted respectively (& 4 and¥ g, by

Fa={06POF|Bza}
Fa={¢B)OF[B>a};

their classical projectiort§ * and & g * are thus

For={¢| @B 0 F andB=za}
Fa*={0| @R O F andp>a};

thus, knowing# comes down to knowing the sets of classical form#lgs for a varying in

(0,1]. A necessity-valued knowledge b&sean thus be viewed as a layered knowledge base,
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where the higher layersi(close to 1) correspond to the most certain pieces of knowledge.
Reasoning from such a knowledge base will aim at deriving conclusions by means of the most
certain parts off . Rescher (1964) seems to be the first to think of such a layered knowledge
base where the different layers reflect various levels of reliability.

Let us point out that the basic idea of possibilistic logic is to handle certainty valuations
explicitly in the language. This departs for instance from Nilsson (1986)'s probabilistic logic
where probability bounds are expressed by semantical constraints. Furthermore, these
valuations do not appear as constants in formulae, but they are treated in a separate way, whic
gives the language more homogeneity: indeed they appéavedsassociated to formulae;
thus, possibilistic logic can be cast in Gabbay's Labeled Deductive Systems (Gabbay, 1991)
framework, where the set of labels is the totally ordered set [0,1] and the operations defined on
it follow directly from the axioms of possibility theory.

Furthermore, possibilistic logic can also be cast in Ginsberg's (1989) bilattice-based
multivalued logics framework (up to a few technical differences) ; let us recall that a Ginsberg's
bilattice consists in a valuation set equipped with two ordedpgad<y (based respectively
on certainty and specificity). In possibilistic logic a valuation (in the sense of Ginsberg) will be
a pair (,) wherea (resp.p) is the best known lower bound of M)((resp. N ($)) ; note
that in the consistent case,= 0 orf3 = 0. Then the two orderings are defined by <t
(a'B)iff a'2a andB'< B, and @ B) <k (a'B") iff a'=2a andB' = . See Lang (1991a)
for more technical details.

3.2. A semantics coping with partial inconsistency

Let £ be a classical language associated with thé& geaf classical formulas obtained
from a set¥ of possibilistic (necessity-valued) formulas, andQebe the set of (classical)
interpretations fof’. . Let £ ' be the set of closed formulasf.

The semantics of a set of classical formufas is defined by means of the subset of
interpretations off * that satisfy all formulas i&F *. Each such interpretation is called a model.
In the case of a set of necessity-valued formulas, we shall consider a possibility distribution
over Q, that will represent the fuzzy set of models%of In other wordsF will induce a
preference relation ové€l, encoded by means of a possibility distribution. Let us consider first
the valuations induced by a possibility distributimron Q. It is not supposed that is
necessarily normalized.

The possibility measurd], induced (in the sense of Zadeh (1978a)) by the possibility
distributionttis a function frontf. ' to [0,1] defined by
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06 0L T1(9) = supf(w), w= ¢} !

wherew = ¢ means t is a model ob", or "w satisfiesp”.

The dualnecessity measurbl induced byrtis defined by
06 O£ N@) =1-M(=9) = inf{1 - mMw), 0= -}

Then, necessity-valued formulas ) express constraints of the formdN& a on the set of
possibility distributions ovef2 which are compatible with the corresponding possibilistic
formulas (see (11) in Section 2).

Giving up the normalisation condition sug{v), w [0 Q} = 1 slightly modifies the behavior
of necessity measures with respect to the usual possibility theory : ifaly =

sup{m(w), w 0 Q} < 1, then we have
D¢, min(N©@).N(=¢)) =ar>0

which leads to N{) = N(@ U-¢) = min(N@),N(-¢)) = oy > 0 instead of N{) = 0.
However the following properties still hold :

N(T)=1;
N Ow) = min(N©@).NW)) ;
N($ D) = max(Ng),NW)) ;
if ¢ = Y then N() = N(d).

A possibility distributionrt on Q is said tosatisfythe necessity-valued formulé @), iff
N(¢) = a, where N is the necessity measure inducet.byote that a normalized possibility
distribution satisfyingd a) always exists (see the comment on equation (11)). We shall then

use the notatiom = (¢ ). LetF = {®dj, i =1, ..., n} be a set of possibilistic formules =
(6j aj) whered; O £ ' andaj O (0,1] ; a possibility distributiont is said to satisfyF, i.e.
ne &, iff 0i =1, ..., n,m satisfies®;. Note that ifrt is required to be normalized, a

normalizedrt such thatt = % may not exist. When this condition is not required, the "absurd
possibility distribution"my such thatl w O Q, m(w) = 0, always verifiest; = . If O,
= (¢ a) is true, this is denoted(¢ a) and ¢ a) is said to be valid.

1 sup{} and inf{} denote the least upper bound and greatest lower bound respectively of the subset of real
numbers defined between '{}'.
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Then, a possibilistic formula is said to be &ogical consequencef the set of
possibilistic formulas¥ iff any possibility distribution satisfyinéf also satisfiesp, i.e. O,
(M= %) 0 (= ). It will be denoted by = .

Our semantics is somewhat similar to the semantics of Nilsson's (1986) probabilistic logic.
In this logic probabilities or probability bounds are attached to formulas in propositional logic.
The semantics of these weighted formulas consists of a set of probability distributions on the
set of interpretation§, inducing probability measures on the set of closed fornitilas
which are compatible with bounds constraining the probability of formulas in the knowledge
base. The notions of logical consequences are similar in both approaches. This view of
probabilistic logic goes back to De Finetti (1937) and was studied by Adams and Levine (1975)
as well.

The deduction problem will then be stated in the following manner¥ lbe a set of
possibilistic formulas andl a classical formula we would like to deduce frém we have to
compute the best valuation(i.e. the best lower bound of a necessity degree) suchptbtig

a logical consequence 8f, i.e. to compute
val($,9) = supfa O (0,1], F &= (¢ a)}

Example
LetF ={(p 0.7), (-pOq 0.4)}.
=% < N(p)=0.7 and N(-pg1q) = 0.4
= inf{1l — Mw), wk= =p} = 0.7 and inf{1 -(w), w= pOd-q} = 0.4.

Let [p,q], [-p.q], [p,~q] and [-p,~q] be the 4 different interpretations for the
propositional language generated by {p,q} (where [p,q] gives the value True to p
and q, etc.). Then, it comes down to

= F
- T ([-p,q]) < 0.3, ([-p,~q]) < 0.3, ([p,~q]) < 0.6

= T ([-p,a]) < 0.3, ([~p,~q]) = 0.3, ([p,~q]) < 0.6, 1 ([p,q]) = 1.

If one looks for a normalized possibility distribution satisfyifgthis forces the
equalityt([p,q]) = 1. It is then obvious th& = (q 0.4). Indeed, any possibility
distribution 1t satisfying% is such that[p,~q]) < 0.6, and thus verifies N(q) =
min(1 —1([p,~q]), 1 —1([-p,~q])) = 0.4 ; henceart satisfies (q 0.4). Moreover,
there is nax > 0.4, such thaf = (g a); thus Val(g#) = 0.4.
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The following properties are straightforward :

(i) Ga)=(pLa=p
(i) Oa>0,= (¢ a)ifand only ifp is a tautology.

Now a fundamental result can be established :

Proposition 1 :2
LetF ={(¢1 aq), ..., @n ap)} be a set of necessity-valued formulas and let us define the

possibility distributionz by

T (w) = min{l —aj |wkE= ¢, i =1, ..., n}
=lifwo=¢10..0¢

then for any possibility distributiom on Q, 1 satisfies# if and only if m < 1, i.e.
0w Q, m(w) < g (w).

Corollary 2 :
F = (¢ a) iff iz = (¢ Q)

or in other terms Vad(,%) = N&(¢) where Nr is the necessity measure inducediay

It is worth noticing that there is an equivalence between the consistency of the classical

projectiond * and the existence of a normalized possibility distributieatisfying# . Indeed
if Tz is normalized thenw = ¢q Do O... Odp. HenceF * is consistent. Conversely, if

& * is consistent andy = & *, then the possibility distribution, such that,(w) = 1, and
(W) = 0 if W' # w does satisfyF .

Note that in the degenerate case where only two levels of possibility and certainty are used
(0 and 1), possibilistic logic comes down to a "non-gradual logic of uncertainty” where a
formula¢ is always in one of the 3 following stateSTRUE (when N§) = 1), FALSE (when
N(=¢) = 1) and UNKNOWN (when N() = N(-¢$) = 0). Thus, possibilistic logic restricted to
degrees in {0,1} is a 3-valued logic, non truth-functional (indeed, as in the gradual case, it can
still be the case that Bj = N(=¢) = 0 while N¢ [I1-¢) = 1, which happens every tingeis
UNKNOWN) ; it is also a partial logic (Blamey, 19869; being UNKNOWN is then
interpreted as¢' is given no truth-value"), whose semantics consists in crisp possibility

2 Proofs of the propositions can be found in the Annex.
3 If we exclude the case of complete inconsistency wihiéreN(¢) = N(=¢) = 1.
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distributionsrtt, which are nothing but subsets of the set of all interpreta@ars is inTtiff w

is a possible interpretation. This is actually a particular case of the possible worlds semantics of
S5 (restricted to the case of only 1 equivalence class). Note that non-gradual possibilistic logic
completely differs from Kleene's 3-valued logic, which is truth-functional and where the third
truth-value must be interpreted as "half-true” and not as "unknown".

3.3. Partial inconsistency

A possibilistic knowledge basé whose associated possibility distributimn is such that
0 < supr < 1 is said to be partially inconsistent. Measuring the consisterféy afnsists
then in evaluating to what degree there is at least one completely possible interpretétion for
i.e. to what degree the set of possibility distributions satisfyfngontains normalized
possibility distributions ; the quantity

ConsfF) = sup=F SUROQ T(W) = SURYIQ T (W)

will be calledconsistency degresf &, and its complement to 1, Incoffs(= 1 — Cons{) =
1 — supyo T (w) is called theinconsistency degreef & .

Let us now take an example when a possibilistic knowledge base is partially inconsistent.

Example
Let§ ={(-p Or 0.6), (~qd=r 0.9), (p 0.8)), (q 0.3)}. It can be checked that

= U andmtis normalized iff

n(p,q,MN=<0.1; m([p, g, 7)< 0.4; m([p, =g, 1)< 0.7 ;
m(lp, =q, =)< 0.4; m(-p, q,)<0.1; m([-p, q, 7M)=<0.2;
T ([-p, 7q, 1)< 0.2 ; 1 ([-p, 0q, 7r])< 0.2 ; sup{m(w), w 0 Q}= 1.

This set of constraints being unsatisfiable (because of the normalization constraint),
there is no normalized possibility distribution og&satisfyingl, which comes

down to say thatj is partially inconsistent. More specificalh;{@, obtained by
turning inequalities into equalities is such thatﬂgp: 0.7.

It would not be fully satisfactory to define a logic which handles degrees of uncertainty
without allowing for degrees of (partial) inconsistency. Indeed, let us consider the above
example where we suppose that p, g and r respectively express "the hostages will be freed" (p)
"Peter is going to be the victim of an affair" (q) ; "Peter will be elected” (r) respectively. Then
the formulas contained i express that it is moderately certain that if the hostages are freed
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then Peter will be elected, that it is almost certain that if Peter is victim of an affair then he will
not be elected, that it is rather certain that the hostages are going to be freed and that it is weakl
certain that Peter will be the victim of an affair. The inconsistency comes from the beliefs of the
experts who gave the information stored in the knowledge base. However, the expert who gave
the last formula was only weakly certain of what he said, so that the inconsistency should be
relativized. Since the first three formulas(fare strictly more certain than the last one, we
would like our logic to behave as if the set of formulas were only partially inconsistent, its
inconsistency degree being the valuation of the weakest formula involved in the contradiction ;
then, the deduction of a formula with a valuation strictly greater than this inconsistency degree
should still be permitted ; since this deduction involves only a consistent part of the knowledge
base made here of the most certain pieces of information in the example, we might still deduce
non-trivially (r 0.6) but not, for instance, (r 1), as we shall see later. However a conclusion
deduced from a partially inconsistent knowledge base should be regarded as more brittle thar
what is derived from a consistent one.

Partial inconsistency extends inconsistency in classical logic in the following sense : let
F={¢j|i=1, .., n} be a set of classical formulas and let us associate to F the set of

completely certain necessity-valued formufas- {(¢j 1), i = 1, ..., n}; then, it can be proved

immediately that if F is consistent then Incdhg(= 0 and if F is inconsistent then
Incons() = 1. Thus, necessity-valued logic enables the gradation of inconsistency : if
Incons@) = 0 then# is completely consistentf Incons@ ) = 1 then¥ is completely
inconsistentand if 0 < Incons$f) < 1 then# is partially inconsistentThe strong link, already
pointed out above, between partial inconsistency and inconsistency in classical logic can be
restated as follows : Incorgj = 0 if and only if the classical projectiéh* is consistent in the
classical sense.

A patrtially inconsistent knowledge base entails the contradiction with a positive necessity
degree, i.e¥ = (O a) for somen > 0. Indeed the following result is easy to establish :

Proposition 3 :
Incons@ ) = inf{N(0) |t= F} = Ng(0) = supfa, ¥ = (0a)}

where N is the necessity distribution inducedtby

This equality achieves to justify the terminology "inconsistency degree" since lfigdashe
smallest necessity degree of the contradidfidar all possibility distributions satisfying .

3.4. Fuzzy sets of interpretations and best models
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As seen above, knowing the possibility distributimn is sufficient for any deduction
problem in necessity-valued logic (including the computation of the inconsistency degree). It is
important to notice that

— Tz minimizes the inconsistency among the possibility distributions satisfyinge.
Ng(0) = Inconsf) = inf{N(0) | t= F} ;

— among the possibility distributiormssatisfying# and minimizing the inconsistency (i.e., the
least subnormalized onesyy is the least specifione (as shown by Proposition 1). Indeed
Tz is the possibility distribution o obtained by applying the principle of minimum of
specificity on the set of constraints expressed by the necessity-valued fornifilas of

The link between our semantics and the semantics of classical logic can be precisely
described as follows. In classical logic, a set of formulas &5 {., ¢}, induces a partition
of the set of interpretatior® into two subsets : the subset M(F) of models of F and the subset
M(=F) of interpretations which do not satisfy F (also equal to the set of models of =F). Then
F is said to be consistent if and only if M(F) is not empty, inconsistent otherwise, and valid iff

M(F) = Q. Noticing that F corresponds to the set of necessity-valued forniulas
{(¢1 1), ..., ®n 1)}, we may compute the (crisp) possibility distribution :

Ty (W) =inf {1 - aj |wE= —¢j, 1 =1, ..., njwhere allaj are 1,
= 1if i, 0 = §j
= 0 otherwise.

Thus the least specific possibility distribution satisfyfhds the (crisp) membership function
of the set of models of F.

