
Collective Decision Making under Incomplete Knowledge:
Possible and Necessary Solutions
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Abstract

Most solution concepts in collective decision mak-
ing are defined assuming complete knowledge of
individuals’ preferences and of the mechanism used
for aggregating them. This is often unpractical or
unrealistic. Under incomplete knowledge, a so-
lution advocated by many consists in quantifying
over all completions of the incomplete preference
profile (or all instantiations of the incompletely
specified mechanism). Voting rules can be ‘modal-
ized’ this way (leading to the notions of possible
and necessary winners), and also efficiency and
fairness notions in fair division, stability concepts
in coalition formation, and more. I give here a sur-
vey of works along this line.

1 Introduction
In the last 20 years there has been a significant interest on
collective decision making within the AI community, with
the aim of designing and supporting new ways for agents to
make group decisions, in a more flexible and realistic way
than what classical social choice methods would allow.

One reason why collective decision making in modern ap-
plications has to be flexible is that preferences can often not
be assumed to be elicited entirely and in a single pass. This
leads to viewing collective decision making as an interactive
process, and ask questions such as: when agents’ preferences
are partly known at some stage, should we simply wait, or do
we know the outcome already, or at least part of it?

Beyond preferences, incomplete knowledge can also bear
on the mechanism itself, for various reasons (including reduc-
ing the impact of strategic behaviour).

For both sources of incomplete knowledge, a notion that
has been used in several subfields of computational social
choice is what I will call possible and necessary solutions.
It has been used in voting under the terminology possible
and necessary winners, and more recently in fair division and
coalition structure formation.

This survey, and the chapter Incomplete Information and
Communication in Voting [Boutilier and Rosenschein, 2016],
in the Handbook of Computational Social Choice, comple-
ment each other. The handbook chapter has a much wider

scope, as it covers more generally information and commu-
nication issues in voting. Its Section 10.3.1 covers possible
and necessary winners in voting, with much less details and
structure than this survey. Also, the handbook chapter deals
only with voting, and not with other social choice domains.

As most of the work I am about to survey bears on incom-
plete preferences, in each section I start by this setting, and
consider incompletely specified mechanisms later.

2 Possible and Necessary Winners in Voting
2.1 Definitions
An election consists of a set N of n agents, a set C of m can-
didates, and a preference profile R = (�1, . . . ,�n), where
each �i is a linear order1 over C, called a preference relation
or vote. A property F (of candidates) maps R to a subset of
C. If F (R) is always nonempty then F is a voting rule; and
if F (P ) is always a singleton then it is a resolute voting rule.

An example of a property is ‘being a Condorcet winner’
(CW) : c ∈ C is a CW is for any c′ ∈ C \ {c}, a majority of
voters prefers c to c′, that is, |{i, c �i c

′}| > n
2 . An exam-

ple of a voting rule is plurality (Fplu): it outputs candidates
ranked with largest plurality score, defined as the number of
votes in whih they are ranked on top. A voting rule can be
made resolute by composing it with a tie-breaking mecha-
nism, usually a priority relation B over C. For instance, if
R = (a� b� c, a� b � c, b� c � a, b� c � a, c� a � b)
then the CW property outputs the empty set, the plurality rule
outputs {a, b}, and resolute plurality with tie-breaking prior-
ity a B b B c (denoted by Fplu,aBbBc) outputs {a}.

A natural model of incomplete information about votes
consists in assuming that only a partial order for each voter
is known.2 A partial (or incomplete) vote Pi is a strict partial
order (an irreflexive and transitive relation) over C. A (com-
plete) vote �i is a completion of Pi if it is contains Pi. A
partial profile P is a collection (P1, . . . , Pn) of incomplete
votes. A (complete) profile R = (�1, . . . ,�n) is a comple-
tion of P if for all i, �i is a completion of Pi.

Given a candidate c ∈ C, a voting rule or property F and
an incomplete profile P , c is a possible winner (for P and
F ) if there exists a completion R of P such that x ∈ F (R);

1We stick here to rules defined from ordinal preferences, which
is a usual view in voting and more generally in social choice.

2This is nevertheless not the only possibility. See Section 2.4.
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Figure 1: Partial profile P and its six completions

and c is a necessary winner if for every completion R of P ,
x ∈ F (R) [Konczak and Lang, 2005].

