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Abstract
We extend the application of a voting procedure
(usually defined on complete preference relations
over candidates) when the voters’ preferences con-
sist of partial orders. We define possible (resp. nec-
essary) winners for a given partial preference pro-
file R with respect to a given voting procedure as
the candidates being the winners in some (resp. all)
of the complete extensions of R. We show that, al-
though the computation of possible and necessary
winners may be hard in general case, it is poly-
nomial for the family of positional scoring pro-
cedures. We show that the possible and neces-
sary Condorcet winners for a partial preference pro-
file can be computed in polynomial time as well.
Lastly, we point out connections to vote manipula-
tion and elicitation.

1 Introduction
Automated group decision making is an important issue in
AI: autonomous agents often have to agree on a common
decision, and may for this reason apply voting procedures,
which is one of the most common ways of making a collec-
tive choice. Voting procedures, studied extensively by social
choice theorists from the normative point of view, have been
recently studied from the computational point of view:

• while winner determination is easy with most usual vot-
ing procedures (at least when the number of candidates
is small), a few of them are hard, and their complex-
ity and their practical computation have been investi-
gated in [Rothe et al., 2003; Hemaspaandra et al., 2004;
Davenport and Kalagnanam, 2004].

• some works focus on sets of candidates with a combi-
natorial structure and investigate compact representation
issues [Lang, 2004; Rossi et al., 2004] and the complex-
ity of voting procedures applied in such domains [Lang,
2004].

• even when computing the outcome a voting procedure
is easy, it might be the case that determining whether
there is a successful manipulation for a coalition of vot-
ers is hard; the complexity of this problem is studied in

[Conitzer and Sandholm, 2002a; Conitzer et al., 2003;
Conitzer and Sandholm, 2003].

• elicitation issues and partial winner determination when
the preference profile is not fully known has been stud-
ied in [Conitzer and Sandholm, 2002b].

In this paper we focus on the last of these issues, which
raises the question of the application of a voting procedure
when the voters’ preferences are incomplete. Let X =
{x1, . . . , xm} be a finite set of candidates and I = {1, . . . , n}
be a finite set of voters ; a collective preference profile is a
collection of partial preference relations R = 〈R1, . . . , Rn〉
on X (formal details follow in Section 3). Winner determi-
nation under incomplete preference consists in applying (in
some sense that we make precise later on) a voting procedure
over such a collective preference profile. This is particularly
relevant in the following situations:
• some voters have expressed their preference profile and

some others have not yet done it; in that case, the col-
lective preference profile is a collection consisting of n1

complete preference relations and n − n1 empty prefer-
ence relations.

• all voters have expressed their preferences on a given
subset of candidates, and now new candidates are in-
troduced, about which the voters’ preferences are un-
known.

• voters are allowed to express their preferences in an in-
cremental way: they left some comparisons between
candidates unspecified, because either they don’t know
or they don’t want to compare some candidates (we com-
ment further on the various possible interpretations of
incomplete preferences).

• preferences have been only partially elicited and/or are
expressed in a language for compact preference repre-
sentation such as CP-nets [Boutilier et al., 2004] which
induce partial preference relations in the general case.

In all these cases it may be worth having an idea of the
possible outcomes of the vote without waiting for the pref-
erences to be complete (which sometimes will never happen,
as in “refuse to compare” case mentioned above). In some
cases we may conclude that the preferences known so far,
although incomplete, are informative enough so that the out-
come of the vote can be determined; if this is not the case,



we may compute a set of candidates that may win the vote
after the preferences have become complete, thus giving the
voters an opportunity to focus on these candidates and for-
get about the others. Lastly, similarly as in [Conitzer and
Sandholm, 2002b], we may determine from these incomplete
preferences which preferences should be elicited from whom
so as to be able to compute the winner.