In necessity-valued logic, when the valuations are allowed to be intermediatigfines a
fuzzy subsetf the interpretation se€®, denotedVi(¥) which can be seen as thezy set of
modelsof &, its membership function beingy 7)(w) = Tz (w). The quantityrg (w)
represents theompatibilitydegree ofo with &, measuring to what degreeis a model ofF .
Lastly it is easy to check thét = § iff M(¥) is included inM (1) (in thefuzzy inclusion
sense M(%) OM(T) = M) < Bmes))-

As it turns out, to establish thirtis deducible fron¥ with certainty degrea, is to say that
the models of ¢ are compatible wititV(¥) at most to the degree 1os which reads :
sup{rg(w) |w O M(=¢)} <1 —a. It can be checked that it corresponds to the result which
would be obtained by representing each necessity-valued formula by means of the least specifis
possibility distribution that satisfies it (on the set of interpretations), combining conjunctively
these representations and projecting the result of this combinationpdai{ on M(#4). This
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indicates that the deduction process in possibilistic logic can be viewed as a particular case o
Zadeh's theory of approximate reasoning, when the universe of discourse is a set of logical
interpretations.

The following proposition leads to an important definition :

Proposition 4 :

The least upper bound in the computation of Incéns$ attained, i.e. there exists (at least) an
interpretationw* such thatrig (w*) = supgo Tr(w).

Then, the interpretations* maximizing 1z will be called thebest model®f & . They are
the most compatible witlF among the set of all interpretatio®s or equivalently the
interpretations maximizing the membership degree to the fuzzy set of modéls Tie
previous result shows that the set of best models is never empty.

Interpretations may be ordered according to their compatibility degrees.ortieisng the
formulas in the knowledge base leads to ordering the interpretafltrven, selecting the best
(one of the best) model(s) is similar to making a choice among several extensions in the sensi
of default logic (Reiter, 1980).

Example
LetF ={(u a), (~u Ov B), (=v y)}; then

nF([uv])) =1 -y;
nE([u,-v]) =1-B;
nir([-u,v]) = 1 — maxq, y);
nz([-u,-v]) =1 -a ;

the subnormalization degreemf being max (1 @, 1 —f3, 1 —y), we get

Inconsf) = 1 — supF = min@, B, )
and the set of best models%fis

-{[~u,=v]} if a <min(@,Y)

- {[u,~V]} if B < min(@,Yy)

-{[u,v]} if y<min(@, B)

-{[u,~v], [Fu,~VHif a =B <y

- {[u,v], [~uVv], [Fu,~V]}if a =y <P
-{[u,v], [u,~Vv]}if B=y<a
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|- {uV U, U], [u i a =B sy

This example indicates that the inconsistency degree of an inconsistent possibilistic
knowledge baséF is the valuation of the least certain formula involved in the strongest
contradiction in& . It is easy to see that ® 0 &, InconsfF —{®d}) < Inconsf ). Let
F'0%F such that Incon$f') = InconsfF) > 0 andd ® O &', InconsfF'—{®}) = 0, i.e.

' — {®} is consistent# ' is called astrongly minimal inconsistent subs#t¥ . Then the
following result holds :

Proposition 5 :

The inconsistency degree of an inconsisteossibilistic knowledge basgeé is the smallest
weight of possibilistic formulas in any inconsistent suti$étof . More precisely, if
Incons ) =a > 0 then there exists at least one formdlanj 0 ' andO(¢' B) O F°,
B=a.

3.5. Deduction under partial inconsistency

Let & be a partially inconsistent necessity-valued knowledge base, that is,
F = (0 Inconsf)) with InconsfF) > 0 ; thus, since for any formuawe have N§) >
N(O), any formulad is deducible fronf# with a valuation greater or equal to Inc¢#3. It
means that any deduction such tifat= (¢ a) with a = InconsfF) may be only due to the
partial inconsistency df and has perhaps nothing to do wjthiThese deductions are called
trivial deductions; on the contrary, deductions of necessity-valued formiflae: (¢ a)
with a > Inconsf) are not caused by the partial inconsistency ; they are cadiedrivial
deductions

Thus, Inconst) acts as #hresholdinhibiting all formulas off with a valuation equal to or
under this threshold. The following result shows its role as a threshold for the deduction
problem more deeply :

3 If ¥ is consistent, i.e. Incor$() = 0, there is of course no minimal inconsistent subset$ @ind
Proposition 5 is therefore unapplicable.
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Proposition 6 :
Let F be a set of possibilistic formulas and let Inc&ns€ inc ; then

(i) & is semantically equivalent 6jnc and to e 0 {(Oinc)}
(ii) & rncis consistent
(iii) if ¥ = (Y a) non trivially (i.e. witha > inc) then# ipcE= (U ).

This result shows that only the consistent paff ofonsisting of the formulas with a weight
strictly greater than the inconsistency degree is significant for the deduction process. The nexi
result establishes a link between inconsistency degrees and inconsistency in classical logic.

Proposition 7(partial inconsistencies aratcuts) :
(1) (Dubois and Prade, 1987) Lét be a set of necessity-valued formulae ; then
Incons@ ) = 0 if and only if¥ * is consistent in the classical sense.

(2) Incons@) =sup {o | F o* inconsistent}
= inf {a | ¥ g* consistent}

and these two bounds are reached.

So, necessity-valued logic is close to classical logic in the sense that a necessity-valuec
knowledge base is equivalent to a finite family of classical knowledge bases. The impact of this
result on automated deduction is the possibility of computing an inconsistency degree using
only classical first-order logic procedures, which leads to this result about complexity in
propositional necessity-valued logic :

Proposition 8 :
Determining the inconsistency degree of a propositional necessity-valued knowledge base is ¢

NP-complete problem.

The following results generalize the semantic versions of the classical deduction and refutation
theorems to necessity-valued logic :

Proposition 9(deduction theoren)
FUO{o=(a) iff F=(0-wa)
Proposition 10(refutation theorem)

FeE(a) iff FO{-¢1)}E=Oa)
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or equivalently :

Val($,%) = InconstF O {(-¢ 1)})

Thus, any deduction problem in possibilistic logic comes down to computing an
inconsistency degreef we want to know whethep(a) is a logical consequence &f or not,
it is sufficient to compute Incor$( O (- 1)), which is equal to the largest valuatoohsuch
thatF = (¢ a*).

Lastly we give the following result, stating that in order to deduce a possibilistic formula
(¢ a), only the formulas with a weight greater or equat &re useful for that purpose :

Proposition 11 :
LetF be a possibilistic knowledge base and)(a necessity-valued formula. Then

F = (¢ a) if and only ifF o = (¢ a).

3.6. A formal system for necessity-valued logic

In this section we are interested in giving a formal system for possibilistic logic, equipped
with the inconsistency-tolerant semantics. First of all, it is worth noticing that all tautologies of
PL1 are the possibilistic formulas of the forno() wheret is a classical tautological formula
anda a valuation (see property (ii) stated just before Proposition 1). Hence finding a formal
system producing all possibilistic tautologies is straightforward. From now on we shall focus
on the following problem : is there a formal system, i.e. a set of axioms and inference rules,
such that from any set of possibilistic formufaeand for any possibilistic formuk®, ® is a
logical consequence &f if and only if® is derivable fron# in this formal system ?

We are proposing the following formal system for PL1 (see also Lang (1991a)).

Axioms schemata :

(A1) (6-W-19)1)

A2) (0-W-8)-(9-v)-(p-2)1)

(A3) (b - W) - ((=¢ - ¥) - ¢) 1)

A4 (OX (@ - W) - (¢ - (OxY)) 1)if x does not appear gnand is not bound i
(A5) ((Ox9) — byt 1) ifxis free for tinp
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Inference rules :

(GMP) (¢ a), @ - ¥ B) — (¥ min(a,B))
(G) @ a) — (Ox &) o) if x is not bound i

(S) $a)— (@B ifB<a

The axioms are those of a well-known Hilbert formal system for classical logic weighted by
1. A rule of inference similar to GMP has been first proposed in Rescher (1976). It has been
rediscovered in the fuzzy set setting in (Prade, 1982) see also (Dubois and Prade, 1985b)
GMP is calledgraded modus ponenst has been also used in (Froidevaux and Grossetéte,
1990) in the framework of graded default theories.

Proposition 12 :
The proposed formal system is sound and complete with respect to the inconsistency-toleran
semantics of possibilistic logic, i.e. for any set of possibilistic forméilage have

F &= (¢ o) if and only ifF — (¢ o)
where¥ — (¢ a) means : " a) can be derived frorif in the above system".
Thusnecessity-valued logic exiomatizable
3.7. Qualitative possibilistic logic and conditional logic

A qualitative possibilistic knowledge base is a finite set of (strict or non-strict) inequalities of
the form¢ > Y ord = P where =" is a qualitative necessity relation (see end of Section 2).
Thus,¢ > andd > g respectively means Bif > N() and N¢) = N(g). Satisfaction and
entailment are defined by means of qualitative necessity measures (see end of Section 2). i
(Farifias del Cerro and Herzig, 1991), an equivalence is shown between qualitative possibilistic
logic and a conditional logic studied by Lewis (1973). Briefly, a model in this conditional logic
consists in a set of classical interpretatiGnand amabsolute sphere systefh which is a set
of nested subsets @, closed for union and intersectiofi ¢orresponds to the set @fcuts
induced by a qualitative necessity). In the finite propositional case, it has been shown that a
qualitative necessity relation is equivalent to a such a model. Then, satisfiability and validity in
qualitative possibilistic logic are equivalent to satisfiability and validity in the conditional logic.
See Farifias del Cerro, Herzig and Lang (1992). See Boutilier (1992) for another embedding of
possibilistic logic in a modal framework. An extension of possibilistic logic where qualitative
possibilistic ordering relations between propositions are handled in the language is outlined in
(Benferhat, Dubois and Prade, 1992).



25
3.8. Automated deduction

In this section we focus on automating the computation of the inconsistency degree of a
necessity-valued knowledge base. Two well-known automated deduction methods have beer
generalized to possibilistic logic : resolution (Dubois and Prade, 1987) and (in the propositional
case) the Davis and Putnam semantic evaluation procedure (Lang, 1990). Here we focus
mainly on resolution for which we give soundness and completeness results.

3.8.1.Clausal form

In order to extend resolution to possibilistic logic, a clausal form is first defined. A
possibilistic clausds a possibilistic formula (a) where c is a first-order or propositional
clause andx is a valuation of (0,1]. Avossibilistic clausal formis a universally quantified

conjunction of possibilistic clauses.

The problem of finding a clausal form @f whose inconsistency degree is the santé as
always has a solution in PL1. Indeed there exists a clausalfaft* such that Incon§() =
Incons§), which gereralizes the result holding in classical logic about the equivalence between
the inconsistency of a set of formulas and the inconsistency of its clausal form. Indeed the
possibilistic clausal form of & can be obtained by the following method :

LetF ={(¢j aj),i=1, ..., n}

Put eachp; into clausal form, i.epj = (U) [j (cij) where ¢ is a universally-quantified
classical first-order clause ;

C « (O) G, {(cij ai)}

Proposition 13 :Incons() = Incons{).

3.8.2.Necessity-valued resolution

Once a clausal form is defined for a given necessity-valued knowledge base, the resolution
principle may be easily extended from classical first-order logic to necessity-valued logic, in
order to compute its inconsistency degree.

The following possibilistic resolution rule between two possibilistic clausea {fand
(c2 a2) has been established by Dubois and Prade (1987) :

(R) (c1a1) (2 a) — (R(cq, €2) min(ay, a2))
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where R(g,c2) is any classical resolvent of and @. The following result establishes the
soundness of this resolution rule :

Proposition 14(soundness of rule (R))
Let C be a set of possibilistic clauses, and C a)a possibilistic clause obtained by a finite

number of successive applications of (R} tpthenC = C.

The resolution rule for necessity-valued clauses locally performs at the syntactic level what the
combination/projection principle (Section 2) does in approximate reasoning.

Moreover resolution for necessity-valued clauses is complete for refutation and we have
the following results :

Proposition 15 (soundness and completeness of refutation by resolution in:PL1)

LetF be a set ofiecessity-valuefirst-order formulas an@ the set of necessity-valued clauses
obtained from# ; then the valuation of the optimal refutation by resolution ffons the
inconsistency degree 6f.

This result was first established in (Dubois, Lang and Prade, 1989).

Corollary :

Let & be a classical formula and' the set of possibilistic clauses obtained from
F 0{(—~¢ 1))}; then the valuation of the optimal refutation by resolution fféns Val@,¥).
This corollary immediately stems from propositions 14 and 15.

Thus refutation by resolution can be used for computing the inconsistency degree of a
necessity-valued knowledge base. We consider & seif possibilistic formulas (the
knowledge base) and a formupa; we want to know the maximal valuation with whigh
entails¢, i.e. Val@,F) = supfa 0 (0,1], ¥ = (¢ a)}. This request can be answered by
using refutation by resolution, which is extended to possibilistic logic as follows :

Refutation by resolution
1. Put¥ into clausal fornt ;
2. Put¢ into clausal form ; letg ..., Gy the obtained clauses ;
3.0« D O{c1 1) ... (@ 1}
4. Search for a deduction dfl @) by applying repeatedly the resolution rule (R) from
C', with a maximal ;
5. Val@,¥) « a.
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An implementation based on an A*-like ordered search method has been proposed for
finding out the refutation witlm maximal first. See (Dubois, Lang and Prade, 1987).

lllustrative example

Let ¥ = {®1, ..., d6} be the following possibilistic knowledge base,
concerning an election whose only candidates are Mary and Peter :

®1  ((Elected(Peter)] Elected(Mary))] (—Elected(Peter)] -Elected(Mary)) 1)
®o  (Ox ~Current-president(x)] Elected(x) 0.5)

®3  (Current-president(Mary) 1)

®4  (Ox ~Supports(John,x)! Elected(x) 0.6)

®g  (Supports(John,Mary) 0.2)

®g  (Ox ~Victim-of-an-affair(x) ] -Elected(x) 0.7)

& is equivalent to the set of possibilistic clauSes{C1, ..., C7} :

C1  (Elected(Peter)] Elected(Mary) 1)

Co  (—Elected(Peter)l -Elected(Mary) 1)

C3  (=Current-president(x) Elected(x) 0.5)
C4  (Current-president(Mary) 1)

Cs  (—Supports(John,x)! Elected(x) 0.6)

Ce (Supports(John,Mary) 0.2)

C7  (~Victim-of-an-affair(x)[] -Elected(x) 0.7)

We cannot find any refutation frofa ; hencel is completely consistent, i.e.
Incons(C) = 0. Let us now find the best lower bound of the necessity degree of the
formula "Elected(Mary)". Let' =G O {(-Elected(Mary) 1)} ; then there exist two

distinct refutations by resolution froé, which are :

(- Elected (Mary) 1) C3 (- Elected (Mary) 1) C5

\/ \/

(= Current-president (Mary) 0. C4 (- Supports (John, Mary) 0.6) C6

~_

@ 0.5) @ 0.2)

[ OPTIMAL | NON -OPTIMAL

Hence we conclude thét = (Elected(Mary) 0.5), i.e. it is moderately certain that
Mary will be elected ; this degree 0.5 is maximal, i.e (E&cted(Mary)) = 0.5.
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Then we learn that Mary is being the victim of an affair, which leads us to update
the knowledge base by addingtothe possibilistic claused> (Victim-of-an-

affair(Mary) 1)). LetC1 be the new knowledge base; =T 0O {Cg}. Then, we
can find a 0.5-refutation froriaq (which is optimal) :

C8 C7 C3 C4
(- Elected (Mary) 0. (Elected (Mary) 0.5)
@ 0.5)

Hencel is partially inconsistent, with Incon§{) = 0.5.

