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Abstract

A common way of dealing with the paradoxes of preference egggion con-
sists in restricting the domain of admissible preferendé& most well-known such
restriction issingle-peakednessn this paper we focus on the problem of determin-
ing whether a given profile is single-peaked with respectotmes axis, and on the
computation of such an axis. This problem has already beesidered in [2]; we
give here a more efficient algorithm and address some relsses, such as the
number of orders that may be compatible with a given profiléhe communication
complexity of preference aggregation under the singléwpdimess assumption.
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1 Introduction

Aggregating preferences for finding a consensus betweannaegents is an important
topic at the boarder between social choice and artificialligence. Given the prefer-

ences of a set of agents (or voters) over a set of alterngiivesandidates), preference
aggregation aims at determining a collective preferenietioa representing as much as
possible the individual preferences, whereas voting ratessists in finding a socially

preferred candidate.

Among the paradoxes and impossibility theorems of pref@eagregation, the most
famous may be the following three (in all three cases we aeshat there are at least 3
alternatives):
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Single-peaked consistency and its complexity

¢ theCondorcet paradox [3]a Condorcet cycle is a sequence of candidates. . , =,
such that for ali < £ — 1, a majority of voters prefers; to ;. ;, and a majority of
voters preferg:;, to x;. Such cycles make it impossible to build a collective prefer
ence relation compatible with pairwise majority compansbetween candidates.

e Arrow’s theorem [1] any unanimous aggregation function for which the pairwise
comparison between two alternatives is independent deviaat alternatives is dic-
tatorial;

¢ Gibbard and Satterthwaite’s theordify 8]: any surjective and nondictatorial voting
rule is manipulable.

A profile consists of a collection of preference relations over thelichates (one per
voter). In the above results, any profile is admissible. H@xdan some contexts, voters’
preferences may have a special structure restricting theaotoof admissible profiles.
The most well known such restriction sngle-peakednesdt assumes that there is a
natural linear axis, independent of the voters, on whickra#ttives are positioned: one
may for instance think of a left-right axis as in politics, anumerical axis (when the
voters have to decide for instance about an amount of monsgednd). A voter has a
single-peaked preferences with respect to such an axis éaoh side of the “peak” (that
is, the preferred candidate), his preference grows witptbgimity to the peak. Itis well-
known that Condorcet cycles cannot occur when preferemeesragle-peaked; therefore,
one escapes from the Condorcet paradox as well as Arrow'S#izhrd-Satterthwaite’s
theorem.

However, this way of escaping the paradoxes and impoggithikorems assumes that
the axis on which the candidates are positioned is knownvarazk. In contexts where
it is partially or fully unknown, one should identify it bef® any aggregation process is
started. Therefore, we consider the problem of determiwimgther, given the preferences
of some agents on a set of alternatives, these prefereneasglte-peaked with respect
to some axis (which we refer to amgle-peaked consisterjewand if so, how one of the
possible axes can be determined. This problem has beerdeoediin [2] (as well as
the problem of determining whether a profile is single peaked. atree[9], which is
weaker than single peakedness w.r.t. an axis). They givégaritam in O(m.n?) where
n (resp. m) is the number of candidates (resp. voters), based on nrapresentation.
We give here a different algorithm, both more intuitive arfficeent since it works in
time O(m.n). While the difference betweefl(m.n) andO(m.n?) is pratically not very
significant for standard political elections wherés typically small, this is no longer the
case when the set of alternatives (or “candidates ”) has dr@torial structure, which is
often the case in Al applications. A related problem is asisiee by Conitzer [4]: without
the prior knowledge of the axis, but knowing the prefereratation of one agent (which
gives some incomplete information about the axis), how carelicit as efficiently as
possible the preferences of a second agent?
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Single peaked consistency is important in at least two stsitd-irst, some domains
tend to have a single-peaked structure, but for some reasonay not know the axis : In
this case, from a few votes (for instance obtained from a sawfpsotes), we may learn
this axis. Second, in some domains it is unclear whetherédasonable to assume single-
peakedness: then, checking the single-peaked consistétioy preference relations of a
few voters gives a good hint as to whether single-peakedsesasonablé.