In Section 2 we give some basic background on voting pro-
cedures. In Section 3, after briefly discussing three different
ways of applying voting procedures (tailored for complete
preferences) to incomplete preferences, we will focus on one
of these ways, that we think is more suited to the case where
incompleteness corresponds to an incomplete knowledge of
the voters’ preferences; we will then introduce the natural no-
tions of necessary and possible winners for a given partial
preference profile and a voting procedure. In Section 4 we
show that in the case of positional scoring procedures, pos-
sible and necessary winners can be computed in polynomial
time by a very simple algorithm. In Section 5 we investigate
the notion of possible and necessary Condorcet winners and
show that they can be computed as well in polynomial time.
Section 6 considers related issues such as vote manipulation
and elicitation.

2 Background
2.1 Preference relations
We start by giving some terminology and notations about
preference relations and voting procedures.

An order R on X is a reflexive, transitive and antisymmet-
ric relation on X (recall that R is antisymmetric if and only if
for all x, y ∈ X , R(x, y) and R(y, x) implies x = y.) R(x, y)
is also denoted by x ≥ y. �R denotes the strict relation in-
duced from R, defined by x �R x′ if and only if x �R x′

and not (x′ �R x)1. An order R is linear (or complete) if and
only if R(x, x′) or R(x′, x) holds for all x, x′ ∈ X . Let R,
R′ be two orders on X . R′ extends R if and only if R ⊆ R′,
that is, R(x, x′) implies R′(x, x′) for all x, x′ ∈ X . Let R
be an order. A linear order T is an complete extension of R
if and only if T extends R. Ext(R) denotes the set of all
complete extensions of R.

2.2 Voting procedures
Let X = {x1, . . . , xm} be a finite set of candidates and
I = {1, . . . , n} a finite set of voters. A complete preference
profile is a collection T = 〈T1, . . . , Tn〉 of linear orders on
X (where Ti represents the preferences of voter i). A voting
procedure F maps every complete preference profile T to a
nonempty subset of X : F (T ) denotes the set of winners of
T w.r.t. F . Note, importantly, that the outcome F (T ) of a
voting procedure is always nonempty, i.e., the outcome of the
procedure is defined for all preference profiles.

Examples of voting procedures are considered in Sections
4 and 5. Among the many voting procedures that exist in
the literature (for an extensive presentation see for instance

1Or equivalently, since R is antisymmetric: x �R x′ if and only
if x �R x′ and x′ 6= x).

[Brams and Fishburn, 2003]), some require preference pro-
files to be linear orders and some allow more generally prefer-
ences to be weak orders (where antisymmetry is not required,
which implies that a voter can express an indifference be-
tween two candidates). However, for the sake of simplicity,
in this paper we assume that all preference relations consid-
ered are antisymmetric. This is not a real loss of generality,
as most of our definitions and results would extend to the case
where indifference is allowed (see Section 7).

Even if some voting procedures work on linear orders and
some on weak orders, a common point of all procedures is
that they apply to complete preference relations: in other
words, they are not tailored for dealing with incomparabil-
ity. In Section 1 we argued towards taking possible incom-
parabilities into account. The question now is how F should
be extended when we have only a partial knowledge of the
preferences of the voters – in other terms, how should F be
defined when the input is a collection of orders rather than a
collection of linear orders. This issue is investigated in the
next section.

3 Voting procedures with incomplete
preferences: definitions

3.1 Extending voting procedures to incomplete
preferences

A voting problem under incomplete preferences is composed
of a finite set of candidates X = {x1, . . . , xm}, a finite set
of voters I = {1, . . . , n}, and for each i, an order Ri on
X denoting the individual preference profile of voter i. The
collection of orders R = 〈R1, . . . , Rn〉 will be called a (col-
lective) preference profile. R is said to be complete if and
only if Ri is complete for each 0 ≤ i ≤ n. In the rest of the
paper, Ri is often denoted as �Ri

or as �i: thus, we write
indifferently Ri(x, y), x �Ri

y, or x �i y.
The notion of complete extension is generalized from indi-

vidual to collective preference profiles in a natural way:
Ext(R) = Ext(R1) × . . . × Ext(Rn)

There are at least two interpretations for incomplete pref-
erences: intrinsic incompleteness, where the voter refuses
to compare some alternatives, or epistemic incompleteness,
where the voter has a complete preference but it is only par-
tially known at the time the voting procedure has to be ap-
plied. These different interpretations lead to different ways
of extending voting procedures to partial preferences, as dis-
cussed further. Here are three possible ways that can be fol-
lowed, where F is a given voting procedure defined for com-
plete preference relations: (1) apply F to all complete exten-
sions of the preference relations and gather the results; (2)
select a subset of those complete extensions (ideally a sin-
gleton) using some completion process, apply F to these and
gather the results; 2. (3) rewrite directly the definition of F
so that it applies more generally to partial preference rela-
tions (obviously, this extension of F must coincide with F on
complete preference profiles).