The refutation which had given(Elected(Mary))= 0.5 can still be obtained
from G4 but since its valuation is not greater than Incopk(it becomes a trivial

deduction. Contrarily, adding 161 the possibilistic clause (Elected(Mary) 1), we
find this time a 0.7-refutation ; and since 0.7 > Incéngy( the deduction
C1= (-Elected(Mary) 0.7) is non-trivial ; it could be shown that we also have
C1 = (Elected(Peter) 0.7).

3.8.3.Semantic evaluation (propaositional case)

Resolution is a syntactic proof procedure ; as it is the case in classical logic, semantic
procedures for necessity-valued logic are interesting because they are more constructive thal
syntactic ones. Indeed, necessity-valued resolution only gives the inconsistency degree of ¢
necessity-valued knowledge baée but it does not give the best model(sfofas defined in
Section 3.4). As said in Section 3.3, computing Incéns¢omes down to computing the
degree of consistency sayg of the possibility distributiomtz.

A naive idea would consist in computimg:(w) for all w in Q, for example by building a
semantic tree as in classical propositional logic. The main problem is that complexity is
prohibitive, since it requires to comput@ 2alues ofri(w) where p is the number of atomic
propositions inF . A semantic evaluation algorithm for necessity-valued logic, based on an
possibilistic extension of the Davis and Putnam (1960) procedure, computes also the best
models (or one of the best models, if preferred) of a clausal necessity-valued propositional
knowledge basé& by building a (small) part of a semantic tree forby evaluating literals
successively. Some techniques improve the efficiency of semantic evaluation by transforming it
into the search in a min-max tree, and then pruning branches by two techniques, one being thi
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well-known alpha-beta pruning method, the other one being a generalisation of the so-called
"model partition theorem" obtained for (classical) propositional logic by Jeannicot, Oxusoff and
Rauzy (1988). See (Lang, 1990) for further details.

3.9. Non-monotonic aspects

Whether possibilistic logic can be considered as monotonic or not, depends on what kind
of deduction is allowed. The operater is monotonic : indeed, due to the definitions of
satisfiability, any possibility distributiom satisfying% 0O %' also satisfiesF , hence the

result :
if F = (¢ a)then¥ 0F' &= (¢ a)

where% and% ' are any sets of possibilistic formulas agda() is any necessity-valued
formula.

However we may wish to take into account only non-trivial deductions (we recall that the
deduction¥ = (¢ o) is non-trivial iffa > Inconsf) ; see Section 3.5). Let us then define the
non-trivial deduction operatdr by

F = (¢ a)iff F = (¢ o) anda > Inconsf).

Then it can be the case tHat|= (¢ a) andF O F' |& (¢ o) ; indeed this situation occurs
when Inconsf) < a < Incons@F O F'). Hence= is non-monotonic.

We now give a detailed example illustrating this non-monotonic behaviour.

Example

We now consider again the knowledge base of Section 3.8.2. It can be established
that Inconsf) = 0, i.e.¥ is completely consistent. We are interested in knowing
who will be elected and with the maximal certainty degree. It can be proved that

¥ = (Elected(Mary) 0.5) ¥ = (—~Elected(Mary) 0)
F & (Elected(Peter) 0)F = (—~Elected(Peter) 0.5)

I.e. it is moderately certain that Mary will be elected (or equivalently that Peter will
not) ; this degree 0.5 is maximal, i.e. (&l ,Elected(Mary)) = 0.5. Since
Incong¥) = 0, we may also write that

¥ |= (Elected(Mary) 0.5)% |= (~Elected(Peter) 0.5)
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Then, we learn that Mary is being the victim of an affair (which is a completely
certain information). This leads us to update the knowledge base by addirtheo
possibilistic formula

®7 : (Victim-of-an-affair(Mary) 1)

Let & 1 be the new knowledge basej =% O {®d7}. It can be proved thaf 1 is
partially inconsistent, with Incor$(;) = 0.5. Indeed the new information leads to
prove that Mary will not be elected, whereas the previous knowledgérbkesels

to prove that Mary will be elected (each time with a non-total certainty). It can

always be proved that
&1 = (Elected(Mary) 0.5)

& 1 = (~Elected(Peter) 0.5)

but these deductions are now invalidated by the inconsistency threshold, hence
trivial. Using the non-trivial deduction operator, it comes down to writing that the
previously non-trivial deductions# |= (Elected(Mary) 0.5) and¥ |=
(-~Elected(Peter) 0.5) can no longer be made @ith In this case we capture a

non-monotonic behaviour.

Besides, we have now
¥ 1 = (~Elected(Mary) 0.7)

&1 = (Elected(Peter) 0.7)

and these deductions are non-trivial since 0.7 > Inéofs(.e.
1 | (-Elected(Mary) 0.7)
¥ 1 [= (Elected(Peter) 0.7)

meaning that it is now almost certain that Mary will not be elected and that Peter will
be. Hence, updating the knowledge base leads us to an opposite conclusion.

The links between nonmonotonic reasoning and possibilistic logic (first pointed out in
Dubois, Lang and Prade, 1989 and Léa Sombé, 1990) are now more deeply investigated. Le
& be a possibilistic knowledge base containing necessity-valued formulaszabd the
corresponding minimally specific possibility distribution on interpretations, naméty 5f
{(9j aj), i=1,n}, thentiz(w) = min{l —a; |wkE= —¢j, I=1,n}.

Consider the preference relation, denatedn the set of interpretatio®s defined by
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WE W < Tg(w) <Tmg(w) .

This relation equip82 with a strict partial order as requested in Shoham (1988). He defines a
preferred model of a formulfx as an interpretatiom such thato= ¢ andd w' # w, W = ¢
andwrC w'. It is a maximal element ind | W' = ¢} in the sense of and this is denoted
wk=r ¢. Moreover¢ is said to preferentially entai), denotedp = U if and only if all
preferred models df satisfyy ; more precisely

= P = U W= ¢ implieswi= Y

If = is induced by a possibility distributiamgz, it is easy to verify thab = ¢ if and only if
T (w) = [1F (¢) that is,w is a best model of O {(¢ 1)}. Whentiz(w) = 0, however, the
concept of preferred model is debatable smgé€w) = 0 means thab is impossible. In the
following, we shall restrict Shoham's definition to the case wigo) > 0, and let

W= ¢ if and only ifrig(w) =[1#(9) >0

Preferential entailment is then defined as above. Note that contrary to Shoham's conventions
we cannot havél = ¢ since= does not apply to an inconsistent set of premises. It may
sound natural that while the contradiction entails anything, it preferentially entails nothing. This
convention is different from the one adopted by Gardenfors and Makinson (1992) for whom
preferential entailment should subsume the classical notion, a point of view which is not chosen
here.

The following result can then be established :

Oa>0,% 0 (¢ 1) = (Y a)if and only ifp = ¢

where |= denotes the non-trivial deduction operator. In other wofdgs a non trivial
deduction off augmented witl, if ¢ preferentially entailg in the sense of the ordering of

models induced b§ . This result is formally proved in Dubois and Prade (1991a). It can be
explained as follows : the possibility distributiohs associated t& 0 {(¢ 1)} is

T (W) =g (W) if = ¢
= 0 otherwise .
It is clear that

max,Q T 7 (w) = [1#(9), and Inconst 0 {(¢ 1)}) = 1 -T1#(9).
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Now & O {(¢ 1)} |= (0 a) means that My 1)3(W) = a > Incons & O {(¢ 1)}). Now if w
is a preferred model a@f, we haverg(w) = [1#(¢). Then the interpretatio should satisfy
Y, for otherwise

N oo (W) = Minge—y 1 -t g (w0) < 1 -1z () = Incons O {(¢ D) <a.

Henced preferentially entailg). The converse is as easy to establish. Again, the non-trivial
deduction operatiofr is not a generalization of the classical semantic entailmemce if F is

an inconsistent classical knowledge base, thendFfor any$ while % |= ¢ never holds, all
deductions being trivial.

A link between preferential entailment and conditional possibility measures has been
established. Namely I€](y | ¢) be the possibility ofy conditioned onp. It is defined by the

implicit equation (Hisdal, 1978) :
[1(¢ Oy) = min([T(W | 9), [1(¢))

of which we must select the greatest solution, whenl. The conditional possibility is then
defined as

Do, 0w, MW [9) =1 if M6 D) =T1(9)
=[1(¢ OY) otherwise .

The corresponding possibility distributionti€] ¢), such that

nmw|¢) =1if m(w) =1(¢p) > 0 andw = ¢
= 1(w) if T(w) <[1(9) andw = ¢
= 0if [1(¢) > 0 andw = -

=1if[1(¢)=0

Hence whenf](¢) > 0,M(w | $) = 1 if and only ifw is a preferred model @f. The conditional
necessity is defined by N(|¢) = 1 —[](-¥ | ¢). Note that[](¢) = max(J(Q O ¢),
[1(=w O ¢)) so that the definition of the conditional possibility measure is also expressed by

MW ¢) =1if[1(¢ D) =T1(¢ DY)
=T1(¢ OY) otherwise

and the conditional necessity measure by

N [¢) =N Ow) if N(=¢ Oy) > N(-p O-y)

= 0 otherwise.
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[1(w | ) and N | §) are numerical counterparts of Lewis (1973) "might" conditional (if it
were thatp it might be thatp) and "would" conditional (if it were thdt it would be that))
respectively.

The modified preferential entailmegti=  can then be expressed in terms of the
conditional possibility or necessify# (¥ | ) and Nz (¥ | ¢) as follows (Dubois and Prade,
1991a) :

¢=c @ ifandonly if[1z(W ) >N (W | §)
if and only if Ng(W | ¢) >0
if and only if [T (W O¢) > [#(-w Oé)
if and only if Nz (=¢ O ) > Ng(=¢ [ -)

Indeed if {w | Tz (w) =[1#(9) > 0} U {w | w = Y}, it means that

M (¢ DW) = madgy—g¢ Oy Ter () = #(9)
while
e ($ 0) = madgy—¢ -y T (0) <[ ($)

since no preferred model ¢fsatisfies 4. Again we do not need as Gardenfors and Makinson
(1992) to add the supplementary conditfpr- U to Nz (P | ) > 0, because we do not allow
for O=c ¢. Hencey is a non-trivial consequence $f [ {(¢ 1)} as soon as N(|¢) > 0. It
also means that the non-trivial consequence relatiofrshgn be characterized at the semantic
level by means of the conditional possibility distributiepa(: |¢), since the only useful part of
Tz when computing the non-trivial consequence&dfl {(¢ 1)} is its restriction to the set
{w|wE= ¢ and(w) < [1(¢)}, as pointed out in (Dubois and Prade, 1991a). Indeed
Ng(W[¢)>0< Ng(|9)=Ng(=¢ UY)=1-sugy=¢pO~yp TF(w) >1-[F(9) =
Incons@ O {(¢ 1)}), i.e. we may just normalize the restrictiontef to the models of by
assigning a possibility degree equal to 1 to its maxima, and work with this normalized
possibility distribution. Note thatiz(w |U) = 1,0 w O Q, i.e. conditioning with the
contradiction leads to total ignorance.

The non-trivial consequence relationship satisfies the rules of a well-behaved consequence
relationship as first introduced by Gabbay (1985) :

¢ =c ¢ whend z[ (reflexivity, up to the contradiction)

b=, 0OPE=E0 ==& (cup)
O=c P, 0= &0 ¢ OP= ¢ (restricted monotonicity)
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b= W= &0 ¢ 0YECE (OR)
In terms of conditional necessity measures, these properties read (Dubois and Prade, 1991b)

N($ |¢)=1 fordp [

N(W [¢) >0, N€ [¢ Ow)>00 N(€ [¢) 2min(NW | ), NE [¢ D))
N(W ) >0, NE [9)>00 NE o Ow)2min(NW [9), N |9))
N(E [9) >0, N€ W) >00 N [¢ Tw)2min(NE | ), NE |W)).

Rational monotony
b -panddp=c &0 ¢ DY

is also satisfied in possibilistic logic (Benferhat, Dubois and Prade, 1992) under the form
N(-y [¢) =0and N§ [¢) > 00 N( [¢ Ty)> 0.

Consequently possibilistic logic belongs to the family of non-monotonic logics based on
preferential models.

3.10. Belief revision and possibilistic logic

Gardenfors (1990) has suggested that non-monotonic reasoning and belief revision were
two sides of the same coin ; see (Makinson and Gardenfors, 1991) for a complete exposition.
This is true for non-monotonic logic based on preferential models since Gardenfors has shown
how to translate the postulates of belief revision (Gardenfors, 1988) into the axioms of
preferential model-based non-monotonic logics, and that the latter have been given a semantic
in accordance with Shoham's preference logic (Kraus et al., 1990). Thus, no wonder if there is
a connection between possibilistic logic and belief revision.

More specifically Gardenfors (1988) considers a belief set as a set K of propositions closed
by the consequence relation. The expansion of K by a forgnislaimply K*¢ = closure(KO

{$}) which may contain all formulas (absurd belief set}ifis inconsistent with K. The
revision of K by a formulap results in a consistent belief set ¢Ceven if K and are

inconsistent together. The axioms which a rational revision procedure should satisfy are as
follows

K*1) K* ¢ is a belief set

K*2) ¢ 0K
K¥g)  Krg OK*g
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K* 4) if ~¢ O K then Kfg 0 K*g

K*5) K* ¢ is the absurd belief state if and onlyif [
K*6) =¢ o Yimplies K = K*y

K*7) K*¢ow 0 (K*¢) Ty

K*8) if = O K* ¢ then (K*¢)+Lp O K* ¢y

While these postulates leave the choice of the revision procedure quite open, Gardenfors (1988
proves that any such revision procedure underlies an ordggtiog the formulas of a belief

set, that guides the revision procedure. Gardenfors names this ordering "epistemic
entrenchment”. More specifically denoting the strict part okg

P OK*g if and only if 4§ Oy > -¢ O-y

In Dubois and Prade (1991c) we have pointed out that the relgtidvas exactly the same
properties as a comparative necessity relation, with the additional conBtegirdt if ¢ is not a
tautology. Hence the only numerical counterpart to epistemic entrenchment relations are
necessity measures.

