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Abstract 

We propose a purely logical framework for plan­
ning in partially observable environments. Knowl­
edge states are expressed in a suitable fragment of 
the epistemic logic S5. We show how to lift the ef­
fects of actions (both physical actions and sensing 
actions) from the state level to the epistemic level. 
We show how progression, regression and plan gen­
eration can be achieved in our framework. 

1 Introduction 
Planning under incomplete knowledge and partial observabil­
ity is a tricky issue in A I , because of its computational (tem­
poral and spatial) hardness. Partially obsewable Markov 
decision processes (POMDP) are the mainstream approach to 
partially observable planning. Nevertheless, the applicabil­
ity of the POMDP approach is limited from the practical side 
as soon as the set of states has a strong combinatorial struc­
ture, rendering the number of states much too high for an ex­
plicit representation of actions, preferences, and policies. On 
the other hand, logical approaches to planning under incom­
plete knowledge allow for much more compact encodings of 
planning problems than POMDPs; most of them deal with an 
incomplete initial state and/or nondeterministic actions, but 
either they do not handle partial observability, or at least they 
do it in a very simple way, by assuming for instance that the 
set of variables is partitioned between (directly) observable 
and unobservable variables. 

To fill the gap between POMDPs and logical approaches, 
an abstraction of the POMDP model (leaving aside probabili­
ties and expected utility) can be considered. It should account 
at least for the following elements: a set S of states; a set 
of belief states built from S ; a set of actions, where each 
action is associated with a transition model between states 
and/or belief states; some preference structure (e.g., a sim­
ple goal or a utility function); and a set of observations, 
together with some correlation function between states and 
observations. 

While policies for a fully observable MDP map states to 
actions, the output of such an abstract POMDP is a policy 
mapping belief states to actions; indeed, a POMDP can be 
viewed as a fully observable MDP over the set of belief states 

(this is a classical way of understanding POMDPs - and even 
to solve them). 

In this paper, we present a rich logical framework that in­
stantiates the abstraction above, views a partially observable 
process as a fully observable process over belief states, and 
allows for expressing actions and policies in a compact way. 
The framework has a fairly good level of generality (since it 
avoids for instance to commit to a particular action language, 
see Section 3.1) and is therefore modular enough to be easily 
adapted or extended. 

The simplest and best-known way of distinguishing be­
tween truths and beliefs in logic consists in expressing the 
problem in an epistemic or doxastic logic. To make the ex­
position simpler, we assume that the agent has accurate be­
liefs, i.e., all she believes is true in the actual world. This 
means that we identify belief and knowledge (since knowl­
edge is usually viewed as true belief); therefore our frame­
work is based on the logic S5 and instead of belief we use the 
term knowledge throughout the paper.] S5 is computation­
ally no more complex than classical logic: S5 satisfiability is 
NP-complete [Ladner, 19771. 

In Section 2 we define two notions of knowledge states: 
simple knowledge states (for on-line plan execution) and 
complex knowledge states (for off-line reasoning about the 
effects of a plan). In Section 3 we show how a knowledge 
state evolves when an action is performed. Then we show in 
Section 4 how to perform goal regression, and we show in 
Section 5 how it can be used so as to implement a sound and 
complete plan generator. Section 6 discusses related work. 

2 Knowledge states 
The language of propositional logic S5 is built up from 
a finite set of propositional variables VAR, the usual con­
nectives, the logical constants and and the epistemic 
modality K. S5 formulas are denoted by capital Greek let­
ters etc. An S5 formula is objective (or modality-free) 
iff it does not contain any occurrence of K (i.e., it is a clas­
sical propositional formula). Objective formulas are denoted 

1 Alternatively, we could have chosen to work with beliefs, using 
the doxastic logic KD45, which is very similar to S5 except that 
beliefs may be wrong, that is, is not an axiom. The techni­
cal issues developed in this paper would have been almost identical. 
Now, choosing another logic than S5 or KD45 would induce a lot 
of complications, including an important complexity gap. 
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by small Greek letters etc. and the set of all objective 
formulas f rom is denoted by 

A fundamental property of S5 is that nested modalities col­
lapse, i.e., is equivalent to 
for this reason, we assume without loss of generality that the 
scope of each occurrence of modality K in formula is an 
objective formula. 