In Section 2, we define single-peaked consistency and giemstrictive algorithm
that checks whether a profile is single-peaked consisteut,faso, returns a compati-
ble axis. This algorithm works in timé&(n.m), wheren is the number of agents and
m the number of alternatives. In Section 4 we study a few coatbnml aspects of
single-peaked preferences; in particular, we give a resuthe number of axes that are
compatible with a tuple of single-peaked preferences. bti&@25 we give a simple addi-
tional result on the communication complexity of prefeaggregation of single-peaked
preferences. Finally we point to interesting extensionsusfwork.

2 Single-peaked preferences

Let V = {1,...,m} be a finite set of voters and = {z,...,z,} a finite a set of
candidates (or alternatives), with> 3.

Definition 1 A preference relatios on X is a linear order onX. Thepeakof a prefer-
ence relation- is the candidate* = peak(>-) such that:* > x forall z € X \ {z*}. A
profileis am-uple P = (>4, ..., >=,,) of preference relations oX .

Definition 2 An axis O (noted by>) is a linear order onX. Given two candidates
z;,x; € X, a preference relation- on X whose peak ig*, and an axisO, we say
thatz; andz; are on the same side of the peak-offf one of the following 2 conditions
is satisfied: (1); > z* andz; > z*; (2) * > z; andz™* > x;.

A preference relatior- is single-peakeavith respect to an axi® if and only if for all
x;,x; € X such thatr; andz; are on the same side of the peakof >, one hasr; > z;
if and only ifz; is closer to the peak than;, thatis, ifz* > z; > x; orz; > x; > x™.

For simplicity, we sometimes note (as in Example:ly, . . . x,, instead oft; = x5 >
o=z orofary > x>0 > .

3This is for instance of particular interest when alternegiare evaluated on several criteria; here, the
hidden axis may be soma priori unknown) combination of the different criteria (projectiivom a multi-
dimensional to a monodimentional representation).
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Example 1 Let X = {z1, 29, x3, 24, 25,26} AN O = (21 > 19 > 3 > T4 > T5 > Tg).
The preferences,xzx,x1 21526, T4x3020526271; aNAd xgr514237221 Are single-peaked with
respect toO but notx,zsxsrr672. Indeed,z; andx, are on the same side of the peak
(z4) butz, is not preferred tar; while it is closer to the peak than, .

An interesting question is the existence ad@mmoraxis to all voters, such that the
preferences of these voters are single-peaked with reBpt#as common axis.

Definition 3 A profile (-1, ..., >=,,) is single-peaked with respect @iff for each voter
1, > IS single-peaked with respect

Whether single-peakedness seems justified or not stromglgrals on the nature of
X. Itis often deemed reasonable if the axis represents aotolgéeft-right political axis
such that voters’ preferences are determined only from diséipn of the candidates on
the axis, or else, iX is a set of numerical values or more generally a set equipjthdaw
natural ordering.

Conitzer [4] considers thelicitation of single-peaked preferences. The elicitation
process is all the more efficient as the amount of commuwica&quired by the process
is low. This amount of communication can be measured in tarintse number okle-
mentary queriesf the form “between the candidatesandy, which one do you prefer?”

3 Single-peaked consistency

A very natural question is the following: giverpavoter profile, is it single-peaked with
respect to some (unknown) axis? This is defined formally bevis:

Definition 4 (single-peaked consistencyA preference profilé® = (>1,...,>,,) on X
is single-peaked consisteifthere exists an axi® such that for alli, -; is single-peaked
with respect ta).

WhenP is single-peaked with respect to the akiswe say that) is compatible with
P. For every axi®), we denote by5 P(O) the set of preference relations éhthat are
single-peaked with respect t@. For instance, ih = 3 andO = x; > xs > x3, then
SP(O) = {x12923, Tow1 T3, ToX3T1, T3ToX1 }.

The main problem associated with this definition is to deteenif a given profile is
single-peaked consistent. We now present the main resthisarticle,i.e. the resolu-
tion of this problem. More precisely, we propose an alganithorking in timeO(mn)
which, given a profile, outputs an axis compatible with thisfite if it exists, and find a
contradiction otherwise. The axis is built recursivelgrshg from the candidates ranked
in last position by one or more voters. Indeed, we have tHeviihg easy lemma.
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Lemma 1 Let x be a candidate ranked in last position by a voierlf the axisO is
compatible with-;, thenz is either in the leftmost or in the rightmost positionin

Proof. If z is neither in the leftmost nor in the rightmost position, rthtbere exist a
candidatey on the left ofz and a candidate on the right ofz (in O). Buty >~; x and
z »; =, contradiction with the fact that; is single-peaked with respect ¢ |

As a consequence of Lemma 1: in a single-peaked consistefifepat most two
candidates are ranked last by at least one voter.