If F is a voting rule then any necessary winner is a possible
winner, and there is at least one possible winner. If moroever
F is resolute, then there is at most one necessary winner.

Example 1. We take n = m = 3, C = {a, b, c}. Voter 1
only specifies that a is her top candidate. Voter 2 only says
that she prefers b to a. Voter 3 reports a complete preference
relation. Figure 1 shows the partial profile (left) and its six
completions (right). (We note abc instead of a � b � c, etc.)

We show below the winners for all completions of P , for the
Condorcet winner property, irresolute plurality, and resolute
plurality with tie-breaking priority b B a B c.

P1 P2 P3 CW Fplu Fplu,bBaBc

abc cba cab c c c
abc bca cab ∅ a, b, c b
abc bac cab a a, b, c b
acb cba cab c c c
acb bca cab c a, b, c b
acb bac cab a a, b, c b

• a and c are possible Condorcet winners. There is no
necessary Condorcet winner.

• for irresolute plurality: a, b and c are possible winners,
and c is a necessary winner.

• for Fplu,bBaBc: b and c are possible winners, and there
is no necessary winner.

If we further learn that voter 2 prefers a to c, only comple-
tions (abc, bac, cab) and (acb, bac, cab) remain; now a is a
necessary CW and b a necessary winner for Fplu,bBaBc.

In the case of a resolute rule, the existence of a necessary
winner is a sufficient and necessary condition for the elicita-
tion process to be considered terminated (as there is enough
information for the outcome to be known). This question has
been considered first in [Conitzer and Sandholm, 2002] and
[Walsh, 2008].3 [Ding and Lin, 2013] go further by determin-
ing which are the relevant queries voters should be asked.

2.2 Computation
Because the number of completions of a partial profile is ex-
ponential, deciding whether a candidate is a possible or a nec-
essary winner is not guaranteed to be easy, and indeed it os
often hard. The complexity of these decision problems for a
variety of rules is addressed first in [Xia and Conitzer, 2011]

3In the case of irresolute rules, whether the elicitation process is
considered terminated once some necessary winner has been found
depends on the context.

for a variety of rules, and further in [Betzler and Dorn, 2010;
Baumeister and Rothe, 2012] for the specific case of posi-
tional scoring rules.

The parameterized complexity of the problems is initiated
in [Betzler et al., 2009], where the relevant parameters are
the number of candidates, number of voters, and degree of in-
completeness (number of undetermined pairs in votes). Ker-
nelization complexity results with number of candidates as
parameter are given in [Dey et al., 2016]. The impact of the
degree of incompleteness is investigated further in [Dey and
Misra, 2017], who determine, for several rules, the smallest
number of undetermined pairs for which the possible winner
problem remains hard.

2.3 Special Cases
Missing Votes
A partial profile P = (P1, . . . , Pn) is of the missing voters
(MV) type if for every i, either Pi is either complete or empty.
Without loss of generality, let us renumber the voters such
that Pi is complete for each i ≤ k and empty for i > k.

voter 1 . . . voter n-k voter n-k+1 . . . voter n
•

...

•

. . .

•

...

•

∅
. . .

∅

A partial profile of the missing voters type

There are at least two interpretations of these MV pro-
files. Under the strategic interpretation, {k + 1, . . . , n} is
a coalition of manipulating voters who, knowing the votes of
{1, . . . , k}, can coordinate and turn the outcome to their ad-
vantage. These two problems are defined in [Bartholdi et al.,
1989]: for a resolute rule F , given the votes of {1, . . . , k},
coalition {k + 1, . . . , n} has a constructive (resp. destruc-
tive) manipulation for (resp. against) c ∈ C if there is a way
for them to vote so that c is the winner (resp. so that c is not
the winner). Clearly, in a MV profile, c is a possible winner
if and only if the missing voters have a coalitional manipula-
tion for c, and a necessary winner if and only if they have no
destructive manipulation against c.

These definitions assume that the manipulating voters have
full knowledge of the nonmanipulators’ votes. This assump-
tion is relaxed in [Conitzer et al., 2011], who assume non-
manipulators’ votes to be partial orders and define a domi-
nating manipulation as a collection of votes by the manipu-
lators making the winner preferable (to them) to the winner
obtained with truthful votes. In a similar setting, [Dey et al.,
2018] study a notion of weak manipulation that corresponds
to the possible winner problem given k partial votes and n−k
empty votes (see Section 2.4 for further discussion).