An epistemic atom is an S5 formula of the form where 
is objective. An epistemic formula is a formula built up 

from epistemic atoms and usual connectives: 
is an epistemic formula, while is not. An 

epistemic formula is positive i f f it does not contain any occur­
rence of K in the scope of a negation: 
is not positive, while 

is the set of all interpretations of , also 
called states. States are denoted by s, s' etc. If is an ob­
jective formula, we let is a model of 

A structure2 for S5 is defined as a nonempty set of states 
M S. Rather than "structure", we call M a knowledge 
state (SKS). Intuit ively, it represents all the states the agent 
considers possible. The satisfaction of an S5 formula by an 
SKS M for a state s M is defined inductively by: 

A complex knowledge state (CKS) is a positive epistemic 
formula,3 generated by epistemic atoms and the connectives 

2This semantics is equivalent (and simpler for our purpose) to 
the usual semantics by means of Kripke models <W, wa/, R) where 
W is a set of worlds, val a valuation function and R an equivalence 
relation. Sec for instance [Fagin et al., 19951. 

3We restrict the syntax of CKS to positive epistemic formulas 
because for almost all problems, ignorance can already be expressed 
by the fact that positive knowledge is not provable from the cur­
rent CKS. This way of generating explicit ignorance from implicit 
is a kind of Epistemic Closed World Assumption, already at work in 
[Reiter, 2001] and reminiscent of autoepistemic logic; its principle 
can be roughly be stated as " i f I cannot prove that I know then I 
don't know . However, for the purpose of this paper, we do not 
need this completion because the set of valid plans from a CKS and 
the set of valid plans from its completion coincide. 

3 Actions and progression 
In general, actions have both physical (or otitic) and epistemic 
effects, i.e., they are meant to change both the state of the 
wor ld and the agent's knowledge state, but without loss of 
generality we assume (as usually in A I ) that any "m ixed" ac­
tion can be decomposed into two actions, the first one having 
only ontic effects and the second one only epistemic effects. 
For instance, the action of tossing a coin is decomposed into 
a bJ i n d - t o s s action fol lowed by a s e e action tell ing the 
agent whether the coin has landed on h e a d s or on t a i l s . 

3 .1 O n t i c ac t ions 

Ontic actions are meant to have effects on the wor ld outside 
the agent, especially physical effects such as moving a block, 
switching the l ight, moving etc. They are assumed to be de­
scribed in a prepositional action language (al lowing or not 
for nondeterminism, for ramifications/causality). Any action 
language can be chosen, provided that it is propositional 
and that it expresses the effects of an action a wi th in a for­
mula involving atoms labelled by t and atoms labelled by 

(the former for the state before the action is performed, 
the latter for the state after it is performed). Among candi­
date languages we find those of the family [Gelfond and 
Lifschitz, 1993], "proposit ional ized" situation calculus [L in , 
2000] and causality languages [McCain and Turner, 1998].4 

The description of an action allows for comput­
ing the successor state of a state s (or the set of successor 
states if is nondeterministic). This set is represented by 
any objective formula prog (whose models form the 
set of successor states). This definit ion extends to sets of 
init ial states, or equivalently to propositional formulas, by 

4The common core of these languages is the use of explicit or 
implicit successor state axioms. These languages coincide for deter­
ministic, ramification-free actions and differ in the way they treat 
nondeterminism (using for instance exogeneous variables or Re­
l e a s e statements), ramifications, etc. 
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The problem with the latter definit ion is that the CKS has 
to be put in EDNF first. This does not induce any loss of ex­
pressivity but the transformation may be exponentially large 
so that we may want to compute the successor CKS directly 
f rom a CKS expressed in any form, such as in Example 1. 

We now give a more elegant way of computing progression 
via an extension of variable forgetting to S5 formulas. We 
recall first f rom [L in and Reiter, 1994] the inductive definition 

before performing then she stil l knows it after) and re­
liability ( i f the agent observes after performing then 
holds, so that she knows after observing it). These three 
properties imply that the effects of an epistemic action asso­
ciated with the outcome set can be represented 
by the fo l lowing progression operator: 

4 Regression 
The problem is stated as fol lows: given a CKS (represent­
ing a goal knowledge state) and an (ontic or epistemic) action 

characterize the weakest CKS denoted b y R e g i n 
which performing leads to a CKS satisfying 

7Note that actions that may fail to be informative can only be 
expressed here by the occurrence of a tautology in their outcomes. 
In this case, unfortunately, we get that Prog because 

as soon as for some 
8This docs not induce any loss of generality, because any epis­

temic action can be rewritten equivalently into a logarithmic se­
quence of binary tests, together with the addition of some domain 
constraints. 