Before giving the algorithm, we first explain in detail thestiand easiest) iteration.
Let L be the set of all candidates ranked last by at least one WMeconsider the three
(exhaustive) possible cases:

e |L| > 3: thenP is not single-peaked consistent, due to Lemma 1.

e L = {z}: we place indifferently: either in the leftmost or in the rightmost posi-
tion of the axis; this choice does not create any constraitité remainder of the
construction of the axis. Indeed, the problem is equivderiirst finding an axis
compatible with the profiles restricted to the other canigisizand then adding

o L = {x,x9}: we placer; andz, in the leftmost and the rightmost position of the
axis. P is compatible with an ordep if and only if it is compatible with the inverse
of O; as a consequence, the choiee in leftmost or rightmost position) does not
matter.

Then, the candidates df being positioned, we iterate the process considering the
restriction of the preference relations to the other caaigisl Of course, this first iteration
is simple because no other candidate is already positiongiaxis.

More generally, at each step of the algorithm, we have d'sef candidates al-
ready positioned at the extremal positions of the axis. WitHoss of generality, let
T =A{zy,29,...,2,2;,2j41,...,%,} the candidates already positioned in the axis under
construction: we have; > z, > ... > z; in the leftmost positions of the axi8, and
Tj > xj41 > ... > T, in the rightmost positions. The other candidate®'in- X \ 7" will
be positioned betweery andz; positioned in the leftmost/rightmost position). Then, at
this iteration:

¢ either we find a full compatible axis arfdis single-peaked consistent;
e or we find a contradiction ang is not single-peaked consistent;

e Or we position one or two new candidates to the right afid/or to the left ofj.
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The soundness of the algorithm will follow from the recuesproof of the follow-
ing hypothesis. At each iteration, the axis under constnoterifies the two following
properties:

e There exists a compatible axis fér if and only if there exists a compatible axis
which extends the axis under construction.

e For any voterk, r1 <p T2 <k ... <k X; andl’j mk Tj41 mk - 7k Tne

In particular, from the second item we deduce that the catesdinT’, : and; excepted,
are not the peak of any voter.

Let us now analyze the different possible configurations /Liee the set of candidates
ranked last by at least one voter (restricted to the canedat/’). Based on Lemma 1,
we have 3 possible cases:

1. |L| > 3: contradiction, 3 candidates must be either in positienl or j — 1.

2. L = {x,y}: eitherz is in positioni + 1 andy in positionj — 1, or vice versaor we
will find a contradiction. Let us consider a votemwho rankedr last (among the
candidates in"):

(@) x <, 2 andx <, 27: this is not possible since necessatilyor 27 is ranked
worse than: by % (x; or z; was the candidate ranked last byt the previous
iteration).

(b) 2 <, x and2’ <, z: = being the last candidate i, and sincer! <;, 22 <,
.o =patandz? = 27T =, =, 2", then any axis compatible with voter
k onT will be compatible on all the candidates. Having positiotie first
candidates does not create any constraint . Indeed, albtididates irl” are
ranked better than all the candidates/irby voterk. As a consequence, for
voter k, havingzx in positioni + 1 andy in positionj — 1 or vice versadoes
not matter.

(€) ' <, x < 2’ <, y : z is necessarily in position+ 1. Indeed, having: in
positionj — 1 leads to a contradiction: is positioned betweenpandz’ in the
axis, butr <;, y andz <, 27. Then, necessarily is in positioni + 1 andy in
position; — 1. Symmetrically, ifz’ <, x < ' <, y, thenz is necessarily in
positionj — 1.