Under the temporal interpretation, votes come in an asyn-
chronous way. At time t, the set of voters who have sent
their votes is V (t); we usually assume V to be monotonic4

and as soon as we have necessary winner, we can stop wait-
ing for more votes to come. This situation occurs typically

4Although one may argue that there may be cases where some
voters can cancel their vote after some time.



in date-finding polls. In such a context, during the elicitation
process voters can be asked to block the dates mentioned in
the poll, and identifying the possible winners before the end
of the elicitation process allows them to block less dates.
Example 2. F is the irresolute plurality rule. At time t, let
st(x) be the plurality score of x ∈ C. The number of voters
who have already voted is |V (t)| =

∑
x st(x). x is a nec-

essary winner if st(x) ≥ maxy 6=x st(y) + n − |V (t)| and a
possible winner if st(x) + n− |V (t)| ≥ maxy 6=x st(y).

This assumes that the set of voters is fixed from the begin-
ning. When it is not, all-or-nothing notions no longer make
sense; one can try instead to identify candidates who are win-
ners with a large enough probability [Dey et al., 2017].

Missing Candidates
A partial profile is of the missing candidates (MC) type if the
partial votes consist of complete rankings over some subset
of candidates (the same for all voters), with no information at
all on the other candidates. Concrete situations include polls
about meeting dates where some dates that were initially con-
sidered impossible (for instance because the meeting room
was thought to be unavailable) have become possible in the
meantime, or applicants to a job that are known only after the
first set of applicants have been interviewed and ranked by
the members of the committee.

voter 1 voter 2 . . . voter n
c

a

b

b

c

a

. . .

b

a

c

(d?e?) (d?e?) (d?e?)
A partial profile of the missing candidates type

Clearly, for any reasonable voting rule, these new candi-
dates are possible winners. The question is which of the ini-
tial candidates are possible winners, that is, can still win after
we learn how the voters compare the new candidates to them.
Example 3. n = 12. {a, b, c} are the initial candidates and y
the only new candidate. The rule is plurality with tie-breaking
priority a B b B c B y. The initial plurality scores (before
preferences about y are known) are a : 5, b : 4, c : 3. Clearly,
a can still win (for instance if noone ranks y first); b will
win provided that at least two (and at most three) voters who
used to rank a first now decide to rank y first (third column);
c cannot win, because to make the scores of a and b lower
than its, we would need too many voters ranking y first, and
y would become the winner (rightmost column).

initial scores b wins y wins
a 5 3 2
b 4 4 2
c 3 3 3
y − 2 5

If there are two new candidates y1, y2 instead of one, then c
is a possible winner if it has priority over y1 or over y2.

Characterizing possible winners in this specific context has
been considered for positional scoring rules [Chevaleyre et
al., 2012] and a few other rules [Xia et al., 2011].

Truncated Ballots
Asking voters to rank all candidates is often too much of a
communication burden on them. To limit the amount of elic-
itation, we may ask them to rank only their top k candidates,
for some k. This leads to a partial profile of the top-k type:

voter 1 voter 2 . . . voter n
•

•

?

•

•

?

. . .

•

•

?

A partial profile of the top-k ballots type (here k = 2)

A possible variation is to allow each voter i to choose their
own ki. Another one consists in double-truncated ballots:
each voters reports their k+ top candidates and their bottom
k−. Truncated ballots have been considered in quite many
papers; those that focus explicitly on possible and necessary
winners are [Baumeister et al., 2012a; Kalech et al., 2011;
Ayadi et al., 2019], the latter two in the context of designing
low-communication protocols. A protocol studied in [Kalech
et al., 2011] starts by eliciting the top-1 ballots, then top-2,
and so on, until there is a necessary winner; in practice, this
“next-best queries” protocol saves a lot of communication.