2This completion process may consist in letting candidates grav-
itate towards preference such as in [Boutilier, 1994] or towards in-
difference such as in [Tan and Pearl, 1994].



In the rest of the paper we explore only the first of these
three ways, which looks the most natural of all three ways;
furthermore it seems to be more suited to epistemic incom-
pleteness of preference (see Section 6).

3.2 Possible and necessary winners
For applying a voting procedure to all complete extensions of
a partial preference profile we define upper and lower bounds
for winners.

Definition 1 Let F be a voting procedure on X and R a (
possibly incomplete) preference profile.

• x ∈ X is a necessary winner for R (w.r.t. F ) if and only
if for all T ∈ Ext(R) we have x ∈ F (T ).

• x ∈ X is a possible winner for R (w.r.t. F ) if and only
if there exists a T ∈ Ext(R) such that x ∈ F (T ).

A necessary winner for R is thus a candidate which wins
in all complete extensions of R and a possible winner wins in
at least one complete extension of R. Hence, necessary win-
ners constitute an upper bound and possible winners a lower
bound for winners of a partial preference profile. We denote
by NWF (X) (respectively PWF (X)) the set of necessary
(respectively possible) winners for R w.r.t. F . Clearly, the
following properties hold, for any voting procedure F :

• for all R, NWF (R) ⊆ PWF (R);

• for all R, R′ such that R ⊆ R′, PWF (R′) ⊆ PWF (R)
and NWF (R′) ⊆ NWF (R).

Note also that NWF (X) can be empty, but not PWF (X).
Whenever R is a complete preference profile, possible and
necessary winners coincide.

The rest of these notes try to evaluate the difficulty of ap-
plying some well-known voting procedures to partial prefer-
ence relations, by assessing the computational complexity of
the problems and by giving explicit algorithms for computing
possible and necessary winners.

Since there are, in the general case, exponentially many
extensions of a partial preference profile, nothing guarantees
that computing possible and necessary winners can be done
in polynomial time, even if the voting procedure F is polyno-
mially computable. All we can say is that, provided that F is
polynomially computable:

• Determining whether x ∈ PWF (R) is in NP.

• Determining whether x ∈ NWF (R) is in coNP.

The question is now: are there any voting procedures such
that necessary and possible winners can still be determined in
polynomial time? We answer this question positively in the
next two Sections.

4 Positional scoring procedures
A positional scoring procedure is defined from a scoring vec-
tor , that is, a vector ~s = (s1, . . . , sm) of integers such that
s1 ≥ s2 ≥ . . . ≥ sm and s1 > sm. Let T = 〈T1, . . . , Tn〉
be a complete preference profile. For every x ∈ X and every
i ∈ I , let r(Ti, x) = #{y | y >Ti

x} + 1 be the rank of x in
the complete order Ti; then

S(x, T ) =
∑n

i=1 sr(Ti,x)

Lastly, the positional scoring rule F~s associated with
a scoring vector ~s is defined by its set F~s(T ) =
{x | S(x, T ) is maximal }, that is, the set of winning can-
didates for T with respect to F~s is the set of candidates in X
maximizing S(., T ).

Here are well-known examples of positional scoring pro-
cedures:
• the Borda procedure is the defined from the scoring vec-

tor sk = m − k for all k = 1, . . . , m;
• the plurality procedure is defined from the scoring vector

s1 = 1, and sk = 0 for all k > 1.
The question now is, how hard is it to determine whether

x is a necessary or a possible winner for R w.r.t. a scoring
procedure F ?