Gardenfors' methodology goes from postulates of belief revision to the characterization of
epistemic entrenchment relations. Since a possibilistic knowledge base, containing necessity-
valued formulas, obeys the laws of epistemic entrenchment, one may expect that by deleting the
least certain formulas in order to cope with inconsistency, one gets a rational revision
procedure.

First, a necessity-valued knowledge b&sés notexplicitly closed under the consequence
relation, however it ismplicitely : as shown in Section 3.2 it is equivalent to a possibility
distributionTiz over its interpretations, through the principle of minimum specificity, and this
possibility distribution enables the degree of necessity of any formula to be evaluated. This is
achieved at the syntactic level by means of the extended resolution principle. Hence a partially
defined epistemic entrenchment relation on a belief set K, expressed by assigning weights tc
some of the formulas, can be canonically extended to the whole belief set. We call it an orderec
belief set.

The expansion of an ordered belief set K consists in adding a forgniijaaqid to compute
the closure of KI {(¢ 1)} by means of the extended resolution principle.

The revision of an ordered belief set K consists in computing the non-trivial consequences
of KO {(¢ 1)}, that is, K’ is made by allg a) such that KO {(¢ 1)} = (@ a) with
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a > Incons(KO {(¢ 1)}). The obtained ordered belief set&tontains none of the formulas
(¢ B) O K such thad < Incons ¢ O {(¢ 1)}). In fact K*o violates axiom K& in the sense
that K = @ in particular ifp = [J. This is again due to the fact that=  is not accepted in

our approach. But it is really a matter of detail. Note that K@ is consistent with
Tk (w| U) = 1, 0w, as defined above, while if KFcontain all formulas, it would require the
conventionmk (w | ) = 0,0w U Q. See Dubois and Prade (1992b) for a detailed discussion.

At the semantic level, the expansiorf(f;( of K consists in turning the corresponding
possibility distributionrtinto Tt+¢ such that

(W) =T(w) if W= ¢

= 0 otherwise

Revision consists in turning into T = (] ¢). It is proved in Dubois and Prade (1992b)
thatrr+¢ andTrkq, satisfy all rationality postulates of well-behaved expansions and revisions
respectively (up to the question of definingd{*And both are at work in the inconsistency-
tolerant deduction machinery of possibilistic logic.

4. Generalizations of possibilistic logic

The "basic" version of possibilistic logic that we have discussed so far may be not sufficient
to model some kinds of incomplete information we may wish to handle, such as :

— possibility-qualified sentences, for instance
"it is possible that John comes”

— conditional sentences, whose condition depends on a fuzzy predicate
"the later John arrives, the more certain the meeting will not be quiet"

— sentences involving vague predicates, for instance
"if the temperature is high then there will be only a few participants”

In order to enable the handling of such knowledge, we present in this section some
formalisms which are either extensions of possibilistic logic (where the basic language and
semantics of possibilistic logic are enriched) or generalizations (where possibilistic logic is
considered as a particular case of more general logical models).
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4.1. Possibilistic logic with possibility- and necessity-qualified formulas

In Section 3 we have studied in detail the semantics, axiomatics and some automated
deduction procedures of necessity-valued logic where necessity-qualified statements are
represented by necessity-valued formulas. However this fragment of possibilistic logic cannot
handlepossibility-qualifiedstatements. As seen in Section 2, if the statement "(at least one
value in A) is (at leasty-possible for x" is given, then finding an underlying possibility
distribution restricting the values of x comes down to solve the eqya{in= a. In order to
handle both possibility- and necessity- qualified statements, the (extended) language should bt
able to syntactically model constraints in terms of lower bounds of a necessity or of a
possibility measure. It comes down to allow for two kinds of weighted formulas : necessity-
valued formulas expressing thatfNE& a as already seen and possibility-valued formulas
expressing thaf](¢) = a. The valuations will be denoted w and stand {gro) or (Na)
according to whethex is a lower bound of a possibility or a necessity measure.

Thus, apossibilistic formulais either a paird{ (N a)) where¢ is a classical first-order
closed formula and [0 (0,1], @ should be strictly positive) or a paip ([T B)) where
B 0 [0,1]. @ (N a)) expresses thdt is certain at least to the degreei.e. N@¢) = a, and
(6 (7 B)) expresses thdt is possible in some world at least to the defeee. [1(¢) = 3,
where[] and N are dual measurd3() = 1 — N(-$)) of possibility and necessity modelling
our incomplete state of knowledgg($) = 3 expresses to what extent we consider ¢hat
cannot be refuted (or equivalentlyp -cannot be proved). More specifically(¢) = 3
expresses thdt is consistent with the remainder of the knowledge base to Whiethongs, at
least at leve. Particularly, if bothd ([ 1)) and (# ([] 1)) are stated, it means that neitfer
nor —¢ is allowed to be a consequence of the remainder of the knowledge base. Hence the usi
of possibility-qualified statements allows us for claiming that some propositions cannot be
established nor refuted. We can express knowledge about ignorance.

The right part of a possibilistic formula, i.e. (N or ([ B), is called thevaluation of the
formula, and is denoted val ‘I will denote the set of all possible valuations w, i.e.

9 ={(No)|0<a<1}O{(]a)|0<as1}

Since Nf) > 0 entailg[1(¢) = 1, @ (N a)) is stronger than®( ([T B)) for anya >0,=0;
this leads us to define the following ordering among valuations :

(Na)< (NB)iff a<PB; (o)< (M P)iff a<P:(]a)<(NB) Do, 0> 0.
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Hence the maximal and minimal elements‘éfare respectively (N 1) (expressing that a
formula is completely certain) anfi] (0) (expressing that we do not know anything about the
truth, the falsity nor the consistency of a formula). Again, we never explicitly handle formulas
of the form ¢ ([ 0)) sincelJ9, [1(¢) = 0. The difference betweeth ([ 1)) and ¢ ([] 0)) is

that by statingq (] 1)) it is claimed that for sure¢~cannot be proved, whileb (([71 0))
expresses our ignorance about whethlfecan be proved or not.

A possibilistic knowledge bade then defined as a finite set (i.e. a conjunction) of
possibilistic formulas. A possibilistic formula whose valuation is of the forma(N
(respectively [] a)) will be called anecessity-valuedresp. possibility-valued
formula. Let PL2 denote the language consisting in possibilistic formulas (both necessity-
valued as well as possibility-valued ones). We recall that the language consisting only in
necessity-valued formulas was denoted PL1. The classical projéctioh# still denotes the
set of classical formulas obtained from a set of possibilistic fornféilaby ignoring the
weights ; thus, iff = {(¢j wj) ,i=1, ..., n}then&F* ={¢j,i=1, ..., n}. As for necessity-
valued knowledge bases, a possibilistic knowledge base may also be seen as a collection c

nested sets of (classical) formulas (sifi€ds ordered) : w being a valuation ©f, thew-cut
and thestrict w-cutof &, denoted respectively &, and¥ y, are defined by

Fw={(oV)OF |vzw};
Fu={0vVIF|v>u.

4.1.1.Semantics

In this subsection we extend the necessity-valued semantics to PL2 in a natural way . A lot
of results being very similar to those of necessity-valued logic, we are often just stating them
with very few comments or examples ; we are mainly focusing on the differences induced by
the extension of the language, i.e. properties which do not hold anymore in full possibilistic
logic. A more detailed treatment of PL2 can be found in (Lang et al., 1991).

We first associate to a set of possibilistic formulas the setoofalized possibility
distributions onQ satisfying it. For the possibility distribution inducing the possibility
measurd] and the necessity measure N, satisfaction is defined as :

= (¢ (N a)) if and only if N@) = a ;

= (¢ ([ a)) if and only if[](¢) = a ;
= F ={(¢jw;j), i=1, ..., n}ifand only ifdi =1, ..., n,t= (dj wj).

and logical consequence as :
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F = @ if and only if for allt (= ) O (= ).

The function Val is naturally extended by
Val($,%) = Sup {w |F & (¢ w)}.

Example
Let# ={(p (N 0.7)), (-pOq (7 0.8))}.
= % < N(p)= 0.7 and[](-p 0 qg) = 0.8
= Inf{1 - Mw), wE= =-p} = 0.7 and supf(w), w= -pq} = 0.8.

Let Q = {[p,q], [-p.ql, [p,—q], [-p,—q]} be the 4 different interpretations for the

propositional language generated by {p,q} (where [p,q] gives the value True to p
and g, etc.). Thermy = & is equivalent td](-p) < 0.3 and[](-p 0 q) = 0.8,

which leads to

fmax(n([ﬂp .al), T([-p,~q])) < 0.3
max@([p,q]), T([-p.q]), T([-p,~q])) = 0.8
\max(ﬂ([p al), m([-p.qal), [p,~q]), T([-p,~q])) = 1
fﬂ([ﬂp q]) < 0.3
m([-p,—q]) < 0.3
\Tt([p .q]) = 0.8

max(@([p,q]), ([p,~q])) = 1

It is then obvious tha¥# = (q (7 0.8)). Indeed, any possibility distributian
satisfying is such thatt([p,q]) = 0.8, and thus verifief|(q) = max{i([p,q]),
m([-p,q])) = 0.8 ; hencet satisfies (q[{] 0.8)).

Moreover,[0 w > ([] 0.8), we do not havé = (g w); thus Val(¢#) = ([ 0.8).

The following properties are straightforward :

i (OwE(@w)Ow<sw
(i) Ow > ([70),= (¢ w) if and only if$ is a tautology.

There is a strong analogy between the definitions of satisfiability in possibilistic logic and in
multi-modal logics. Satisfiability ofq¢, i.e. M,w = Oq¢ iff 0w, Ry(w,w') andw' = ¢
(where M is a Kripke modelv a world and {Ry, 0 <a < 1} a family of accessibility
relations) corresponds = (¢ (] a)) iff Do, T{w) = a and w = ¢,which leads us to
interpret possibilistic logic in terms of a multi-modal system. See Dubois, Prade and Testemale
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(1988) for a first study and Farifias del Cerro and Herzig (1991) for a recent multi-modal
axiomatics of qualitative possibilistic logic.

There are two kinds of inconsistencies in a possibilistic knowledgefase

— inconsistencies generated by (only) contradictory necessity-valued formulae ; they can be
solved (as already seen) by allowing non-zero value falj.N(

— inconsistencies involving both possibility- and necessity-valued formulas.

In order to equip inconsistent possibilistic knowledge bases with semantics, one approach is
to add to the set of interpretatiosan extra-element, notedh in which any formula is "true”,
i.e.0¢ 0L, wgE= ¢ which corresponds to the idea of an "absurd interpretation” discussed
by Stalnaker (1968). Le&®; = Q O {w}. A possibility distribution onQp is a mappingt
from Qp; to [0,1] such thatlw O Qp, M(w) = 1 (normalization ove®). Then we define two
functions from&. ' to [0,1] induced byt : [](¢) = sup{(w), w 0 Qp, wi= ¢} ; N(p) =
inf{1 — T(w), @ 0 Qp, w &= ¢}. Note thatN(¢) does not takewp) into account, whild]($)
does ; note also thab #= ¢ is no longer equivalent t®w = -¢, sincew;= ¢ and
wp = ¢ . The idea of adding an extra-element to the referential of a possibility distribution
has been already used for dealing with the case of an attribute which does not apply to an iten
of a data base. However the extensions of the possibility and necessity measures which ar
used for the evaluations of queries in incomplete information data bases diffejf]feomdN
defined here ; see Chapter 6 of Dubois and Prade (1985b).

The classical possibility and necessity meas{itéls) = sup{ri(w), w 0 Q, w= ¢} and
N($) = inf{1 — M(w), w0 Q, wi= -} deriving from the (possibly un-normalized) restriction
of Tto Q are related t¢] andN as follows

[1(¢) = max(1($), {wp)
N($) = N@) =1 -[1(-9)

f1 = if and only if Ti(wp) = O ; in this casdt is normalized o). Note thatf] is not a
possibility measure with respect @y but only with respect t@. We shall callf] and N
inconsistency-tolerant possibilifyesp.necessitymeasures

Each possibilistic formulad(([T a)) or @ (N a)), is now interpreted a$](¢) =
(respectively N(¢) = a), i.e. we take into account the absurd interpretation in our
understanding of uncertainty-qualified statements. For instap ¢} ¢)) expresses that "it is
possible at least to the dege¢hat eitherp is true or that we are in an absurd situation”. This
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leads us to the following definitions paralleling the definitions of Section 3.2 repl@xing
(respectivelyr, [, N) by Qp (respectivelyr, [7, N).

— satisfaction: = (¢ ([1 0)) iff [1(@)=0 ;1= (@ (Na)) iff N(¢)=a, where[] andN
are the inconsistency-tolerant possibility and necessity measures inducedty F iff 1t

satisfies all formulae df ;
— logical consequence¥ &= @ iff O, T= F implies T = ®.

The results about the characterization of the set of possibility distributions satisfying a
necessity-valued knowledge base via a single possibility distribmtiotannot be generalized
to possibilistic logic with possibility-qualified formulas, since this set has generally no longer
an upper bound o

The inconsistency-tolerant semantics for full possibilistic logic subsumes the (inconsistency-
tolerant) semantics for necessity-valued logic (as it is intended to be). Indeed, the previously
subnormalized possibility distributions @nare now artificially renormalized d by adding
the constrainfi(w) = 1.

As pointed out above we can distinguish between two different types of inconsistencies. Let
& be a set of possibilistic formulas ; considering the possibility distributio®s-csatisfying

&, three situations may occur :

() Om m= & such thati{wp) = 0 : in this casef is consistent in both semantic§;is
then said to beompletely consistent

iy On nE F, M(wo) > 0 butDi, & & such that supf(w), w # wo} = 1 : then, for
any Tt satisfying#, we havef(0) = T(wp) > 0 andN(0) = 1 — supfi(w), w # w} =
0. Thus# induces only a "possible inconsistency" (contradiction being possible to a
strictly positive degree). The minimal valueﬁ(b)m) among the possibility distributions
mon Qg satisfying# gives thenconsistency degre® & . Leta = inf{ T(wp), T= F};
then Inconsf) = ([ ).

(i) O e F, sup{t (w), w# w} < 1 (which entails thaflT, & F, M(wp) = 1). In
this case, for anyt satisfying¥ , we havem(wp) = 1 andN(0) = 1 — supfi(w),
w # wr} > 0. We thus recover the notion of partial inconsistency introduced in LP1.