REASONING ABOUT ACTIONS AND CHANGE 1069 



sistent with and built up from variables of , only. 
The latter abductive characterization of ontic actions is in­

dependent of the action language chosen - and it now allows 
for characterizing the regression of complex epistemic states 
by an ontic action. 

4.2 Regression for epistemic actions 

} 

Sketch of proof. We give it in the latter case only (the proof 
for the general case is similar). We abbreviate Reg 
by We first establish (the proof is omitted) that is 
necessarily a CKS, Now, 

At that stage, we make use of the following lemma: for any 
objective formulas A, B and C, (KB V KC) is valid 
(in S5) iff is valid or is valid. is then 

5 Plan generation 
Definition 6 (planning problems) A planning problem 
w.r.t. a propositional action language consists of an 
SKS init describing the initial knowledge state of the 
agent, a finite set of actions. {ontic)(epistemic) 
and a CKS T describing the goal. Effects of ontic actions are 
described in 

The reason why is a CKS is that it is not sufficient 
to reach the goal, it must also be the case that the goal is 
known to be reached, may be purely epistemic goal such as 

i.e., an agent may have the ultimate goal to know 
whether holds or not. 

Plans are defined inductively as follows: 
• the empty plan is a plan; 
• any action (ontic or epistemic) is a plan; 

Therefore, a plan can be seen as a program without loops, 
whose branching conditions are epistemic formulas: the agent 
can decide whether she knows that a given objective formula 
is true (whereas she is not always able to decide whether a 
given objective formula is true in the actual world). 

While CKS are relevant for off-line planning, i.e., for rea­
soning about the possible effects of a plan, they are no longer 
relevant for representing knowledge during plan execution, 

. since at each time step the agent is in exactly one knowledge 
state. 
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Definition 8 (valid plans) A plan is ^alid plan for the 
planning problem V if and only if Prog 

Exemple 2 (cont'd) Initially, the agent does not know the 
values of and (her initial knowledge state is and 
her goal is to reach a belief state where she knows the value 

A valid plan can be computed by the following backward 
algorithm based on goal regression which is reminiscent of 
dynamic programming. The current goal expressed in 
EDNF, is initialized as Then we nondeterministically pick 
an action and compute The current goal is 
then updated by The process 
is iterated until or it is not possible to im­
prove anymore. Since there is a finite number of possible 
belief states, the algorithms stop and returns valid plan, 
if such a plan exists. An ordered list L is constantly up­
dated, initialized by where '. 

each time a new disjunct (i.e., not sub­
sumed by any previous disjunct of is added to 
after regressing by action a, the pair is added to L. 

There are two slightly different possible outputs: (1) either 
the output is just L, i.e., an ordered knowledge-based pro­
gram (or decision list): at execution time, when observations 
are made, the new knowledge state is computed, then we look 
for the leftmost in L such that is true in the cur­
rent knowledge state and is performed; (2) or the output 
is a ready-to-use conditional plan computed by "simulating" 
possible executions from 

6 Related work 
Knowledge-based programs In the planning community, 
the idea of using explicit knowledge preconditions for ac­
tions and plans comes back to [Moore, 1985; Morgenstern, 
1987J. Developed in a different perspective (agent design), 
knowledge-based programs [Fagin et al, 1995; Brafman et 
al, 1998; Herzig et al, 2000; Reiter, 2001] are high-level pro­
tocols that describe the actions an agent should perform as a 
function of her knowledge. Thus, in a knowledge-based pro­
gram, branching conditions are epistemically interpretable, 
and plans explicitly involve deduction tasks during on-line 
execution (just like in our framework). Actually, the output of 
our plan generation process is a knowledge-based program. 
Therefore, our work can be seen as an upstream task that 
generates a valid knowledge-based program from a compact 
specification of action effects and goals. 

Action languages A number of works have extended action 
languages so as to handle explicit knowledge and partial ob­
servability, especially [Lobo et al., 1997; de Giacomo and 
Rosati, 1999; Baral and Son, 2001]. Knowledge is repre­
sented in all cases by an explicit or implicit epistemic modal­
ity (plus a "minimal knowledge" semantics in [de Giacomo 
and Rosati, 1999]). The line of work most related to ours 
is of [Baral and Son, 2001]; indeed, not only they represent 
epistemic actions with an epistemic modality but they also 
allow for conditional plans with epistemic branching condi­
tions. Our work can be seen as an extension of theirs:9 (i) 
our formalism is general enough to accept any propositional 
action language (including those handling causal rules) for 
representing the effects of ontic actions); (ii) our syntax is 
less restricted, since we allow for any and-or combination 
of SKS (i.e., CKSs) while they consider SKS only; as ar­
gued in Section 3, this makes the representation more com­
pact, when reasoning at planning time about the future con­
sequences of actions; (Hi) our progression and regression op­
erators have significant computational characterizations (e.g., 
ontic regression has an abductive characterization); lastly, we 
have a sound and complete algorithm for plan generation. 