For this, let us define the minimal (resp. maximal) rank of a
candidate x for a (partial) order R as the lowest3 (resp. high-
est) possible rank of x obtained when considering all com-
plete extensions of R, that is,

rankmin
R (x) = minT∈Ext(R) r(T, x)

rankmax
R (x) = maxT∈Ext(R) r(T, x)

where r(T, x) is the rank of x in the complete order T , which
is a complete extension of R.

These bounds are actually much easier to compute than
what their definition suggests. For some voter, the minimal
rank of x is determined by the number of candidates which
are higher ranked in the order and the maximal rank of x is
determined by the number of lower ranked candidates.

Proposition 1 Let R be a (partial) strict order. Then,

rankmin
R (x) = #{y | y >R x} + 1 and

rankmax
R (x) = m − #{y | x >R y}

Proof: rankmin
R (x): Let R↑

x be the following extension of R:

(↑) R↑
x = R ∪ {(x, z) | z 6= x, not (z >R x)}

That is, all candidates which are not initially strictly preferred
to x are now less preferred: for all z 6= x, x > z holds in R↑

x

as soon as (z >R x)} does not hold, that is, as soon as it
is possible to enforce x > z. Note also that it can be easily
checked that R↑

x is transitive. Next, we show that R↑
x has at

least one complete extension. For this, let 〈zi〉i∈L be an enu-
meration of {z | z 6= x, not(z >R x)} such that i < j if
zi >R zj holds for all i, j ∈ L. Analogously, let 〈yi〉i∈K be
an enumeration of {y | y >R x} such that i < j if yi >R yj

holds for all i, j ∈ K. Then, let 〈ri〉i∈J be an enumeration
of X such that 〈ri〉i∈J = 〈〈yi〉i∈K , x, 〈zi〉i∈L〉 Then, R′, de-
fined as ri ≥R′ rj iff i ≤ j, is an complete extension of R↑

x.
For all complete extensions of R↑

x we have that x has
the rank #{y | y >R x} + 1 since all other candidates
are ranked lower than x. For all complete extensions T
which do not satisfy (↑) we have that x has at least the rank
#{y | y >R x}+ 2 since there is at least one other candidate
who is additionally higher ranked than x. Hence, we have
rankmin

R (x) = #{y | y >R x} + 1.

3Recall that the lower its rank, the more preferred a candidate.



rankmax
R (x): Proof is similar by taking (↓) R↓

x =
R ∪ {(z, x) | z 6= x, not (x >R z)} �

Next, necessary and possible winners can be computed by
consider the best and the worst case for values of scoring
functions.

Proposition 2 Let R be a preference profile, where each Ri

is a (partial) order, Fs be a positional voting procedure, and

Smin
R (x) =

∑n
i=1 srankmax

Ri
(x)

Smax
R (x) =

∑n
i=1 srankmin

Ri
(x)

Then,
(1) x is a necessary winner for R w.r.t. Fs if and only if
Smin
R (x) ≥ Smax

R (y) holds for all y 6= x;
(2) x is a possible winner for R w.r.t. Fs if and only if
Smax
R (x) ≥ Smin

R (y) holds for all y 6= x;

Proof: 1,⇐: Suppose that x is not a necessary winner for R
w.r.t. Fs. Then there exists an extension T of R and a y 6= x
such that S(y, T ) > S(x, T ), thus Smax

R (y) ≥ S(y, T ) >

S(x, T ) ≥ Smin
R (x), which contradicts the assumption that

Smin
R (x) ≥ Smax

R (y) holds for all y 6= x.
1, ⇒: Let x be a necessary winner. Then, there don’t ex-

ists an T ∈ Ext(R) and there don’t exists an y 6= x such
that S(x, T ) < S(y, T ). Since Smin

R (x) ≤ S(x, T ) and
Smax
R (y) ≥ S(y, T ) we have that there don’t exists an y 6= x

such that Smin
R (x) < Smax

R (y).
2: analogously to 1. �

Smin
R (x) considers the worst case and Smax

R (x) the best case
for a scoring value for x. Hence, x is a necessary winner
whenever the worst value is higher than the best value and x
is a possible winner whenever the best value is higher than the
worst value for x. Furthermore, we get the following result:

Corollary 1 Possible and necessary winners for positional
scoring procedures can be computed in polynomial time.