(d) z° < x <p y <& 27 (or the symmetrical case)? is necessarily the peak for
the voterk (the candidate positioned immediately to the left is woesw] the
candidater’*! (if any) positioned immediately to the right is also worsg, b
our recursive hypothesis), hence the candidat@sare necessarily positioned
between positionsand; following the increasing order of votér We test if
this axis is compatible with the preferences of other votérso, we have a
compatible axis, otherwise we conclude tkas not single-peaked consistent.
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We repeat step 2 for all voters. If case 2d occurs (for at leastvoter).then the
algorithm ends(either we found an axis, or a contradiction). Otherwis#)egi
we find a contradictiona( have to be placed in two different positions), and the
algorithm stops, or we position candidateandy on the axis.

To conclude, note that if we are not in case 2d , the inductigothesisz! <
2% <y ... <, atandz? =, 27T =, ... =, 2™ remains true after positioningand
y (otherwise, in case 2d the algorithm stops).

3. L = {z},i.e. each voter ranked last (inT). Several cases may occur for voter

(@) x <, ' andz <, 27 : as previously, this case is impossible.
(b) 2% <, z and2’/ <, x : no constraint.

(c) x% < x <4, 27 (or inverse):r is necessarily in position+ 1.

Hence, if no contradiction is obtained and no compatiblepisl found, we position
one or two new candidates.

Steps 2 and 3 are repeated until all the candidates are gusitior a contradiction
occurs. The previous analysis enables us to state the foljoresult:

Proposition 1 Let P be a preference profile. The previous algorithm outputs as ax
compatible withP if any, or finds a contradiction otherwise.

Example 2 Let X = {x1, 29, x3, 14, T5, 1} @nd consider two voters with the following
preferences:rG <1 X5 <1 Ty <1 11 <1 X3 <1 e ANAx <9 25 <o Ty <9 To <9 T3 <o
Ty

e lteration 1: The setl. of worst candidates i, = {z1,2¢}. T being empty, we
can choose the positions of and g, for instance respectively in the leftmost and
rightmost positions. Partial axist; > .... > zg.

e lteration 2: T = {xy, 73, 24,75} and L = {z5}. Forvoter 1,24 <1 x5 < 1,
hence necessarily; is in fifth position in the axis. For voter 2;; <, x5 and
xg <2 5 hence for the voter 2 the positioning does not matter. Phaés: x; >
. > X5 > T

o lteration 3: T = {zy, 73,24} and L = {x,, z4}. Forvoter 1,o5 <, x4 <, 71 <
x9, hence necessarily, is in fourth position, and therefore, is in second position.
For voter 2,27 <5 x5 <2 x5 <9 x4 hence for her the positioning does not matter.
Partial axis: x1 > 2o > . > x4 > x5 > 6
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e lteration 4: T = {x3}. We verify that withr; in third position, the partial axis
x9 > x3 > x4 IS COMpatible with the two votes. Then, the axis> z, > z3 >
x4 > x5 > 16 IS cOmpatible with the profile constituted by the preferemtations
of the 2 voters.

Example 3 Let us consider five candidates and two voters, with<; =, <; 3 <1
Ty <1 Ts and{L'4 <9 Ty <9 Tg <9 L1 <2 Tj

e lteration 1: L = {xy,x,4}: we choose:; > ... > xy.

e lteration 2: T = {xy, 73,25} With L = {25, 23}. voter 1: z; <; 79 <1 73 <
x4 hencex, is necessarily the peak of the voter 1. The unique axis pestsb
consequently; > x5 > x3 > x5 > 14; it IS not compatible with the preference
relation of the second voter. This profile is not single-meh&onsistent.

Example 4 Let us consider five candidates and two voters, with<; x5 <; z3 <
Ty <1 s andxy <9 1o <o T3 <o 1 <9 x5. lteration 1 is as Example 3. For iteration
2: T = {xy, 3,25} with L = {x,}. Forvoter 1,z; <; =, <; x4 hencer, must be
immediately to the right of,. For voter 2,2, <5 x5 <3 21 hencer, must be immediately
to the left ofr4. Contradiction. This profile is not single-peaked congitte

Example 4 shows that a 2-voters profile may not be consistent.