Planning under partial observability There is a number of 
recent approaches for logic-based plan generation under par­
tial observability. 

[Bonet and Geffner, 1998] give a high-level language for 
describing action effects on both the world and the agent's 
beliefs. Their language is a decidable fragment of first-order 
logic. By describing ontic actions with successor state ax­
ioms, they allow for handling the frame problem and ram­
ification problems. After a problem has been represented 
in their language, its description is automatically translated 
into a POMDP model and solved by using POMDP algo­
rithms, so that there is no need to define progression and re­
gression directly in the logic, nor to have an explicit knowl­
edge modality: this is the main difference with our approach, 
where the compact logical representation is kept and propa­
gated throughout the process. 

The next three approaches solve the plan generation prob­
lem directly in a high-level language but, on the other hand, 
they all make important restrictions that lead to a loss of ex­
pressivity. These restrictions imply that none of these ap­
proaches makes use of action languages, while ours can ben­
efit from the huge amount of work in this area and accord­
ingly, can handle the frame problem as well as ramification 
and causality in the best possible way while maintaining com­
putational complexity at a reasonable level. 

[Bacchus and Petrick, 1998; Petrick and Bacchus, 2002], 
like us, use an epistemic modality. Apart from the repre­
sentation of ontic actions (less expressive than ours due to 
the abovementioned point10), they restrict the syntax of epis-

9Actually, only of the first part of [Baral and Son, 2001], since 
the second half of their paper gives a detailed study of sound and 
efficient approximations of their formalism. We plan to integrate 
similar approximations in our framework. 

,0On the other hand, they use a fragment of first-order logic which 
allows for expressing some actions (such as value tests) elegantly, 
and they motivate their expressivity restrictions by efficiency con­
siderations, so that their approach is a good trade-off between effi-

REASONING ABOUT ACTIONS AND CHANGE 1071 



temic formulas (for instance, simple disjunctive beliefs such 
as K(aV6) cannot be expressed) and consequently, as they no­
tice, their algorithm sometimes fails to discover a valid plan. 
„. The approaches [Sertoli et al., 2001; Rintanen, 2002] do 

not make use of an epistemic modality, and therefore can­
not explicitly express disjunctions of belief states (i.e., CKSs) 
or complex knowledge-based programs. The representation 
of belief states in both approaches uses BDDs, which al­
low for a compact representation but not as space efficient as 
DAG-based propositional formulas. While the algorithm in 
[Bertoli et al, 2001 ] uses progression (based on model check­
ing), [Rintanen, 2002] has a regression operator, and, inter­
estingly enough, his combination operator between belief 
states (which aims at computing, given two belief states B\ 
and B2, the maximal belief states in which, after observing 
the values of observable variables, leads to know that the true 
state is in 51 or to know that the true state is in B2) can be 
reformulated using our epistemic regression (Section 4.2)11 
and thus epistemic logic helps understanding how and why 
this operator works.12 

Situation calculus [Scherl and Levesque, 1993] represent 
sensing actions in the situation calculus by means of an ex­
plicit accessibility relation between situations (which means 
that knowledge is treated as an ordinary fluent) which cor­
responds exactly to the semantics of our epistemic modality 
(once situations have been identified with states). Our ap­
proach expresses the problem at the formula level and en­
ables thus a more concise representation and can benefit from 
existing complexity and automated deduction results for S5. 
Levesque [Levesque, 1996] builts on the above framework 
towards a general theory of planning with sensing, handling 
complex plans involving, like ours, nondeterminism, obser­
vations and branching (and also loops). 

Acknowledgements 
The third author has been partly supported by the IUT de 
Lens, the Universite d'Artois, the Region Nord / Pas-de-
Calais under the TACT-TIC project, and by the European 
Community FEDER Program. 

References 
[Bacchus and Pctrick, 1998] F. Bacchus and R. Petrick. Modelling 

an agent's incomplete knowledge during planning and execution. 
In KR-98, pages 432-443, 1998. 