For each partial order Ri and each candidate x, we just have
to compute the number of candidates dominated by x and
dominating x in Ri, which lead to the exact boundO(n∗m2).

Example 1 Let us consider the following example where we
have candidates X = {x1, x2, x3, x4} and p + q voters. The
first group of p voters have the preferences Ri = {x1 > x2 >
x4, x1 > x3 > x4}, for 0 ≤ i ≤ p and the other q voters
have the preferences Ri = {x3 > x2 > x1}, for p + 1 ≤ i ≤
p+q. For the second group of voters, nothing is known about
the position of x4 with respect to other candidates (it is fully
incomparable to them all). For the Borda procedure, we get

Smin
R Smax

R
x1 3p 3p + q
x2 p + q 2(p + q)
x3 p + 2q 2p + 3q
x4 0 3q

Hence, there are no necessary winners. Candidate x1 is a
possible winner whenever 2p ≥ q, x2 is possible if 2q ≥ p,
x3 is possible if 3q ≥ p, and x4 is a possible winner if q ≥ p.

For the plurality voting procedure we get

Smin
R Smax

R
x1 p p
x2 0 0
x3 0 q
x4 0 q

Hence, we get: If p > q then x1 is the only possible winner
and necessary winner. If p = q then x1, x3 and x4 are pos-
sible winners and x1 is a necessary winner. If p < q then x3

and x4 are possible winners and there is no necessary winner.

5 Condorcet winners
Recall that a candidate x is a Condorcet winner for a com-
plete profile T = 〈�1, . . . ,�n〉 if and only if for all y 6= x,
#{i | x �i y} > n

2 .4
Analogously to positional scoring procedures, we define

upper and lower bounds for sets of Condorcet winners in case
of partial preference profiles.

Definition 2 Let R be an (incomplete) preference profile.
Then,
• x ∈ X is a necessary Condorcet winner for R if and

only if for all T ∈ Ext(R), x is a Condorcet winner for
T .

• x ∈ X is a possible Condorcet winner for R if and only
if there exists a T ∈ Ext(R) such that x is a Condorcet
winner for T .

Again, let us first focus on the worst and the best cases, this
time by defining, for a pair of candidates (x, y), the number
of voters for which x is preferred to y in the worst and in the
best cases when considering all complete extensions of T . If
T is a collection of linear orders, let us first define

NT (x, y) = #{i |x >i y} − #{i |y >i x}

Then
Nmin

R (x, y) = minT ∈Ext(R) NT (x, y)
Nmax

R (x, y) = maxT ∈Ext(R) NT (x, y)

Nmin
R (x, y) (resp. Nmax

R (x, y)) corresponds to the the
worst (resp. best) case for x among extensions of R. Again,
these bounds can be computed in polynomial time as follows:

Proposition 3 Let R be a (partial) preference profile and
x, y two distinct candidates from X . We define

Nmax
Ri

(x, y) =

{

+1 if not (y ≥i x);
−1 if y >i x

and

Nmin
Ri

(x, y) =

{

+1 if x >i y;
−1 if not (x ≥i y)

Then
1. Nmin

R (x, y) =
∑n

i=1 Nmin
Ri

(x, y) and Nmax
R (x, y) =

∑n
i=1 Nmax

Ri
(x, y);

4Or equivalently, #{i | x �i y} > #{i | y �i x}. In the
more general case when indifferences are allowed, this equivalence
no longer holds and the latter expression is chosen as the usual defi-
nition of a Condorcet winner.



2. x is a necessary Condorcet winner for R if and only if
∀y 6= x, Nmin

R (x, y) > 0.

3. x is a possible Condorcet winner for R if and only if
∀y 6= x, Nmax

R (x, y) > 0.