Theinconsistency degreef & is now a valuation of the fornf](a) or (N a), defined

as
Incons@) = sup{wO V" |F & (O w)}



42

F iscompletely consisteritf Incons@) = (1 0). If O, &= &, sup{f(w), w# wy} = 0,
then Inconsf) = (N 1) and¥ is completely inconsistentf Incons@ ) = ([] a) witha >0
then& is said to baveakly inconsistentf Incons@) = (N ) with B < 1 then¥ is partially
inconsistentThe following scale (Figure 1) shows the hierarchy of inconsistencies :

(N'1) complete inconsisten
(N o) partial inconsistency

Incons@)T (1 1)
(N a)

(M 0) complete consisten:

weak inconsistenc

Figure 1

It should be clear that wheh is consistent, or partially inconsistent, then the two semantic
entailments= and= are equivalent.

Examples
The knowledge basé] of Section 3.3 gives an example of a degree of
inconsistency equal to (BL3).

An example of a knowledge base with a degree of inconsistency of the[jamn (
is given by £ ={(p ([1 0.7)), (-=p (N 0.6))}. Clearly

Tt satisfies
= [1(p) = 0.7 andN(-p) = 0.6
= [1(p) 2 0.7 and[](p) < 0.4
- Dwk= p such that(w) = 0.7 andd w = p, w # Wy, TMw) < 0.4.
& T{wn) = 0.7 anddw = p, w # Wy, T(w) < 0.4.

Hence Incons?) = (7 0.7); letTy be such thatip(wy) = 0.7 ;0 w # wy such
thatw = p, thenfip(w) = 0.4 and] w # w such thaty = —p, thenTp(w) = 1 ;
T satisfies#?. Hence Inconsf?) = ([1 0.7).

In the second example (p](0.7)) states that -p cannot be proved while (-p (N 0.6)) states
that —p is true with some certainty. Hence weak consistency comes from a clash between the
claim that some propositions are true and the claim that these propositions cannot be proved
Partial inconsistency corresponds to the simultaneous statement that a propbsiiloine
true and false.

Both examples indicate that the inconsistency degree of a possibilistic knowled§e isase
the valuation of the weakest formula (in the sense of the orderifi)involved in the
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strongest contradiction iff . Let wO < such that Incon§{) = w. It is easy to see that
Od 0%, InconsfF — {®}) <w. LetF' 0 F such that Inconst’) = InconsfF) and
O0® 0%, InconstF' — {®}) < Incons@"). F' is called astrongly minimal inconsistent
subsebf & . Proposition 5 is then completed by

Proposition 5'(Lang et al., 1991)

The inconsistency degree of an inconsistent possibilistic knowledgébssihe smallest
weight of possibilistic formulas in any strongly minimal inconsistent suBsetf & .
Especially, if Inconsf) = ([] o) then there is a unique possibility-valued formul& irof the

form @ (I ).

The unicity of ¢ ([] a)) is due to the fact that any twW¢-valued formulasd ([] a)) and
(¢ (7 B)) never contradict each other. Hence the equivalence of the consistéh@ndfthe
consistency of its classical projectigit does not hold anymore when handling possibility-
valued formulas : indeegt = {(¢ ([T 1)), (-9 ([ 1))} is completely consistent whereds: =
{9, -9} is inconsistent. However we have the weaker result (Lang, 1991a): if lFepns(
(] 0) then * is inconsistent.

Proposition 6 for necessity-valued knowledge bases remains true for the possibility-valued
case, i.e. the degree of inconsistencyfir¢” inhibits all formulas¢ w) with w< inc and it is
equivalent to work with# jnc. A consequence of the above Proposition 5' is that in order to
calculate the inconsistency degreéfofit is enough to consider possibility-valued formulas
separately. Namely = & O & where& \ contains only the necessity-valued formulas
of & andeCH the possibility-valued formulas, then we have the following counterpart of
Proposition 7 for weak inconsistency :

Proposition 7' :
Incons@) = ([ a) if and only if & \* is consistent andi = max{B, 0 (¢ (M B)) O Fp,
FN* O {0} inconsistent}.

As a consequence, computing Incéhlfemains NP-complete as in the necessity-valued case
since it comes down to check either the partial inconsisterféydthen Proposition 8 applies)

or to check the inconsistency &fy* O {¢}, O ¢ O ?ﬂ*. The counterpart of Propositions 9

and 10 hold as well. Lastly, the non-monotonic behaviour we pointed out in the necessity-
valued case remains the same in full possibilistic logic.
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4.1.2. Axiomatization of possibilistic logic involving possibility- and necessity-qualified
formulas

The formal system for necessity-valued logic can be extended in order to handle possibility-
valued formulas. Basically, it consists in extending the graded modus ponens oveéktsov
as to enable the derivation of a possibility-valued formula from a necessity-valued formula and
a possibility-valued formula. The extended formal system for full possibilistic logic PL2 uses
the same axioms schemata as for PL1, where each axiom is necessity-valued by (N 1), (se
Section 3.6), and the following inference rules :

(GMP) (¢ wp) (& - Y w2) — (Ywg Owp)
(G) (& w) — ((Ox ¢) w) (if x is not bound i)
(S) Gw)— (pw) Owsw

where the operationis defined by

(N o) O(N B) = (N min@,B)) ;

_MPita+p>1
(N'o) 0 B)‘{(n 0)ifoa +B<1.

(Ma) O B) = (1 0).
Proposition 12' :
The proposed formal system is sound and complete with respect to the inconsistency-toleran
semantics of possibilistic logic, i.e. for any set of possibilistic forméilage have

F & (P w) if and only ifF — (@ w)

where¥ — (P w) means : ' w) can be derived frorff in the above formal system" (the
proof is in the annex). Thus possibilistic logic PL2xsomatisable

4.1.3.Automated deduction

In this section we briefly extend, to possibilistic logic PL2, the results established in
Section 3.8. about automated deduction procedures devoted to the computation of the
inconsistency degree. We may define clausal forms as in the necessity-valued case : ¢
possibilistic clausds a possibilistic formula (c w) where c is a first-order or propositional
clause and w is a valuation df. A possibilistic clausal formis a universally quantified
conjunction of possibilistic clauses. We denote by CPL2 the language consisting in possibilistic
clauses (necessity- or possibility-valued).
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We have seen (Proposition 13) that the problem of finding a clausal fafmvdfose
inconsistency degree is the saméfaslways has a solution in PL1, i.e 4f contains only
necessity-valued classical formulas.df contains also possibility-valued formulas, then
generally we cannot compute frdfa clausal form having the same inconsistency degree as
&, even in propositional possibilistic logic. For instance, the intuitive clausal form we can
compute from# = {(p 0q ([ @)), (-pT-q (N 1))} (@ >0)isC = {(p ([ o)), (q (1 o)),

(-p O-q (N 1))}, but it can be checked that Incdf3(= ([T o) whereas Incon&() = ([] 0).

This negative result comes from the non-compositionnality of possibility measures for
conjunction. Indeed (fJq ([T a)) is much stronger than (§](a)) O (q ([1 a)), since
(pOq (] o)) meansf](p Oq) = a, i.e. Ow O Qpsuch thatw = pq andT(w) = a,
whereas (p[( a)) O (g ([T a)), meand ko, w' U Qp such thato = p,w' = q andm(w) = a,

n(w) = a. This problem also appears in modal logics (Farifias del Cerro and Herzig, 1988)
and could be solved in our framework by similarly "colouritig? 'T]" valuations.

The following possibilistic resolution rule between two possibilistic clauges{¥and
(c2 w2) established by Dubois and Prade (1990) extends the rule (R) of Section 3.8.2 :

(c1 wq), (c2 W) — (R(cy, ©2) w1 * wo) (R

where R(g,c2) is a classical resolvent of and @, andllis the operation defined at the end of

the preceding Section 4.1.2. The similarity between (R) and resolution patterns existing in
modal logics has been pointed out ; see (Dubois and Prade, 1990). The soundness result
easily extended (see Lang et al., 1991) :

Proposition14' (soundness of rule (R"))
Let C be a set of possibilistic clauses, and C a possibilistic clause obtained by a finite number of
successive applications of (R")iqg then’ = C.

Refutation by resolution is very similar to the necessity-valued case, changing valuations
(N a) into w V°, and we look for an optimal refutation, i.e. one leadingtavj with w
maximal. However when the knowledge base consists in both necessity-valued and possibility-
valued formulas, then, because the transformation into clausal form is not complete (it does no
preserve the inconsistency degree®, must suppose thét is a set of possibilistic clauses

right away; in this case, =% and step 1 of the refutation procedure given in Section 3.8.2 is
omitted. Soundness and completeness results then hold for possibilistic resolution when the
knowledge is propositional (Lang et al., 1991) :

Proposition 15'(soundness and completeness of refutation by resolution in propositional
clausal possibilistic logic CPL2)
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If C is a set opropositionalnecessity- or possibility-valuedausesthen the valuation of the
optimal refutation by resolution frofm is equal to the inconsistency degreé& of

Corollary :
Let ¢ be a classical formula and' the set of possibilistic clauses obtained from

C O {(=¢ (N 1))} ; then the valuation of the optimal refutation by resolution fionis
Val(,0).

Soundness and completeness of refutation by resolution in first-order PL1 were a consequenct
of Propositions 10 and 13 together with the expression of the resolution rule ; it does not hold
for first-order possibility-valuedclauses : for instance, i = {(p(x) ([T o))}, x being a
(universally quantified) variable anal > 0, and$ = p(a)p(b), then there is nd| a)-
refutation by resolution fron> O {(-p(a) O -p(b) (N 1))}, whereasC = (p(a) O

p(b) (7 a)). It does not hold either for possibility-valued formulas, since the tranlation into
clausal form does not preserve the inconsistency degree if a knowledge base contains
possibility-valued formulas. As already mentioned, completeness can be recovered by indexing
the 'T]" symbols in the [{] a)-valuations, in the same spirit as in modal logics (Farifias del
Cerro and Herzig, 1988). Lastly, as the existence of a possibility distribiitiosuch as

M & iff < g is generally not satisfied in PL2, semantic evaluation cannot be easily
extended to full possibilistic logic.

4.2. Variable valuations

In "standard" possibilistic logic we considered only weighted formulas of the fiomr) (
where¢ is aclosedformula of first-order logic, i.e. it is only allowed to quantify "inside" the
scope of a valuation.

In quantified possibilistic logic we allow formulas of the form (QQx2...Qxn)
(6 w) where Q is a quantifier (eithér or D) and$ a formula of first-order logic where
variables %, ..., Xy are free. The further step is then to allow the valuations w to depend on the
free variables xof ¢ : this isquantified possibilistic logiavith variable valuations
Thus, the possibilistic formulalk) (¢ w(x)) expresses that for any ¢,is true for x with a
possibility or necessity degree (at least) w(x).

The following example illustrates some potentials of universally quantified possibilistic
formulas with variable valuatiofis Letup be the membership function of a fuzzy predi¢ate

4 The meaning of existentially-quantified valuations is less intuitive.
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then the possibilistic formulap(x) (N up(x))) enables us to express that "the more x satisfies

P, the more certaifi(x) is satisfied". For instance, we wish to translate the statement "the later
John will arrive to the meeting, the more certain the meeting will be quiet ; and if John does not
come at all then it is certain that the meeting will be quiet". First define the vague predicate
"late" on the universe of time U = [0, 24] by its membership function "late" (see Figure 2) :

8 9 10 11 12 t

Figure 2: Membership function of the vague predicate "late"

and then we translate the statement by the possibilistic formulas

0t (Arrives(John, meeting, t) Quiet(meeting) (N1atdt)))
((Ot =Arrives(John, meeting, t))» Quiet(meeting) (N 1))

In the first possibilistic formula above, the quantifiérs outside the scope of the valuation
(which entails that the later depends on t), while in the second formula (which is a "standard"
possibilistic formula) the quantifier is inside the scope of the valuation. Generalizing the
semantics of possibilistic logic in order to take into account variable valuations is not
straightforward (see Lang (1991a) for further details).

Another kind of variable valuations is encountered in hypothetical reasoning. As pointed out
in (Dubois et al., 1989), the weighted claus¢ (¢ a) is semantically equivalent to the
weighted clausey( min(a,v($))) where vf) is the truth value af, i.e. v@p) = 1 if ¢ is True
and v) = 0 if ¢ is False. Indeed, for any necessity-valued proposifian) (ve can write the
membership function of the fuzzy set of models dfa(), iy (g o)(w) under the form
max(v,y(9), 1 —a), where y,y(9) is the truth-value assignedgdy interpretatiorw. Then we

have :
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Do, Um(-¢ oy a)(@) = max(y(=¢ OW), 1 —a) = max(l — gy$), vy(W), 1 —a)
= max(yy(W), 1 — min(yy(), &) = Km(y min(vy(®),a))(@)-

This remark is very useful for hypothetical reasoning, since by "transferring" anpatom
from a clause to the weight part of the formula we are introducing an explicit assumption.
Indeed changing @0 ¢ a) into @ min(v(®), a)) leads to state the piece of knowledge
under the form ( is certain at the degree provided thatp is true". Then the weight is no
more just a degree but in fact a label which expressesaheextin which the piece of
knowledge is more or less certain.

4.3. L-possibilistic logics

The choice of the unit interval for the necessity and possibility degrees is not compulsory.
Basically what is needed is a partially ordered set such that any pair of elements possesses
least upper bound (sup) and a greatest lower bound (inf), and that possesses as well a top anc
bottom element (denotedand® respectively) so as to valuateandll. In other words L must
be a complete lattice (being furthermore distribufivéjhen a lattice-valued necessity measure
(L-necessity for short) is such that :

N(¢ T W) = inf(N($),N(W))

The sup-operation is needed in case more than one proof path conclddesdeed, from

N(¢) = a, N(d) = 3, we would like to conclude on B} = sup@,B). The use of a (hon-
necessarily totally ordered) lattice as the set of certainty degrees attached to logical formulas ha
already be studied especially in the scope of non-monotonic logics and logic programming ; see
Sandewall (1985), Ginsberg (1988), Fitting (1991), Subrahmanian (1989), Froidevaux and
Grossetéte (1990). In this section we extend possibilistic logic in this direction.

Clearly the resolution-based refutation machinery works with such a structure, in the case of
necessity-valued possibilistic logic. Introducing possibility-qualified statements is not easy
because no inversion may exist on L. One simple way out of this problem is to introduce this
kind of propositions using upper bound on necessity-measures, i.e. the following syntax could
be used

(¢ at) means Nf) =a
(6 ao) means N($)<a

In that case the resolution rule R works as follows in the hybrid case

5 see Goguen (1969) for argument in favour of completeness and distributiveness for lattice-valued fuzzy sets.
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(¢ o) ; WP) — (Resp,y) a* OB)

such that at OB~ =B~ ifa>p
= 1~ otherwise

It is easy to check that when L = [0,1], the above resolution rule is equivalent to the one of
possibilistic logic lettind](¢) = 1 — N(-9) ; especially, it highlights the fact that the operation
(Nao)O(NB) =B if a+p>1and 0 otherwise owes nothing to additivity in [0,1]. Interesting

examples of such lattices L are :

— a finite chain of symbolic certainty levels ;

— a Boolean lattice ; for instance generated by a partition of a time scéleb&i(ig a time
period whend is certainly true : we get a reified temporal logic catietkd possibilistic
logic. This can be generalized to a lattice of fuzzy sets, i) ié(a fuzzy time period whep
is more or lessertainly true (Dubois, Lang, Prade 1991d) ;

— a lattice of fuzzy sets of sources, wheréN¢ the fuzzy set of sources according to which
¢ is more or less certainly true (Dubois, Lang and Prade, 1992).