Now, we analyse the running time of the algorithm. At eachatien, either we find a
compatible order, or a contradiction, or we position ati@a® new element. Assuming
that each preference relation is given in decreasing owderfind the setl. of worst
candidates in timé&(m). Then, for each voter we do(1) comparaisons. Step 2d can be
possibly longer, since we test the compatibility of an axithwhe preference relations of
all voters. This step is done in tim@(nm) (O(n) for each voter), but it occurs at most
once during the algorithm. Then, as long as this step doesawotr we havd(n, m) <
T(n—1,m)+O(m). Thissums up td’(n,m) = O(nm), and the possible execution of
step 2d still leads t@'(n, m) = O(nm). Therefore :

Proposition 2 The single-peaked consistency problem can be solved irQlime: ).

Proposition 2 improves th@(m.n?) algorithm given in [2] and is established by a
completely different method. Interestingly the algorithmj9] for cumputing atreewith
respect to which the profile is single peaked has similaritigh ours. However, not only
it works in O(m.n?) but it is designed to find tlee and does not guarantee to output an
axis where there exists one.
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Of course, there may exiseveralaxes compatible with a given profile (the number
of such axes is the topic of the next section), and given alprafine might be interested
in finding all the axes compatible with’it It is easy to see that the method we proposed
can be adapted to find all axes compatible with a prdfilendeed, it is sufficient to keep
in steps 2b and 3b all the different possibilities when savenoices are possible. As we
will see in the next section, there can be an exponential euwitcompatible axes, hence
of course the running time cannot be polynomially bounded.

Example 5 Let us consider 7 candidates and two voters, with:

Ty <1 T3 =<1 T5 <1 Tg <1 Tg <1 21 <1 T7

Ts =g T <2 Ty <2 T3 =g Ty <2 T7 <2 I

The modified algorithm gives the 8 compatible axes:

L4X3L2L1X7LELs L5XL1L7L2X3L4
T4X3ToT7T1TeLs T5XleXl7XL1T2T3T4
L4X3L1L7X2LELs L5XeL2L7l1X3T4

L4X3L7L1X2XELs L5XL2L1X7X3TL4

4 On the number of axes compatible with a profile

In Section 3, we proposed an algorithm for computing an asiepatible with a given
profile, but such an axis is not necessarily unique. It is nawthvto give bounds on
the number of axes compatible with a given profile, as welhasgrior probability that
a profile is single-peaked consistent. As mentioned eathes set of compatible axes
may be of some interest when new voters give their prefeeen@bviously, the more
compatible axes we have, the more likely this new profileniglg-peaked consistent. On
the other hand, the existence of several compatible axebmegnsidered as a drawback,
for instance if our goal is ttearn some structural information about the candidates. In
this section, we focus on the minimum and maximum numberged that are compatible
with a set ofk distinctvotes forn candidates. Lej(k,n) andQ(k, n) be these respective
numbers.

To begin with, remark thaP is compatible withO then P is compatible with the
inverse ofO (denoted byD~!). Moreover, of course, the more voters (or candidates), the

4This may be useful for instance if a new voter appears. Indhs®, it is very easy to find for instance
if this new profile is single-peaked consistent.
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less the number of compatible axes. Hencand(@ are even and non increasing with
andn.

First, let us deal with the case of a single axis.
Lemma 2 [SP(O)| = 2!
Proof. LetO = x; > 25 > ... > z,, and>€ SP(O). > is fully determined by (a) its

peakz; and (b) the positions of, . . ., z;_; in the remaining: — 1 positions. Indeed, we
know thatz; > zj for z;, < z; < «* and forz* < z; < 3, hence (a) and (b) suffice

to describe~. There are("_]) possible positionings for;, ..., z;_;, therefore,("~})
preference relations iiP(O) whose peak is;. To get the cardinality o P(O) we have
to sum up ovet. |

By symmetry considerations, we obtain that there eXist axes compatibles with a
given preference relation. Henegl,n) = Q(1,n) = 2"~1. We also know (cf. Example
4 withoutzs) thatq(2,4) = 0, therefore, for every > 2 andn > 4 we havey(k,n) = 0.
The only missing case ig2, 3), which can be easily shown to be equal to 2.

The case of)(k, n) is more interesting. We already know that1,n) = 27!, and,
by Lemma 2,Q(k,n) = 0 for & > 2"~'. We now show that the maximum number of
compatible axes is globally inversely proportional to thuentver of distinct votes. More
preciselyQ(k,n) = 2" /k whenk = 2/ 1 < j < n—1 (Proposition 3). This gives bounds
on Q(k, n) for the other values of. We first show this result fot = 2"~ (Lemma 3),
and then some relations between the valu&g(af n) whenn and/ork change (lemmas 4
and 5).