Proof: 1: Let us first show that
∑n

i=1 Nmin
Ri

(x, y) =
minT ∈Ext(R) NT (x, y). We have

∑n
i=1 Nmin

Ri
(x, y) = #{i | x >i y}

−#{i | not(x ≥i y)}

Let T = 〈T1, . . . , Tn〉 ∈ Ext(R). We have NT (x, y) =
#{i | x >Ti

y} − #{i | y >Ti
x}. Now, x >i y implies

x >Ti
y, therefore (a) #{i | x >Ti

y} ≥ #{i | x >i y} Next,
y >Ti

x implies not(x ≥i y), therefore (b) #{i | y >Ti
x} ≤

#{i | not(x ≥i y)}. (a) and (b) give (c) #{i | x >Ti
y} −

#{i | y >Ti
x)} ≥ #{i | x >i y} − #{i | not(x ≥i y)},

which is equivalent to NT (x, y) ≥ #{i | x >i y} − #{i |
not(x ≥i y)}. Since this holds for all T ∈ Ext(R), we get
minT ∈Ext(R) NT (x, y) ≥

∑n
i=1 Nmin

Ri
(x, y).

To show the inequality on the reverse direction, we
consider, as in the proof of Proposition 1, the worst-
case (for x) complete extension of Ri: for each i, let
(Ri)

↓
x = Ri ∪ {(z, x) | z 6= x, not (x >i z)}.

Let R↓
x = 〈(R1)

↓
x, . . . , (Rn)↓x〉. We have NR↓

x

(x, y) =

#{i | x >(Ri)
↓
x

y} − #{i | y >(Ri)
↓
x

x)}

= #{i | x >(Ri)
↓
x

y} − #{i | not(x ≥(Ri)
↓
x

y)}

= #{i | x >Ri
y} − #{i | not(x ≥Ri

y)}
=

∑n
i=1 Nmin

Ri
(x, y)

Therefore, minT ∈Ext(R) NT (x, y) ≤
∑n

i=1 Nmin
Ri

(x, y).
The proof for Nmax

R (x, y) =
∑n

i=1 Nmax
Ri

(x, y) is similar.
2, ⇐: Assume that x is not a necessary winner. Then, there

exists an T ∈ Ext(R) and an y 6= x such that #{i | x >Ti

y} ≤ #{i | y >Ti
x}. Hence, NT (x, y) ≤ 0. That implies

that minT ∈Ext(R) NT (x, y) ≤ 0 and thus, Nmin
R (x, y) ≤ 0

which is a contradiction to the assumption that Nmin
R (x, y) >

0 holds. Hence, x is a necessary Condorcet winner.
2, ⇒: Let x be a necessary Condorcet winner. Assume

that there exists an y 6= x such that Nmin
R (x, y) ≤ 0 holds

for some x. That is, we have #{i | x >i y} ≤ #{i |
not(x ≥i y)}. Hence, there exists an T ∈ Ext(R) such
that NT (x, y) ≤ 0. Hence, x is no Condorcet winner, which
is a contradiction to the assumption.

3: similar to the proof for necessary winners. �

If x is strictly preferred to y, then Nmin
R (x, y) and

Nmax
R (x, y) assign the value 1 as in the case for complete

preferences. Furthermore, if candidates x and y are incom-
parable, the function Nmax

Ri
(x, y) assigns the value 1 and

Nmin
Ri

(x, y) the value −1. This follows the intuition that
Nmax

R covers the “best” case and Nmin
R the “worst” case for

candidates x and y. Hence, if Nmin
R (x, y) > 0 for all y 6= x,

then in the worst case, strictly more voters prefer x strictly
over y than y over x. In this case, x is a necessary Con-
dorcet winner. Whenever Nmax

R (x, y) > 0, there exists a
complete extension T of R such that x is a Condorcet winner
and hence, x is a possible Condorcet winner.

Example 2 Let us reconsider Example 1.
We get that x1 is a necessary Condorcet winner if p > q.

The other candidates become never a necessary Condorcet
winner. Furthermore, x1 is a possible Condorcet winner if
p > q and x3 and x4 are possible Condorcet winners if q > p.
Candidate x2 is not a possible Condorcet winner.

As stated in Section 4, we can compute necessary and pos-
sible Condorcet winners in polynomial time.

Corollary 2 Possible and necessary Condorcet winners can
be computed in polynomial time.