Incomplete Lists
A partial profile is of the incomplete lists (IL) type if the vot-
ers rank only some candidates, namely those they know (the
films they have seen, the candidates they have interviewed
etc.) The crucial difference with truncated ballots is that here
the candidates that do not appear in a ranking can be ranked
anywhere and not necessarily below those that appear. The
crucial difference with the “missing candidates” setting is that
the ranked and the missing candidates are voter-dependent.

voter 1 voter 2 . . . voter n

c

a

b

d

a
. . .

c

e

d

f

A partial profile of the incomplete lists type

This situation occurs in information retrieval, when one has
to merge the ordered lists of documents returned by different
search engines, and in systems where individuals rank restau-
rants, films etc. However, unlike other types of partial pro-
files, the IL type is less suited to the possible and necessary
winner notions: the information is generally too incomplete
so that typically, almost all candidates are possible winners.
Dealing with IL profiles calls for either the counting version
of possible winners (cf. Subsection 2.4), or to specific ag-
gregation methods: for instance, [Caragiannis et al., 2015]
aggregate such incomplete lists in the context of peer grading
in Massive Online Open Courses, where each student ranks a
small number of other students’ exams.



Cloning
Assume we know the voters’ preference relations over C, and
that now we add p clones a1, . . . , aq of candidate a ∈ C.
Let C(a) = {a0 = a, a1, . . . , aq}. The voters’ preference
relations �′i over the new set of candidates C ∪ {a1, . . . , aq}
are such that, for each i, (1) for each aj ∈ C(a) and each
x ∈ C \ C(a), aj �′i x if and only if a �i x and x �′i aj if
and only if x �i a; (2) for each x, y ∈ C \ C(a), x �′ y if
an only if x � y. It is not possible to predict how voters will
rank the elements of C(a) with respect to one another. We
obtain a partial profile P of the cloning type:

voter 1 voter 2 . . . voter n
c

a0 a1 a2

b

a0 a1 a2

b

c

. . .

c

b

a0 a1 a2

A partial profile of the cloning type

A resolute rule F is clone-proof if whenever the winner in
the initial profile (without clones) is x 6= a, the only possible
winner in P is x, and whenever the winner in the initial pro-
file is a, the possible winners in P are all in C(a). When F
is not clone-proof, determining the possible winners can be
challenging; this is studied in [Elkind et al., 2011].

2.4 Variants and Extensions
More quantifier alternations. Possible and necessary
winners correspond to simple existential and universal quan-
tification, or, in epistemic logic terms, to possibility and
knowledge: x is a necessary winner if x is known to be a
winner (Kwinx), and x is a possible winner if x is not known
not to be a winner (¬K¬winx), where possible worlds corre-
sponds to profile completions. The notion of strong manipu-
lation [Dey et al., 2018] uses one more level: given k partial
votes, the remaining n − k voters have a strong manipula-
tion for x if there exists a way for them to cast their votes
so that for any completion of the first k votes, x is a winner.
More formally, given an incomplete profile P and a partition
(N1, N2) of the voters, x is a ∃N1∀N2-winner for F if there
is a completion R1 = (�i, i ∈ N1) of (Pi, i ∈ N1) such
that for any completion R2 = (�i, i ∈ N2) of (Pi, i ∈ N2),
x ∈ F (R1, R2). Other quantifier alternations could be con-
sidered.

Probabilistic possible winners. If the incompleteness of
the profile is significant, determining possible winners can
be disappointing: typically, all candidates, or almost all, are
then possible winners. In such a case one may instead want to
count completions. [Bachrach et al., 2010] define the winning
probability of a candidate c as the proportion of completions
for which c is a winner; they show that although computing
the exact winning probability is hard, giving a good additive
approximation of it by sampling is tractable for some rules.
[Kenig and Kimelfeld, 2019] obtain results for multiplica-
tive approximation ratios, and beyond the uniform distribu-
tion over profile completions, they consider a more realistic
family of distributions: the repeated insertion model. Finally,
[Hazon et al., 2012] consider a different uncertainty model

about votes: instead of a partial order, each voter comes with
a probability distribution over complete votes.