— the set of convex fuzzy sets on [0,1] (that may model linguistic values pertaining to certainty
qualification) ;

4.4. Weighted logics based on decomposable set-functions

Keeping the [0,1] interval, one may wish to relax the axiom

[1(¢ Dw) = max(1(9).M1(w)).

Then we can work with a very general class of [0,1]-valued set-functions (including possibility
measures) introduced by Dubois and Prade (1982) and also studied by Weber (1984). Let ¢
denote such a set-function. Possible candidates should obey the axiomsO)(® @ { (ii)

g(T) = 1 ; (iii) if Oy = Othen g Oy) = g@) DgW), whereOis a mapping from [0, #to

[0,1] which is a semi-group with unit O and absorbing element 1 on the unit interval, also called
atriangular co-norm(Schweizer and Sklar, 1983). The property (iii) is catledomposability

A dual mappingg is defined from g by

9(9) =1-9(4)
and verifies (i), (i) and (iii'): ip O@ =T theng(d O W) = g(¢) JgW), wherelis defined

from Oby : Oa, B 0 [0,1],a OB =1 - (1 —-a) J(1 —PB). We obtain thus a second class of
decomposable measures, which includes necessity measures. This setting is more general th:
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both probability and possibility theories, and can be characterized by suitable comparative
relations on a set of propositions (Dubois, 1986).

In the particular case wheeel I3 = min (1,a + 3) anda 0O = max(0,a + 3 — 1), then g
can be chosen as a probability measure (providedjthat) and we recover thpsobabilistic
logic, in the sense of (Nilsson, 1986). Apart frahs max, the choice ad (O =a + 3 —af
corresponds to still another family of set-functions. The setting of decomposable measures thus
encompasses both probabilistic and possibilistic logics.

Instead of [0,1], the lattice L = [0,0¢}, equipped with the opposite ordering (such that
O =+ and1 =0) and allb = a + b (which corresponds(ie= product by the one-to-one
mapping a = - Ind) from [0,1] to [0,o]) leads totoll logic (see Dubois and Prade, 1991e)
whereg() is the cost for the realization ¢f the simultaneous realization of two formudas
andy such thatp O =T being the sum of the costs for the realization$ andy, i.e.

g 0W=9g@¢) DJgW=9@) +9 W whenp DY =T.

4.5. Possibilistic logic with vague predicates

Preliminary work aiming at extending the resolution rule over to the case when possibility
and necessity-valued formulas invofugzypredicates, that is predicates whose extensions are
fuzzy sets is proposed in Dubois and Prade (1990). When fuzzy predicates are involved the
basic problems are the lack of a Boolean structure for the language quotiented by the logical
equivalence relation, and the question of a proper definition of the certainty and possibility of
fuzzy statements. The approach proposed in the above-mentioned reference consists in keepir
the same syntax as possibilistic logic, but modifying the resolution rule in order to account for
the possible overlap of modelsgfand ¢ in the fuzzy case. It seems difficult to define right
away what an interpretation is for a fuzzy proposition. We assume that we can start with a set
Q of possible worlds, and that each wosbds compatible with a vague propositi¢prto a
degree, say ; let us denote i =y ¢, wherea [ [0,1] ; fuzzy set complementation leads to
considew = —¢ as equivalent tw=1_g ¢. Fuzzy set union and intersection suggest that

WEq ¢ andw=p Y U WE=min(,p) ¢ DV ; @ =max@,p) ¢ DY
The degree of consistencyfindy is evaluated as

Consf,) = supy{min(a,p) |w=q ¢ ; w=p Y}

As a consequence, Comstd) < supy min(a, 1 —a) = 0.5 only, i.ep and - are no longer

always totally contradictory.
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Let rtbe a possibility distribution o and¢ be a fuzzy formula. The degree of certainty
C(d) of ¢ in the face oftshould verify the following properties :

) C(¢)=1ifand only ifJw, wE=g ¢ U m(w) <a, i.e. the fuzzy set of worlds satisfyigg

contains the fuzzy set of possible worlds describen, by

i) C(¢) =B if and only if Dw such thatr(w) > 1 —B, wk=qg ¢ impliesT(w) < a. In other
words the inclusion relationship betwer@and the fuzzy extension ¢fmay fail to hold
for T{(w) small enough ; and the high@githe lower the level below which this inclusion
may fail to hold.

Letting Hgp(w) = a be equivalent tad =g ¢, a certainty index that satisfies these two

requirements is (Dubois and Prade, 1991d) :
C(¢) = infe0Q Mw) - Hep(w)

where - is the reciprocal of Gddel's implication, ie.- B=1ifa <, and 1 —a
otherwise. Then we have the following equivalence

C)2p =« Uw, w=qg ¢ O mMw) < max@, 1 -B)

which by the principle of minimal specificity forcagw) = max(iq)(oo), 1-pB). Itis an
extension of the necessity qualification, as introduced in the crisp case in Section 2, and usec
for interpreting necessity-valued clauses.

This leads to the property] B U [0,1], w =g ¢ impliesw Emax(@,1-p) @ (N B)),
viewing @ (N B)) as equivalent t¢' with Hg' = max (1¢, 1 —B). Moreover the satisfaction
relation for a possibility distributiort writestt= (¢ (N B)) if and only if C¢) = 3, when¢ is
a fuzzy proposition. Note that whenis non-fuzzy, C¢) and N ¢) coincide which justifies
the notationd (N 3)).

The resolution principle is then extended in the proposition case to a cut operation between
two fuzzy clause$ (1 and¢' (1€ as follows :

(¢ 0w (Na)) (@' 0¢ (NB)) — WD (Nmin(a, B, 1 — Cons.9"))).

Clearly, the less contradictogyandd’, the less informative is the result provided by the cut
rule. Especially, i’ = +¢, the certainty degree associated wjithl ¢ will generally be upper
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bounded by 0.5. When Corpsé’) = 1 which happens for instance under ¢, then the
resolution rule leads to a completely uninformative result, which is satisfactorypSizuced

are not contradictory at all in that case. The notion of possibility-valued fuzzy propositions and
the corresponding resolution rule can be extended likewise (Dubois and Prade, 1990).
However further research is needed to fully justify resolution rules for fuzzy formulas at a
semantic level.

5. Some applications
5.1. Possibilistic management of assumptions

The principle of assumption-based truth-maintenance systems (ATMS) is to distinguish
between two types of literals in a knowledge base, one being aaflachptionsA knowledge
base is viewed as a set of propositional formulas (usually clauses) called justifications. The
problem solved by an ATMS, is to calculate, given a literal p the configuration of assumptions
which enable p to be derived.

Classical ATMS (De Kleer, 1986a,b) require that the clauses contained inside the
knowledge base (justifications and possibly disjunctions of assumptions) be certain ; but we
may wish to handle more or less uncertain information without losing the capacities of the
ATMS. The basic principle of the possibilistic ATMS is to associate to each clause aaveight
which is a lower bound of its necessity degree. Assumptions may also be weighted, i.e. the
user or the inference engine may decide at any time to believe an assumption with a certainty
degree that he/she will give. The capabilities of possibilistic logic for dealing with assumptions
are to be related to the way contexts can be handled in the weight part of a possibilistic formula,
as mentioned in Section 4.2. A possibilistic ATMS (Dubois, Lang and Prade, 1990a, b) is
capable of answering the following questions :

() Under what configuration of assumptions is the proposition p certain to the de@ree
(i.e., what assumptions shall we consider as true, and with what certainty degrees, in
order to have p certain to the degoe®)

(i) What is the inconsistency degree of a given configuration of assumptions ?

(i) In a given configuration of assumptions, to what degree is each proposition certain ?

We are now giving a few technical details. The basic notions attached to the classical ATMS
are generalized in the following way. Letbe a set of necessity-valued clauses and E a set of
assumptions ; the following definitions are useful :
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—) let E be an environment, i.e. a set of assumptions considered as certainly true (i.e. weightec
by 1). E is said to be an-environment of the literal p if and only} 0 E= (p a) with a
maximal, i,eJa'>a, EO Y = (pa’).

—) E is ana—contradictory environment, @—nogoodif and only if Incons (1 %) =a. It is
said to be minimal if there is ri-nogood E' such that & E' anda < 3 (at least one of the
two relations being strict).

In order to define the label of a proposition p, we consider only non-weighted assumptions
(i.e. they will have the implicit weight 1). It can be shown that it is useless to weight the
assumptions inside the labels (this remark also holds for the base of nogoods). The label of the
proposition p, L(p) = {(k a;), i U I} is the uniquefuzzysubset of environments for which

the four following properties hold (see (Dubois, Lang and Prade, 1990a, b) for more details) :

— (weak) consistencyl (E;, a;) U L(p), Incons (EU 3) <a; .

— soundnessL(p) is sound if and only ifJ (;, o;) U L(p) we have ELI 3 = (p o).

— completeness L(p) is complete if and only if for every environment E' such that
E'l > = (pa’) non trivially, thenli U | such that EL E' anda; 2 o',

— minimality : L(p) is minimal if and only if it does not contain two different weighted
environments (@ al) and (EZ’ 0(2) such that EUE, andal 2 0.

Ranking environments according to their weight in the label of each proposition provides a
way of limiting the consequences of combinatorial explosion : indeed when a label contains too
many environments, the possibilistic ATMS can help the user by giving the environments with
the greatest weight(s) only.

A possibilistic ATMS extends Cayrol and Tayrac (1989)'s generalized ATMS, where each
piece of information is represented by a (general) propositional clause, which enables

— a uniform representation for all pieces of knowledge (no differenciated storage and treatment
between justifications and disjunctions of assumptions) ;

— the capability of handling negated assumptions as assumptions, i.e. environments and
nogoods may contain negations of assumptions ;

— a simple and uniform algorithm for the computation of labels and nogoods, based on
resolution.

An application of possibilistic ATMS to diagnosing faults under uncertainty is developed in
(Dubois, Lang and Prade, 1990a). See (Benferhat et al., 1991) for implementation issues.

A possibilistic ATMS offers a simple way of managing inconsistency in a possibilistic
knowledge base that is more refined than the inconsistency-tolerant deduction in possibilistic
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logic. More specifically, it enables to compute the strongly maximal consistent sub-bases of a
possibilistic knowledge basé, i.e. deleting fronf only the minimally weighted formulas
involved in the inconsistency. The obtained revised knowledge‘bas®y contain formulas

(¢ o) with a < Incons &) that would have been inhibited by the inconsistency-tolerant
deduction from% . The revision procedure consists in finding all the minimal inconsistent
subsets off ; this can be done by means of the possibilistic ATMS as follows : attach a
specific assumption ¢ito each formulag( a) in & (changing ¢ a) into (Hp - ¢ o)) and let

% H be the obtained knowledge base. Find all the nogooéfspjnusing the possibilistic
ATMS; each nogood i¥ 4 corresponds to a minimally inconsistent subsefofThen

roughly speaking the strategy consists in deleting the least weighted formula from each nogooc
(see Dubois, Lang and Prade (1991b) for details).

The handling of inconsistency in a knowlege-based by means of an ordering of formulas is
more generally considered in Cayrol (1992), and Cayrol, Royer and Saurel (1992), following
ideas initiated by Brewka (1989) and Poole (1988).

5.2. Discrete optimisation

So far, possibility and necessity measures have been considered as degrees of uncertain
linked to the partial absence of information. It makes sense to interpret them in a different way
in the scope of constraint-based reasonid@N(a)) can be viewed as declaring a constréint
with a degree of imperativeness equal t¢ N a. Whena = 1,¢ cannot be violated ; when
a = 0,4 can be dropped. In that cd5¢-¢) = 1 —a evaluates to what exteditis allowed to
be violated. N angl] are thus given a deontic interpretation ; N stands for evaluating more or
less compulsory constraints, whilg describes whether something is allowed or not. More
specifically, let us interpret the properties of N &heh this framework :

* N(T) (=T1](T)) = 1 indicates that tautologies are imperative ;

e Sincep (Na)) O(-¢ (N 1))~ (O(N a)), contradictions are tolerated, i.e. partially feasible
solutions whered( (N a)) is violated. 1 -a thus denotes the degree of feasibility of such
solutions ;

* N(¢ O y) = min(N@),N()) is equivalent to[](=¢ U -g) = max(](=¢),[1(~y)). It
expresses that if §) = a and N() =3, violating one of the two constraints can be allowed
while preserving a level of feasibility at most equal to 1 —mnp)(;

 The possibility distribution induced by a set of N-valued constraints represents the fuzzy
feasibility domain, subnormalization indicating that some constraints which are not fully
imperative must be violated.
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The use of min and max operators suggests that the precise values of the necessity (o
possibility) degrees is less important than the ordering on the formulas induced by them : thus,
necessity degrees may be seempragrity degreeswhere N¢) > N()) expresses that the
satisfaction ofp is more important than the satisfactionjof

As we have seen in Section 3, the inconsistency degree of a set of necessity-valued formula
F ={(¢109), ..., @n ap)} verifies the equality

Incong¥) = 1 — mag,o T (w)

and computing the best model(s)%fcomes down to find the interpretaticsmaximizing

T (W), wheretiz (w) = min{l —aj |wE= —¢j, i = 1, ..., n}. The best models correspond to

the optimal (most feasible) solutions to a given problem. In a more compact way, it reduces to
the discrete optimisation problem

max,yQ min{l —aj |wE= =i, i =1, ..., n}

or equivalently to this other one

mingQ Mmax{aj |w= —¢j, i=1,..., n}

So, computing Incon&() and the best model(s) &f is a min-max discrete optimisation
problem ; hence, problems of the same nature, which have the general form

minygx max,y f(x,y)

where X and Y are finite, can be translated into necessity-valued logic and solved by resolution
or semantic evaluation ; moreover, if semantic evaluation is used, the set of best m@dels of
will give the set of optimal solutions for the min-max discrete optimisation problem.

Of course, the problem of computing the inconsistency degréeisfNP-complete (see
Proposition 8) ; thus, resolution and semantic evaluation are (in the case where we use non
Horn clauses) exponentfahnd it is clear that for a given problem, there generally exists a
specific algorithm whose complexity is at least as good as (often better than) the complexity of
necessity-valued semantic evaluation. Thus, we do not claim to give, for the problems we shall
deal with, a more efficient algorithm than already existing ones ; however, we think that
translation into necessity-valued logic is useful, for several reasons :

6 However, theimveragecomplexity may be polynomial in some particular cases.
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— the search method is independent from the problem ;

— the pruning properties (in the search tree) of the semantic evaluation procedure can confer tc
the algorithm a good average complexity (even polynomial, in some cases) (see Lang,
1990) ;

— necessity-valued logic enables a richer representation capability in the formulation of a
problem (one can specify complex constraints not easy to express in the language requeste
by a specific algorithm).