One may wonder whether this way of determining possible
and necessary winners just by computing lower and upper
bounds of scores, which works for scoring procedures and
Condorcet winners, extends to Condorcet-consistent voting
procedures such as the Simpson or the Copeland procedures
[Brams and Fishburn, 2003]. Unfortunately, this is not so
simple, as the method consisting in computing lower and up-
per bounds does not suffice5. Computing possible and nec-
essary winners for such procedures might be NP-hard and
coNP-hard. This issue is left for further research.

6 Related issues
We now investigate the links between possible and necessary
winners and some issues such as vote elicitation and manipu-
lation.

6.1 Manipulation
The Gibbard-Satterthwaite theorem states that any vote pro-
cedure can be manipulated, or in other terms, that vot-
ers sometimes have an interest to report unsincere prefer-
ences. Manipulation was recently revisited from the com-
putational point of view [Conitzer and Sandholm, 2002a;
Conitzer et al., 2003; Conitzer and Sandholm, 2003]: given
(a) a coalition of voters J ⊆ I ; (b) a candidate x ∈ X and
(c) the individual profiles RI\J = 〈Rj〉j∈I\J of the voters in
I \ J :

• A constructive manipulation for x by J given RI\J

(with respect to a given vote procedure F ) is a way for
the voters in J to cast their votes such that x is guar-
anteed to win the election, that is, a set of individual
profiles RJ such that F (〈RJ\I ,RJ〉) = {x}.

• A destructive manipulation for x by J given RI\J (with
respect to a given vote procedure F ) is a way for the
voters in J to cast their votes such that x is guaranteed
not to win the election, that is, a set of individual profiles
RJ such that x 6∈ F (〈RJ\I ,RJ〉).

5Consider for instance the Simpson (or maximin) procedure, con-
sisting of choosing the candidates maximizing the Simpson score
ST (x) = miny 6=x NT (x, y). Then, given a partial preference
profile R, we may compute in polynomial time a lower bound
Smin
R (x) = minT ∈Ext(R) ST (x) and an upper bound Smax

R (x) =

maxT ∈Ext(R) ST (x). However, even if, for instance, Smin
R (x) >

Smin
R (y) for all y implies that x is a necessary winner, the converse

implication is not guaranteed to hold, because it may be the case that
no extension of R simultaneously gives a minimal score to x and a
maximal score to y.



We then have the following easy results (the proof of which
are omitted). Let R∅ = {(x, x) | x ∈ X}.

Proposition 4 Let F be a voting procedure, J ⊆ I be a
coalition of voters, x ∈ X and RI\J = 〈Rj〉j∈I\J . We let
R∗ = 〈R∗

i 〉i∈I where R∗
i = Ri if i ∈ I \ J and R∗

i = R∅ if
i ∈ J .

1. there is a constructive manipulation for x by J given
RI\J if and only if PWF (R∗) = {x};

2. there is a destructive manipulation for x by J given
RI\J if and only if x 6∈ NWF (R∗).

Thus, deciding whether there is a constructive or a destruc-
tive manipulation for a given candidate is a subproblem of
voting with partial preference relations. As an obvious corol-
lary, whenever computing necessary and possible winners
is polynomial, then deciding whether there is a (construc-
tive/destructive) manipulation is polynomial as well6 .

6.2 Elicitation
Given a set of individual profiles RJ = 〈Rj〉j∈J correspond-
ing to a subset of voters J ⊆ I who have already expressed
their votes. Vote elicitation [Conitzer and Sandholm, 2002b]
consists in determining, whether (a) the outcome of the vote
can be determined without needing any further information
and (b) which information must be asked to which voter. We
generalize these notions to the more general situation where
the initial knowledge about the votes is any partial preference
profile: given a partial preference profile R, the elicitation
task is over iff it is useless to learn more about the voter’s
preferences, that is, the outcome of the vote will be the same
in any complete extension of R: for any T , T ′ ∈ Ext(R),
F (T ) = F (T ′). This condition is easily shown to be equiva-
lent to the fact that possible and necessary winners coincide:

Proposition 5 Given a voting procedure F and a partial
preference profileR, the elicitation process is over if and only
if PWF (R) = NWF (R).