Resoluteness with incomplete preferences. As said
above, in some cases there are typically too many pos-
sible winners and we may want to define resolute (or at
least, more resolute) rules from incomplete profiles. A first
way to resoluteness, followed in [Lu and Boutilier, 2011;
Benabbou et al., 2016; Lu and Boutilier, 2020] is to select
the minmax regret winner, that is, the one which is closest
to optimal in the worst case. A necessary winner is also a
minmax regret winner but, perhaps unexpectedly, a minimax
regret winner may not be a possible winner [Lu and Boutilier,
2011]. Another way to resoluteness is to define rules from in-
complete profiles as maximum likelihood estimators [Xia and
Conitzer, 2011].

Other models of uncertainty. [Shiryaev et al., 2013] con-
sider a type of incomplete knowledge about votes which is
generally not representable by partial orders: a ‘default’ (or
‘reference’) vote of each voter is known, but the voter may
report a vote that is within a maximal number of swaps away
from her default vote. A robust winner is then like a necessary
winner, but for this type of incomplete knowledge. Both this
model, and possible and necessary winners, are specialisation
of swap bribery [Elkind et al., 2009].

In the specific case of approval voting, [Barrot et al., 2013]
assume that voters’ preferences are fully known, and that in-
complete knowledge bears on the approval ballots they report.
Assuming these ballots are sincere (i.e., a ballot consists of
all candidates above some ‘threshold’ candidate), they char-
acterize and compute the possible (sets of) approval winners.
[Benabbou and Perny, 2016] also consider possible approval
winners, in a group knapsack context where a common set of
objects is to be selected.

Voting and databases. [Kimelfeld et al., 2018] relate pos-
sible and necessary winners to possible and necessary an-
swers in incomplete databases, and enrich the possible and
necessary winner setting with conjunctive database queries:
given an incomplete profile and some attributes describing the
candidates, they consider questions such as the existence of a
set of possible winners satisfying some conjunctive query.

2.5 Incomplete Knowledge on the Mechanism
Instead of bearing on the votes, incomplete knowledge can
bear on some parameters of the voting rule, such as:

1. the voters and candidates that take part to the election
[Wojtas and Faliszewski, 2012];

2. the voters’ weights [Baumeister et al., 2012b];

3. the order in which voters vote, under a simple strategic
behavioural assumption [Gaspers et al., 2014];

4. the initial position (or seeding) of candidates in knock-
out tournaments (also called voting trees) [Aziz et al.,
2018; Mattei et al., 2015];

5. the scoring vector for positional scoring rules [Viappi-
ani, 2018].



3 Beyond Voting
The epistemic principle at work for the possible winner prob-
lem (consider all possible completions of partial preferences
as possible worlds and quantify over them) naturally extends
to more social choice settings, and even beyond social choice.

3.1 Partial Tournaments
In [Aziz et al., 2015a], the input is a partial tournament (a di-
rected asymmetric graph) over C, or a partial weighted tour-
nament (a weighted directed graph w(., .), such that for all
a, b ∈ C, w(a, b) + w(b, a) ≤ n, where n is independent
from a and b). A partial [weighted] tournament may come
from a partial profile5, or can be an object on its own, such
as a set of partial outcomes in a sports tournament. Given
a [weighted] tournament solution S, that maps a [weighted]
tournament into a subset of C, c is a possible winner for par-
tial tournament T if there is a complete tournament T ∗ ex-
tending T such that c ∈ S(T ∗), and a necessary winner for T
if for every complete extension T ∗ of T , c ∈ S(T ∗). [Aziz
et al., 2015a] give computational results results for various
voting rules. [Brandt et al., 2018] study the social-choice
theoretic properties of these extensions of tournament solu-
tions to incomplete profiles. Earlier work [Lang et al., 2012;
Pini et al., 2011] studied voting trees and the Schwartz rule
defined from incomplete tournaments. [Yang and Guo, 2017]
give a paramaterized study of the complexity of winner deter-
mination for partial tournament solutions.

3.2 Fair Division
A fair division problem (of indivisible items) setting con-
sists of a set of agents N = {1, . . . , n}, a set of items
O = {o1, . . . , om}, and for each agent i, a preference rela-
tion �i over 2O. An allocation π maps each agent to a set of
items, such that π(i)∩π(j) = ∅ for i 6= j. It is is complete if
all items are allocated. The quality of an allocation is usually
evaluated through some criteria; here we give only these two:

• envy-freeness: π is envy-free if for all i, j, π(i) �i π(j)

• Pareto-efficiency: π is Pareto-efficient if there is no π′
such that (a) π′(i) �i π(i) for all i, and (b) π′(i) �i π(i)
for some i.