Lemma 3 Q(2" ! n) =2

Proof (sketch).LetO = z; > x5 > --- > x,. Let us focus on the set of axes compatible
with the 2"~! preference relations (see Lemma 2)3#(0). Letx;, z; with z; > ;.
The relationR: x; > x4 > ...xy > T-1 > ... = x; > ... > x1 IS compatible with
O. Any axisO’ such thatr; >o x; >o z, is not compatible withR. Therefore( is the
only axis compatible witht P(O) whose rightmost element is,. By symmetry,O~! is
the only one whose rightmost elementis The result follows from Lemma 1. |

Lemma4 Forall k,n > 1,Q(k,n+ 1) > 2Q(k, n)

Proof. Consider a profileé® of k preference relations ancandidates that are compatible
with Q(k,n) axes. We extend thegerelations ton + 1 candidates by positioning the
new candidater,, ., last in all relations. For each of thg(k,n) axes compatible with
the initial k& relations, we can add, ; either as the leftmost element or rightmost ele-
ment. Therefore we obtai2()(k, n) distinct axes, compatible with distinct preference
relations. Thus@)(k,n + 1) > 2Q(k,n). |

10
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Lemmab Foralln > 2andallk :

Q(k,n+ 1) < max{Q([k/2],n),2Q(k,n)}.

Proposition 3 Foralln > 2,all j € [1,n — 1]: Q(2/,n) = 2"~

Proof (sketch). Let j between 1 and — 1. By Lemma 3,Q(27,j + 1) = 2. Thanks to
Lemma 4, we ge®(2’,n) > 2"/, Using Lemma 5, we can show that it is in fact an
equality. |

In particular, we get that for eadhbetween 2 and™~!, 27! /k < Q(k,n) < 2" /k
(or, if we want tighter bound2n—e:(0)=1 < (%, n) < 2n=llos:(®)]),

Lemma 2 enables us to give an approximation of the probwltiilét a randomly gen-
eratedk-voter, n-candidate profile is single-peaked consistent. Suppbisedrawn ran-
domly with a uniform probability: for each voterthe probability that a given preference
relation R is the preference relation of voteis % the preference relations of two differ-

ent voters being independent, therefore each possibldephas a probability o(%)k.
From Lemma 2 we get that given an axisand a preference relatiaR, the probability
thatR € SP(O) is 227!1. Now, the probability that &-voter profile is compatible with a

1 k k(n—1 . . . ™ .
fixed axisO is <2:, ) = 2 ;,k L. This implies that the probability that/a-voter profile

k(n—1) o 2k(nfl)

onn candidates is single-peaked consistent is smallerthan;— = == (The exact

probability is of course lower than that, but gets asymp#ilty close to this upper bound,
when the number of voters grows.) Therefore, the probglofitsingle-peaked consis-
tency decreases exponentially with both with the numberodéng and the number of
candidates Finally, note that the probability of single-peaked csteicy is lower than
the probability of non-occurrence of the Condorcet paradekich has received much
more attention (see e.g. [6]).

5 Communication complexity of the aggregation of single-
peaked preferences

We end this paper by a short additional result on the comnatinitc complexity of the
aggregation of single-peaked preferences. As said in@ettithe restriction to single-
peaked profiles allows for escaping usual impossibilitpteens, which means that there
exist natural and satisfactory voting rules and aggregditioctions under single-peakedness.

50f course, the above computation relies on the assumptatrthie preference relations of the voters
are independent, which is arguably not very realistic. tR@stcorrelations between preference relations
allow the probability of single-peaked consistency to dase less fast.

11
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First, it is well-known that, if the number of voters is oddhieh we will now assume
for the sake of simplicity), then thmedian of the peakis the Condorcet winner and
the pairwise majority aggregatiorof a profile P, defined byx >3 y if and only if
H{k|z =y} > % forall z,y € X, is alinear order.

We are now interested in tttdmmunication complexityf the median voting rule and
pairwise majority aggregation for single-peaked profilése deterministic communica-
tion complexity of a function is the minimal quantity of infaation (measured in number
of bits) used by the a protocol that computes it. One can finthdyson the commu-
nication complexity of several voting rules (without thagle-peakedness restriction) in

[5].