[Baral and Son, 2001] C. Baral and T. Son. Formalizing sensing 
actions - a transition function based approach. Artificial Intelli­
gence, 125(1-2):19-91,2001. 

ciency and expressivity. 
11 Indeed, introducing the action observe performed systemati­

cally after any ontic action (Rintanen docs not consider real epis­
temic actions but assumes instead automatic observability: there is a 
set of variables whose value is observed after any action) and giving 
the truth value of each observable variable can be iden­
tified with Reg(observe, where for(B) 
is a propositional formula such that Mod(for(B)) More 
precisely, if then Kfor(B) is one of the disjuncts of 
Reg(observe, Kfor(B\) V Kfor(B2)) after minimization. 

12Note also that all approaches discussed in this section pay at­
tention to efficiency (which may explain the restrictions made) and 
all of them have been implemented and report experimental results. 

[Bertoli et al, 2001] P. Bertoli, A. Cimatti, M. Roveri, and 
P. Traverse Planning in nondeterministic domains under partial 
observability via symbolic model checking. In IJCAI-OI, pages 
473-478,2001. 

[Bonet and Geffner, 1998] B. Bonet and H. Geffncr. High-
level planning and control with incomplete information using 
POMDPs. In AAAI Fall Symposium om POMDPs, 1998. 

[Brafman et al, 1998] R. Brafman, J. Halpern, and Y. Shoham. On 
the knowledge requirements of tasks. Artificial Intelligence, 98, 
1998. 

[de Giacomo and Rosati, 1999] G. de Giacomo and R. Rosati. Min­
imal knowledge approach to reasoning about actions and sens­
ing. Electronic Transactions on Artificial Intelligence, 3 (section 
C): l -18, 1999. 

[Fagine/a/., 1995] R. Fagin, J. Halpcn, Y. Moses, and M. Vardi. 
Reasoning about Knowledge. MIT Press, 1995. 

[Gelfond and Lifschitz, 1993] M. Gelfond and V. Lifschitz. Repre­
senting action and change by logic programs. Journal of Logic 
Programming, 17:301-322, 1993. 

[Herzig et al, 2000] A. Herzig, J. Lang, D. Longin, and Th. Polac-
sek. A logic for planning under partial observability. In AAAl-00, 
pages 768-773, 2000. 

[Ladner, 1977] R.E. Ladner. The computational complexity of 
provability in systems of modal propositional logics. SI AM Jour­
nal of Computing, 6:467-AM, 1977. 

[Levesque, 1996] H. Levesque. What is planning in the presence of 
sensing? In AAAI-96, pages 1139-1146, 1996. 

[Lin and Reiter, 1994] F. Lin and R. Reiter. Forget it! In AAAl Fall 
Symposium on Relevance, pages 154-159, New Orleans, 1994. 

[Lin, 2000] F Lin. From causal theories to successor state axioms 
and STRIPS-like systems. In AAAl-00, pages 786-791, 2000. 

[Lobo et al., 1997] J. Lobo, G. Mendcz, and S. R. Taylor. Adding 
knowledge to the action description language A. In AAAI-97, 
pages 454-459, 1997. 

[McCain and Turner, 1998] N. McCain and H. Turner. Satisfiability 
planning with causal theories. In KR-98, pages 212-223, 1998. 

[Moore, 1985] R.C. Moore. A formal theory of knowledge and 
action, chapter Formal Theories of the Commonscnse World. 
Ablex, 1985. 

[Morgenstcrn, 1987] L. Morgenstern. Knowledge preconditions for 
actions and plans. In IJCAI-87, pages 867-874, 1987. 

[Pctrick and Bacchus, 2002J R. Pctrick and F. Bacchus. A 
knowledge-based approach to planning with incomplete informa­
tion and sensing. In AIPS-02, pages 212-221, 2002. 

[Reiter, 1993] R. Reiter. The frame problem in the situation calcu­
lus: a simple solution (sometimes) and a completeness result for 
goal regression. In V. Lifschitz, editor, Artificial Intelligence and 
Mathematical Theory of Computation: Papers in Honor of John 
McCarthy, pages 359-380. Academic Press, 1993. 

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical Founda­
tions for Specifying and Implementing Dynamical Systems. MIT 
Press, 2001. 

[Rintanen, 2002] J. Rintanen. Backward plan construction for plan­
ning with partial observability. In AIPS-02, pages 173-182, 2002. 

[Scherl and Levesque, 1993] R. B. Scherl and H. J. Levesque. The 
frame problem and knowledge-producing actions. In AAA 1-93, 
pages 698-695, 1993. 

1072 REASONING ABOUT ACTIONS AND CHANGE 