Thus, necessity-valued logic appears to be a logical framework for expressing in a
declarative way some min-max discrete optimisation problems. An typical example of such a
problem is the min-max assignment problem (also called "bottleneck assignment problem")
formulated as follows : n tasks must be assigned to n machines (one and only one task pe
machine) ; if machine i is assigned to task j, the resulting cogt iBren the total cost of the

global assignment is not the sum, but the maximum of the costs of the elementary assignments

More generally, min-max discrete optimisation problems may come from constraint
satisfaction problems, where the constraints are weighted by necessity degrees measuring the
priority, and where the constraint set is "partially" inconsistent, in the sense of Section 3.
Solving such a "prioritized" constraint satisfaction problem consists in finding the solution
minimizing the degree of the most important constraint among those which are violated. Again,
necessity-valued logic offers a general logical framework for representing and solving these
problems. See (Lang, 1991b) for a detailed example.

5.3. Logic programming

The basic idea of logic programming (e.g. Lloyd, 1984) is to use logic as a programming
language : in that sense, it is much more than automated theorem proving. In an algorithm,
there are two disjoint components : the logical description of the problem and of what is to be
proved (or solved), and the control part, i.e. how the problem has to be solved. In an idealistic
programming language, the user has only to take care of the logical part. Since a problem may
contain uncertain knowledge, possibilistic logic seems to be a nice tool for designing a logic
programming language well-adapted for dealing with uncertainty. Moreover, possibilistic logic
programming can be used for solving problems with min-max criteria, as said in section 5.2. It
is clear that such problems can be solved using an ordinary logic programming language, but
the user then must handle himself the numerical part of the program : computing the weight of a
proof path, and then combining the weights of all proof paths to a goal, which leads to a more
complex formulation, and also to a less efficient solving of the problem, except if the user also
takes care of the central part of the program (which is long and tedious). In the following we
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make use of Kowalski's notation A B1... By for -B1 [... O-Bp JA, and for necessity-
valued Horn clauses we use the syntax]arjstead of (ca).

Example: least unsure path(s) in a graph

Let us consider a fuzzy graggh viewed as a pairl(’,E) whereV is a set of
vertices ancE a fuzzy relation onl’X <V ; given two vertices v and V', we are
interested in finding the weight of the least unsure path between v and v/, i.e. the
path with maximal weight, the weight of a path being the minimum of the weights
of the edges composing it ; for instance, in the fuzzy graph

A 05 B
0.9
0.7 0.6 E
S E—_ 0.2
C 08 D

the least unsure path between A and B is (ACDBE) ; it has the weight 0.6. This
weight can be found by a possibilistic logic program ; for the above example, it is
the following :

. path($x,$y) — edge($x,$y) 1I;

. path($x,$y) — path($x,$z) edge($z,$y) 1] ;
. edge(A,B) ~ [0.5] ;

.edge(A,C) ~ [0.7];

. edge(B,D) ~ [0.6];

.edge(D,B) ~ [0.6];

.edge(C,D) ~ [0.8];

.edge(B,E) ~ [0.9];

.edge(D,E) ~ [0.2].

© 00 N O O WON -

If we add the goal — path (A,E) [], the only optimal answer substitution is {} [0.6], i.e.
the weight of the least unsure path between A and E is 0.6. If we add the gmth ($x,$y)
[1], then we shall find all weights of the least unsure paths between two vertices of the graph,
i.e. we shall have the max-min transitive closure of the graph. It is easy to modify the program
in order to obtain the complete optimal paths and not only the weights (it is sufficient to
introduce a third variable in the predicate ‘path’ in order to collect the list of the edges of the
current path). This example exhibits the ability of a "possibilistic Prolog" to handle max-min
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optimisation problems ; indeed with a classical Prolog interpreter, the programmer would have
to take care of the numerical aspects of the example.

More formal details and results about declarative and procedural semantics of possibilistic
logic programs can be found in (Dubois, Lang and Prade, 1991c). They are connected to
results obtained by Subrahmanian (1990) who generalizes Van Emden's (1986) quantitative
logic programming.

6. Conclusion

Possibilistic logic appears to be a natural extension of classical logic where the notion of
total ordering on formulas is embedded in the logic. It embodies the basic structure of
preferential-model-based non-monotonic logics because a possibility distribution is an easy
way of encoding a preference ordering on interpretations. A comparison on a tutorial example
of possibilistic logic with other formalisms for reasoning under incomplete knowledge can be
found in Lea Sombé (1990). Possibilistic logic thus contrasts with Ruspini (1991)'s view of
fuzzy logic, based on a similarity relation between interpretations (or possible worlds) rather
than on an ordering relation. In Ruspini's view, instead of focusing on the preferred models of
¢ in the preferential entailmeft|= Y, we rather enlarge the set of modelg)ddy considering
other models which are close to a modelpofMoreover possibilistic logic possesses an
inference machinery which is a direct extension of refutation by resolution. This fact suggests
that cumulative-like non-monotonic logics studied by Kraus et al. (1990) and by Gardenfors
and Makinson (1991) can be efficiently implemented. Moreover it might turn out that
possibilistic logic appears as a special case of "labelled deductive systems" studied by Gabba
(1991), since a possibilistic logic formula is a pair made of a classical formula and a weight
where weights can encode uncertainties and/or contexts.

However, these results tend to make us forget that the origins of possibility theory belong to
the field of fuzzy sets introduced by Zadeh (1965). This latter fact suggests that possibilistic
logic might have a basic role to play in the development of fuzzy information systems where
fuzzy predicates must be explicitly handled. The so-called "fuzzy logic-based controllers”
introduced by Mamdani (1977) and now widely applied in Japan (e.g. Sugeno, 1985) are but
very simple examples of such fuzzy information systems containing only some fuzzy rules
working in parallel, and performing interpolation. Interestingly the "logic" of fuzzy controllers
can be completely interpreted in the framework of possibility theory (Dubois and Prade,
1991d). A future task is to define a genuine logic handling fuzzy predicates, i.e. define its
syntax and its inference rules. Viewed in the light of hon-monotonic reasoning, a fuzzy
proposition can be semantically interpreted as inducing itself a preference ordering on possible
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worlds in which this proposition is true. Hence the link established, via possibility theory,
between "fuzzy logic" and non-monotonic reasoning might be worth studying further. Another
line of interest for further research is the handling of weights attached to subformulas in order
to express in the language pieces of knowledge such that "if p is certain and if q is at least
somewhat possible, then r is almost certain”. It might lead to a logical formalization, of the
approach suggested by Yager (1987) for default reasoning. Besides, it has been recently show
that a set of defaults rank-ordered by system Z (Pearl, 1990) can be encoded in possibilistic
logic (Benferhat, Dubois and Prade, 1992).

Lastly, possibilistic logic bears obvious analogies with probabilistic logic. However they do
not seem to be tailored for the same purposes. Probabilistic logic seems to be well adapted t
the structuration and processing of statistical knowledge (as in Bayesian networks, Pearl
(1988)), including when this statistical knowledge is incomplete (Kyburg, 1974 ; Bacchus,
1990). Probabilistic logic has also been construed as a theory of induction (Carnap, 1950), or ¢
logic of subjective belief (Halpern, 1989). However in both cases, the same mathematical tools
as in statistics are adopted, so that computations are based on counting rather than comparin
As a consequence, probabilistic logic is much more complex than possibilistic logic, especially
if conditional probabilities must be accounted for in the language. Possibilistic logic aims at
reasoning with the most reliable part of a knowledge base, i.e. by means of the most
"entrenched" formulas (to borrow from Gardenfors (1988)). It strongly departs from the type
of inference made in probabilistic logic where a high number of very unreliable proof paths
producing a conclusion may lead to the complete certainty of this conclusion (as it is the case
with the lottery paradox). Hence it might be misleading to consider possibilistic logic as a
surrogate of probabilistic logic. It is neither a generalisation nor a special case of probabilistic
logic. Nevertheless it turns out that possibility measures can be viewed as a very special family
of upper and lower probabilities (Dubois and Prade, 1988). And Spohn (1988)'s theory of
ordinal conditional functions has moreover given birth to an interpretation of possibility
measures in terms of infinitesimal probabilities (e.g. Dubois and Prade, 1991b). The state of
fact suggests that despite their distinct and contrasted specificities, it may be of interest to
search for formal connections between probabilistic and possibilistic logics.
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Annex

In this annex we give the proofs of most of the results given in Sections 3 and 4 of the
paper. Most of them can be found in (Lang, Dubois and Prade, 1991) and (Lang, 1991a).

Proofs of results from Section 3 (possibilistic logic PL1)

Proposition 1:
LetF ={(d1 aq), ..., b ap)} be a set of necessity-valued formulas and let us define the

possibility distributionrz by

T (w) =inf{1-aj|wE= —¢j,i=1, .., n}
=lifo=¢10¢20.. Odp

then for any possibility distributiomt on Q, m = & if and only if T < T, i.e.
OwlQ, m(w) < g (w).

Proof: m= & iff (Oi=1, ..., = (9 aj)
iff (Ji=1, ..., n) N§j) = aj (where N is the necessity measure induced)by
iff (Oi=1,..,n) inf{l -Mw) |wE= -} =aqj
iff (Oi=1,..,n QwE= ) Mw) <1-qj
iff mMw) <inf{l-aj|w=-¢j,i=1,..,n}
iff T(w) < 1z (w). |

Proposition 3:
Incons@) = inf{N (0) |m= &} = sup{a, ¥ = (0 a)} where N denotes the necessity
distribution induced byt

Proof:

(i) Incons@) = infyno (1 —TF(w)) = infT[ST[gf infoyoo 1 —mMw) = infT[ST[g N(O) =
inf{N(0O), m= ).

i) supfo,F = O o)} =sup{a, dmn=F,NO)=2a)}=inf{N(O), 1= F}. O

Proposition 4:

The least upper bound in the computation of Incéndg6 reached, i.e. there exists (at least)
one interpretationy* such thatg (wW*) = supyQ T (W).

Proof: In the propositional case, this result is trivial, sifcis finite. In the general case, since
there are a finite number of necessity-valued formulas (and hence a finite number of valuations



68

aj), the definition ofriz implies that 1z (w) takes only a finite number of values when
ranges along th@nfinite in the first-order case) set of interpretatibhdHence the resula

Proposition 5:

The inconsistency degree of an inconsistent possibilistic knowledgébisihe smallest
weight of possibilistic formulas in any strongly minimal inconsistent subbsetf & . More
precisely, if Incons &) =a > 0 then there exists at least one formdlac() 0 %' and

0@ B IF, B2a.

Proof: Assume¥ ' = {(¢j aj), i = 1,m} is a strongly minimal inconsistent subsetfof By

definition of #' we have
Incons@ ') = InconsfF) =a = 1 — sugyQ T (W)

Assumea] = min=1 maj. Let us prove thatr1 = a. T satisfies# * if and only if Oi,

0 wE= —6j, ) < 1 —aj; in other wordsm, m= &' implies0 wi= =1 O-¢po O...0
“Qm, TMw) < max (1 —aj) =1 -aq. Hence, since ¢ U-¢po O...0-¢m is a tautology
(otherwise ' would not be inconsistent]] w 0 Q, TM(w) < 1 —a1 is a consequence of
= %'. Hencea > 1. Now lettt be defined bytw) =1 —a1 if w= ¢2 Doz 0...00m,
mw) < 1 —aj if o= =¢j. Nowdo O¢3 0... Ddm # O due to the minimality ofF*, so that
[, M(w) = 1 —aq, andm = & . Hencea = ajy. O

Proposition 6 :
LetF be a set of possibilistic formulas and let Inc&ns€ inc ; then

(i) & is semantically equivalent f6jnc and toF ipe 0 {(Dinc)}
(ii) & nc is consistent
(iii) if & = (Y a) non trivially (i.e. witha > inc) then [pe = (Y a).

Proof of (i): Let us show tha¥ = Fine, thatF jnc = F ine 0 {(0 inc)} and that¥ jpe 0
{(Oinc)} = &.

(1) F = Finclis obvious sincé containsF jnc -

(2) FincE F e is obvious sincé ¢ containsF e ;
Finc = {(Oinc)} is an immediate consequence of Proposition 5.
HenceF inc = ¥ inc U {(Tinc)}

(3) Fne0{(0inc)} = & is less obvious :
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Let 1t be a possibility distribution satisfyingl(nc) 0% e ; let us prove that satisfies# .
For any necessity-valued formui aj) of # : if aj > inc thenrt= (9 aj), sincem satisfies
F ime ; and ifaj < inc then Néj) = N(O) = inc (sincer satisfies [ inc)) = aj, hence
= (¢j aj). Thus we have proved thasatisfies¥ . Hence the result. m|

Proof of (ii) : Let us suppose thét jjc is inconsistent; then, from Proposition 5 it comes
immediately that Incons& o) is equal to the valuation of a formula &fipg, i.e.
Incons@ fnc) > inc. Then, sinceéF contains¥ pc, We have inc = Incon&() =
Inconsé ip > inc, which is contradictory. Hencg,jnc is consistent.

Proof of (jii) : ¥ = (@ a) non trivially means# = (¢ o) with o > inc. Let¥ = {(¢j aj),

i=1, ..., n}; using the definition of a necessity measure induced by a possibility distribution,
F = (¢ a) non-trivially, is equivalent to

OwkE -y, 0, w=~¢pjand 1 0j <1 -a (<1-inc)
This implies wE= 4, 0, wE= =¢j andaj > inc. Hence
OwkE =P, mn{l —aj |wE= =¢j, aj >inc}<1-a,ie.Fpe= Wa). O

Proposition 7:
(1) (Dubois and Prade, 1987) L%tbe a set of necessity-valued formulas; then Incéns (
= 0 if and only#* is consistent in the classical sense.
(2) Inconsf) =sup {o | F y* inconsistent}
= inf {a | ¥ g* consistent}

and these two bounds are reached.

Proof:
(1) (O)LetF ={(¢j aj),i=1, ..., n}. According to its definition, Incon&{ = 0 if and
only if T is normalized, i.e. iffjw* O Q such thatty (w*) = 1. This impliesw* = ¢;, L.
Hence¥ * is consistent.

(O) if #*is consistent then it has a mode] thentiz (w) = Inf {1-0j | W= -¢j} =1
sincelli, w= ¢j. So,T is normalized and Incon&() = 0.
(2) Straightforward from (1) and points (i) and (ii) of Proposition 6. O

Proposition 8:
Determining the inconsistency degree of a propositional necessity-valued knowledge base is ¢
NP-complete problem.