7 Conclusion
In this paper we made first steps towards computing the out-
come of voting procedures when the voters’ preferences are
incomplete, and we pointed connections to vote manipulation
and elicitation.

For the sake of simplicity, we required the voters’ pref-
erences to be antisymmetric. However, definitions of possi-
ble and necessary winners carry on to the more general case
where voters’ incomplete preferences are weak orders (allow-
ing for indifferences), provided that the voting procedure F
allows for indifferences as well. Especially, possible and nec-
essary Condorcet winners can still be defined, and computed
in polynomial time.

Further work obviously includes the investigation of other
voting rules, as briefly evoked at the end of Section 5. An-
other interesting issue would consist in defining a middle
way between possible and necessary winners, by counting
the number of extensions in which a candidate is a winner.

6Note that the NP-hardness results of [Conitzer and Sandholm,
2002a] do not apply here, since they apply to weighted votes.

This probabilistic criterion will probably be much harder to
compute than the extremely optimistic and pessimistic crite-
ria underlying the notions of possible and necessary winners.

Incompleteness here refers only to preferences. Another
place where incompleteness may be relevant is in the voting
procedure itself: this is the way followed by [Conitzer and
Sandholm, 2003], who introduce some uncertainty in the way
the voting procedure will be applied so as to make manipu-
lation more difficult. Although both issues are significantly
different, it is worth considering whether studying both in a
unifying framework would be relevant.

Acknowledgements The first author was partially sup-
ported by the German Science Foundation (DFG) under grant
SCHA 550/6-4, TP C and by the EC under project IST-2001-
37004 WASP.

References
[Boutilier et al., 2004] C. Boutilier, R. I. Brafman, C. Domshlak,

H. Hoos, and D. Poole. Preference-based constrained optimiza-
tion with CP-nets. Computational Intelligence, 20(2):137–157,
2004.

[Boutilier, 1994] C. Boutilier. A logical approach to qualitative de-
cision theory. In Proceedings of UAI-94, 1994.

[Brams and Fishburn, 2003] S. Brams and P. Fishburn. Handbook
of Social Choice and Welfare, volume 1, chapter Voting proce-
dures. Elsevier, 2003.

[Conitzer and Sandholm, 2002a] V. Conitzer and T. Sandholm.
Complexity of manipulating an election with few candidates. In
Proceedings of AAAI-02, pages 314–319, 2002.

[Conitzer and Sandholm, 2002b] V. Conitzer and T. Sandholm.
Vote elicitation: complexity and strategy-proofness. In Proceed-
ings of AAAI-02, pages 392–397, 2002.

[Conitzer and Sandholm, 2003] V. Conitzer and T. Sandholm. Uni-
versal voting protocols tweaks to make manipulation hard. In
Proceedings of IJCAI-03, pages 781–788, 2003.

[Conitzer et al., 2003] V. Conitzer, J. Lang, and T. Sandholm. How
many candidates are required to make an election hard to manip-
ulate? In Proceedings of TARK-03, pages 201–214, 2003.

[Davenport and Kalagnanam, 2004] A. Davenport and
J. Kalagnanam. A computational study of the Kemeny
rule for preference aggregation. In Proceedings of AAAI-04,
2004.

[Hemaspaandra et al., 2004] E. Hemaspaandra, H. Spakowski, and
J. Vogel. The complexity of Kemeny elections. Technical report,
2004.

[Lang, 2004] J. Lang. Logical preference representation and com-
binatorial vote. Annals of Mathematics and Artificial Intelli-
gence, 42(1):37–71, 2004.

[Rossi et al., 2004] F. Rossi, K. Venable, and T. Walsh. mCP-nets:
representing and reasoning with preference of multiple agents. In
Proceedings of AAAI-04, 2004.

[Rothe et al., 2003] J. Rothe, H. Spakowski, and J. Vogel. Exact
complexity of the winner determination problem in young elec-
tions. Theory of Computing Systems, 36:375–386, 2003.

[Tan and Pearl, 1994] S.-W. Tan and J. Pearl. Qualitative decision
theory: specification and representation of preferences under un-
certainty. In Proceedings of KR-94, 1994.