In this Section, we assume that the a®iss given (and is common knowledge to all
voters).

Obviously, the deterministic communication complexitytbé median of peaks for
single-peaked profiles is at most.[logn|, since the median of peaks can simply be
computed by asking voters to name their peak, which nékds:| bits per voter. The
lower bound is less obvious. It can be obtained by taking Hmesfooling set as in
the proof of Theorem 3 in [5], and taking an axis whose medsan iThis leads to the
following result:

Proposition 4 The deterministic communication complexity of the mediapeaks is
O(m.logn) andQ(m.logn)®.

The (deterministic) communication complexity of pairwmajority aggregation is a little
less obvious but still very simple:

Proposition 5 The deterministic communication complexity of pairwisgomity aggre-
gation for single-peaked profiles is at ma@st.[logn| + 2m(n — 2).

The proof uses a protocol very similar to the one used in [4]tle elicitation of
single-peaked preferences of a voter. We start by detengthie median of peaks, which
needsn.[logn| bits (see above). Then we communicate the result to each (watéch
requires agaimn.[logn| bits). After this, the voters are asked — 2 successive pair-
wise comparisons, according to the following protocol,sprged informally on an ex-
ample: suppose the median of peaksjqthe axis beingr; < =5 < 3 < x4 < ...).
We setrank(z;) = 1, and we ask to each voter her preference betweesndz,. If
there is a majority for,, thenzx, is the second “socially preferred candidate” and we set
rank(xs) = 2. Then, we ask to each voter her preference betwgeand z,, and so
on. Each of these steps requires the central authority (€&nd to each voter the infor-
mation enabling her to know the two candidates she has to aemp-or this, CE does
not have to send the identity of the two candidates (whichldvoequire2[logn| bits)

6Actually, the same bounds would hold for thendeterministicommunication complexity — see [5].
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but only one bit, indicating whether the winner of the prexctep is the “right” can-
didate, or the “left” one (for instance, after the votersd&een asked their preferences
betweenz, and x4, if there is a majority forr, then CE sends the information “right”
to the voters, who now know the next comparison is betweeand x5). Each voter
sends the answer to CE, which requires one bit per voter. édeach iteration requires
2m bits. There are exactly — 2 iterations, hence the protocol requires the communica-
tion of m.[logn]| + 2m(n — 2) bits. Finally, we see easily that -7, y if and only if
rank(x) < rank(y), hence the protocol computes..

6 Discussion

In this article we have studied some combinatorial and &lgoic aspects of reasoning
with single-peaked preferences. The main contributiomiglgorithm that outputs an
axis compatible with a profile (when there is one) in timénn). We have identified
the minimal and maximal number of axes that are simultadga@oesnpatible with a pro-
file (which, as a byproduct, gives an approximation of thebptulity of single-peaked
consistency of a randomly generated profile). As a sidetrasihave given some simple
results on the communication complexity of the aggregaifmingle-peaked preferences.

This work deserves some further research in several diretiln particular, as said
in Section 4, the probability that a profile single-peakesrél@ses dramatically with the
number of voters and the number of candidates. However, myrmeactical cases, even
if not stricto senstsingle-peaked, the profile can bse(with respect to some metric)
to being so. For instance, in a nation-wide political elactigiven the very high number
of voters, the profile is surely not single-peaked. Howevethis case, it may be the case
that the profile is approximately single-peaked. To make thore precise, we need to
define formal notions of “approximate single-peakednessiich are meant to measure
how far a profile is from being single-peaked. Several defing seem natural, such
as (1) the minimum number of voters whose deletion gives glesipeaked profile, (2)
the minimum number of candidates whose deletion gives desimgpked profile, or (3)
the minimum number of axes such that each preference nelatithe profile is single-
peaked with at least one axis. Computing these measuresgiegieakedness lead to
very interesting computational problems, for which ouroaidnm of Section 3 can be the
starting point. For instance, for (1) and (2), we can desigreach-and-bound algorithm
that generalizes our algorithm. As for (3), we can modify algorithm to produce a
set of axes whicltoversthe whole profile i(e. such that each preference relation of the
profile is compatible with at least one axis).
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