70

Proof : Let us denote as (I) the problem of the computation of InEops¢hereF is a
propositional necessity-valued knowledge base, and (S) the satisfiability problem in classical
propositional logic. It is immediate that (I) must be at least as complex as (S). We are going to

prove that the complexity of these two problems are of the same nature, by showing that (I) car
be reduced into at most [1+lgg] problems (S), where n stands for the number of formulas in

F .

Following Proposition 7 we have Incoffs] = Sup {u |£'FO(* inconsistent}. Let A be an
algorithm for (S) ; using (A) we define an algorithm (A") for (I) computing Incénsy
dichotomy :

Begin
Let#F = {(¢j aj), L<i<n}and leta'q, ... o'y be the distinct valuations appearing?n
(so ms nand f'q, ..., a'm} is included in {01, ..., ap}), ranked increasingly, i.e.
O<a'p<a'z2<..<da'm=s1l
lower — 1

upper— m
W?]Fi)le lower < upperdo {?alower* is inconsistent anﬁca—wp—er* IS consistent}
r — [(lower + upper) / 2] ;

Apply Ato & g *;

if & q,* is consistent

thenupper— r-1

elselower — r

end {while} {Incons(¥) = a,}

End

Clearly, this algorithm computes effectively Incdfig((following Proposition 7) and its
complexity order is Comp(A’) = [1 + legn] Comp(A)< [1 + logpn] Comp(A), i.e. (I) comes
down to solve at most [1 + lpg] satisfiability problems in propositional classical logic. Hence
(1) is a NP-complete problem, like (S). m|

Proposition 9(deduction theorent)
FO =W a) iff FE@-y o)

Proof:
@) FO0{¢ = )
O Ngpge 13 W) =a  (by Corollary 2)
0 inf{l - Mg 1) (@) @ =W} 2a
0 UwE ¢ U-y, 1y () <1 -0, sincery gy 1)} (W) =T (w) for anyw = ¢
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O Ng (¢ - @)=asincedp - Y is equivalent to 4 [ 1)

0% = (¢ - P a) (again Corollary 2).
@) F=0-va

O On=%F,N@©o - W) =a

O OmneE &, N@©) = 1implies N@) = a since N@) = min [N(©®), N@ - @)]
O One=F 0{¢ 1)} NW=a
O

F U6 Y= a). O
Proposition 10(refutation theorem)
Fe(@ o) iff FO{-¢ 1D}=O a)
or equivalently :
Val(¢,%) = Inconsf O {(=¢ 1)})
Proof: let us just apply Proposition 9, replacidpy - andy by [I:

FOG e 0 a)iff Fe (00 a),ie.F 0{-o D)} = @ o) iff F = (@ a). O

Proposition 11 :
LetF be a possibilistic knowledge base anat} a necessity-valued formula. Then

F = (¢ a) if and only ifF 5 = (¢ a)
Proof: According to Proposition 16F &= (¢ a) is equivalent to Incon${ O {(-¢ 1)}) =a ;

then, from Proposition 6 we get that Incofsy(0{(-¢ 1)}) =a ,ie.FqE= (¢ a) by
applying again Proposition 10. The converse is obvious beagse F . m}

Proposition 12 :
The proposed formal system is sound and complete with respect to the inconsistency-toleran
semantics of possibilistic logic, i.e. for any set of possibilistic forméilage have

F =( a) ifandonly if ¥ — (¢ a)

where# — (¢ o) means :'¢ o) can be derived frorff in the system given in Section 6".

Proof: We need the following lemma :
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Lemma 12.1 :
LetF be a set of necessity-valued formulas anaij a necessity-valued formula. Then

F = (¢ a)ifand only ifF 4" = ¢ in the classical sense

Proof:
Fe=@a) - Fg=( a) (Proposition 11)
<~ Inconsffq O{(=¢ 1)} = a (Proposition 10)
« &g 0O{=0¢}is inconsistent in the classical sense (Proposition 7 (i))

«  Fgq*=0¢ (classical entailment property). |

Proof of Proposition 12
(O) (soundness)

By induction on the derivation steps, the proof is straightforward.

(O) (completeness)

Using lemma 12.1¥ = (Y a) is equivalent t&F o* = Y. Then, since the formal system
formed by the non-weighted part of the axioms schemata and of the inference rules (except (S
whose non-valued part is trivial) is well-known to be a sound and complete Hilbert formal
system for classical first-order logic, then there exists a prapffadm & * by this classical

formal system. Then, considering again the valuations, the proof obtained by the previous one
is a proof of ¢ y) from & i by the given formal system, with> a. Lastly, using (S) we
obtain a proof of o) from %y , and a fortiori frontF. m|

Proposition 13: Incons{) = Inconsf)
Proof:
Incons@) = a
= 550(* is inconsistent anﬁca* is consistent (from Proposition 7)
=  O(Fy" is inconsistent an@(F 5*) is consistent, wher@(F )" andC(F 5*)
are respectively clausal forms &fy" et# 5" (from the equivalence of the
inconsistencies of a formula and that of its clausal forms in classical logic)
o C(F )" is inconsistent and(F )" is consistent
o Cq” is inconsistent and g™ is consistent

o Incons() =a = InconsfF) (again from Proposition 7). O

Proposition14 (soundness of rule (R)) :
Let C be a set of possibilistic clauses, and C a possibilistic clause obtained by a finite number of
successive applications of (R){q, thenC = C.
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Proof: Let G = (cp a1), Co = (cp ap), the application of rule R yields C' =
(R(c1,c2) min(aq,a2)). ThenOr satisfying G [0 Co we have N(¢) =2 aq and N(@) = ap,
and then N(¢Uco) = min(N(cp),N(cp)) = min(aq,02) and finally N(R(q,c)) = N(cqcp) =
min(a1,a2) (since q O co = R(cq,¢2)). Thus rule R is sound. Then by induction, any
possibilistic clause obtained by a finite number of successive applications of (R} @
logical consequence 6f. O

Proposition 15 (soundness and completeness of refutation by resolution in: PL1)

LetF be a set ofiecessity-valuefirst-order formulas an@ the set of necessity-valued clauses
obtained from# ; then the valuation of the optimal refutation by resolution ffons the
inconsistency degree &f.

Proof: It is very similar to the proof of Proposition 12. Using lemma 12.1 appliedywith
being the contradictionl, & = (O a) if and only ifCy* is inconsistent in the classical sense.
Then, the resolution principle being complete for refutation in first-order classical logic, the
inconsistency of o* implies that there exists a refutation by resolution from the clauses of
Cq*. Considering again the valuations in this refutation, we obtain a refutation’fgofand a
fortiori from C) whose valuation i& o (since only clauses éfq, i.e. with a valuatiore a,

are used).

Thus, we have proved that the valuation of the optimal refutation by resolutionfiem
greater or equal to Incon§ ) the soundness of the possibilistic resolution rule (Proposition
14) forbids this valuation to be strictly greater than Indopghus it is equal to Inconsj, and
also to Inconsf), according to Proposition 13. O

Proofs of the main results from Section 4.1 (possibilistic logic PL2)

Proposition 5'(Lang et al., 1991)

The inconsistency degree of an inconsistent possibilistic knowledge/bés¢he smallest
weight of possibilistic formulas in any strongly minimal inconsistent suBsetf & .
Especially, if Inconsf) = (7 B) (B > 0) then there is a unique possibility-valued formula in
" of the form ¢ ([ B)).

Proof: Let us consider the case where Inc&ns€E (] B). It is obvious that any strongly

minimal inconsistent subsét' contains at least one possibility-valued formula. Let us show
that it is unique. LetF' = {(¢j (N aj)), i = 1,m} O {(q:j (N Bj)), j=m+1, n}. The

inconsistency degree is now of the form :
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B = inf ()
under the constraints
{ N(dj) =aj,i=1,m
max((wn), () 2 Bj,i=m+1,...n

Sincep > 0,0 = ', [k such thaf](dk) < Bk (otherwiseF would not be inconsistent),
and Inconsf ') = By for somef. In order to minimize this value, let us maximizeverQ,
SO0 as to make the set {]‘|(¢j) < Bj} as small as possible. Lefto be defined byﬁo(w) =
min{l — aj, W = -¢j, w # wrj}. Clearly, ﬁo = {(¢j (Naj)), i =1,m}, anddw U Q, ﬁo(w)
= 1 (since there is no inconsistency among the N-valued formulaspj@nd = {(dj (N
aj)), i = 1m0 0w Q, (w) < fig(w). The only parameter left isg(wy). Let Bk =
max{Bj | |'|0(¢j) < Bj} where [ is based orﬁo. Note that the maximality oﬁo overQ
minimizes the number o(b{ (Mo Bj)) with ﬂo(q)j) < Bj-

For simplicity assum@y = Bm+1. Let us putiig(wp) = Bm+1. Then clearlyig = &, since
0j, max@m-+1 Mo(®j)) 2 Bj by construction. Thus Incor&() < Bm+1. Now, 0¢; such that
|‘|0(¢j) > Bj, Incons& ' — {(¢ (] |3j)}) = Incons@ ") ; the same thing is true for aﬂ] such

that |'|0(¢j) < [3j <Bm+1- If there is another formulap( ([T Bj)) such thaf3j = Bm+1.
dropping one of these formulas still requirggwr) = Bm+1 for ensuringiy = & '. Hence, if

& is really minimal it contains only one possibility-valued formula, idgq£1 (N Bm+1)

and Inconsf ") = ([ Bm+1)- m|
Proof of Proposition 7'is done after the proof of Proposition 12'.
Proof of Proposition 12' :
The proposed formal system for possibilistic logic involving possibility- and necessity-qualified
formulas is sound and complete with respect to the inconsistency-tolerant semantics of
possibilistic logic, i.e. for any set of possibilistic formufasve have

F & (pw) if and only ifF — (P w)

where# — () w) means : '\ w) can be derived frort in the above system".

The restriction of this proposition to PL1 has already been proved (Proposition 12). In order to
extend the result to PL2, we first prove the following lemma :
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Lemma 12'.2

Let be a set of possibilistic formulas an (] a)) with a > 0 a possibility-valued formula
such thatF &= (P ([ a)) with a maximal (i.e.0 w > (] a), we do not havéF = (g w)).
Then there exists a possibility-valued formuig ([ a)) in & such that

) FnO{ok M} =W ()
(i) Fpn&= (o Ow (NB)) withp>1-a.

Proof: Let§ =% O {(-y (N 1))}. Then, according to the generalisation of Proposition 10 to
PL2 (its proof being in (Lang, Dubois, Prade 1991)) and to the maximality, ofe get
Incons( ) = (T o). Then, using Proposition 5'§' being with a subset of O
{W (N 1))} O {(¢k (M a))}, we have [] o) = Incons(i’) < Incons@ O {(-y (N 1))} O
{(dk (M)} < Incons@ O {(w (N 1))} = (T @), i.e. Inconsf y O {(-y (N 1))} U
{(dk (M o))} = (N a). Using again Proposition 5', we g&ty O {(¢k ([T o))} &
(W ([ a)), which proves (i).

Let us prove (ii). (i) is equivalent to Incofisg O {(=@ (N 1))} O {(dk (I a))} = ([T o).
Let us prove first that for any possibility distributianon Q satisfying# 5 O {(=W (N 1))}
we have[](dk) < a; indeed, let us suppose that there is a possibility distriblﬁ@m’atisfying
Fn O {(=W (N 1))} such thafTo(dk) = a. If Fy O {(-@ (N 1))} were inconsistent, then
according to Proposition 5, it would be the case%at& (W (N %)) with y > 0, which would
contradict the assumptidA = ( ([ o)) with a being maximal. S& \ O {(-y (N 1))} is
consistent, i.e. the least specific possibility distributitnon Q associated t¢F \ O
{(=w (N 1))} according to the corollory of lemma 1, is normalized. According to lemimig 1,
satisfies¥ \ O {(-W (N 1))} is equivalent tatg < 1 (where Tt is the restriction oﬁo to Q).
Thus, MT*(dK) = Mo(dk) = a, i.e. if we extendTy to Q7 by Tig(wp) = 0, then we have
Mo = Fn 0 {(-w (N 1))} O {(¢k (N @)}, and then Inconst y O {(~=y (N 1))} O
{(dk (M o))} < (M @), which contradicts InconS(y U {(=y (N 1))} T {($k (1T o))} =
(T o). So, every possibility distributiomn on Qp satisfying¥ y O {(=w (N 1))} verifies
M(dK) <a, i.e. N(-¢k) > 1 —a, which means thaf O {(-@ (N 1))} & (=¢k (N B)) with

B > 1 -a. Using Proposition 10, this is equivalent to Incéhg(O {(=¢ (N 1))} O
{(dk (N 1))} = (N B), i.e. to Inconsf O {(=¢ O ¢k (N 1)))} = (N B) ; using again
Proposition 10, it give& = O-¢K (N B)) with 3> 1 —a, which proves (ii). 0O

Proof of Proposition 12' :
According to the above lemm& \ = (=dK O (N B)) with B > 1 —a ; then, using

Proposition 12, there is a deduction oW (N B)) from &  (a fortiori from &), using
the necessity-valued part of the given formal system. Lastly, using (GMP) frop (-
W (N B)) and ¢k (1 a)) we infer ( ([T a)). Hence we have found a deduction f([] a))
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from & using the given formal system. The completeness follows. The soundness is again ar
obvious matter. O

Proposition 7' :
Incons¢) = (I a) if and only if & \* is consistent andi = max{B, 0 (¢ (7 B)) O F ,
FN* O {0} inconsistent}.

Proof: Firstly, Inconsf) = ([] a) means that there is mo> 0 such thaff = (O (N €)) and

thus that the necessity-valued paf{ of & is consistent, which entails (by Proposition 7) the
consistency off \*. Secondly, according to Proposition 12', Inc¢#g = ([ o) entails that

there is a formal deduction dfl([] a)) in the formal system given previously. As seen in the
proof of Proposition 12', only one deduction step uses a possibility-valued clause (otherwise
the weight of the deduced formula would & @)), whose weight is equal to the weight
attached td] (i.e., (] a)) ) at the last step of the deduction. Then, this is also a deduction of
(O a)) fromF O {(¢ ([T a))}, where ¢ ([ a)) is that possibility-valued formula. Then,
considering the (classical) deduction obtained from this one by ignoring the valuations, we get a
deduction of I from & \* O {9} ; hence,# \* O {¢} is inconsistent. Now, suppose that there
exists a formulay ([7y)) with y > a such thatf * O {3} be inconsistent:then it would be the
case that¥ y O {(W (MY} — @M V) ie.FnO{W MY} = @(Y) by
Proposition 12', which would contradict the assumption Inééist ([ o). Hencea =

max{B, O(¢ (N B)) O F , Fn* O {¢} inconsistent}. m|