Envy-freeness is a fairness criterion while Pareto-
efficiency and completeness are efficiency criteria. Efficiency
and fairness criteria tend to conflict with each other; for in-
stance, the existence of an allocation that is both envy-free
and Pareto-efficient (or even complete) is not guaranteed.

When the number of items grows, it becomes unreasonable
to ask agents to report a ranking over all subsets of O. A way
to avoid this exponential communication burden consists in
letting agents express preferences in a compact way, possibly
leaving some incompleteness in the reported preference. Es-
pecially, they may rank individual items and then extend the

5If a partial tournament T comes from a partial profile P , i.e.,
if T is the majority graph of P , then the set of possible winners
determined from T contains the set of possible winners determined
from P (for the same tournament solution). The rule applied to par-
tial tournaments has often a lower complexity than the same rule
applied to partial profiles.

preference relation to subsets of items using the responsive
extension: given an order B over O, the responsive extension
of B to 2O is the smallest (complete) preference relation� on
2O which is monotonic (if S ⊆ T then T � S) and weakly
separable (if o, o′ 6= S then S ∪ {o} � S ∪ {o′} if and only
if o B o′). The responsive extension of o1 B o2 B o3 is
depicted on the following figure.

∅o3o2

o1

o2o3

o1o3o1o2o1o2o3

Let P = 〈B1, . . . ,Bn〉 where each Bi is a ranking over
O. From P we derive P ∗ = 〈�1, . . . ,�n〉 where each �i

is the responsive extension of Bi. T = 〈T1, . . . , Tn〉 is a
completion of P ∗ if each Ti is a linear order extending �i.
Given a fairness or efficiency criterion Γ, an allocation π is
• possibly Γ if there exists a completion T of P ∗ such that
π satisfies Γ with respect to T .
• necessarily Γ if for every completion T of P ∗, π satisfies

Γ with respect to T .
For some properties Γ, the characterization of possibly Γ

and/or necessarily Γ is easy. For instance, π is necessarily
envy-free if for all agents i, j, and all k ≤ |πi|, i prefers his
kth best item in πi to the kth best item in πj [Bouveret et al.,
2010]. For some other properties, there is no simple charac-
terization. Such characterizations (when they exist) as well as
the computation of allocations that satisfy some properties or
combination of properties are given in [Bouveret et al., 2010]
and [Aziz et al., 2015b].6 Finally, Section 4 of [Aziz et al.,
2019] characterizes possibly and necessarily Pareto-optimal
allocations under responsive preferences.
Example 4.

B1: a B b B c B e B d B f
B2: a B d B b B c B e B f
B3: b B a B c B f B d B e

Because 1 and 2 have the same most preferred item, there is
no complete necessarily envy-free allocation, and a fortiori no
possibly Pareto-efficient, necessarily envy-free allocation. If
1 leaves, then the allocation π such that π(2) = {a, d, e} and
π(3) = {b, c, f} is necessarily envy-free. It is also possibly
Pareto-efficient, but not necessarily Pareto-efficient, because
in a completion where {c, d, e, f} �2 {a, d, e} and {a, b} �3

{b, c, f}, π is Pareto-dominated by π′ defined by π′(2) =
{c, d, e, f} and π′(3) = {a, b}.

Incomplete knowledge can also bear on the mechanism
itself. [Aziz et al., 2015c] and [Cechlárová et al., 2017]
consider sequential allocation mechanisms where agents pick
items in sequence, following a predefined order. In Example
4, if the picking sequence is 123321, 1 picks a, 2 picks d, 3
picks b and c, 2 picks e and 1 picks f . If it is only known
that the sequence will be xyzzyx for some permutation xyz
of 123, then c is possibly allocated to any agent, a is possibly
allocated to 1 or 2, and d is necessarily allocated to 2.

6[Bouveret et al., 2010] focus on envy-freeness. [Aziz et al.,
2015b] also consider proportional fair share, which needs prefer-
ences to be expressed by utility functions.



3.3 Hedonic Games
In a hedonic game, agents form coalitions, and have pref-
erences about who is in their coalition. The classical task
consists in finding coalitions structures that satisfy some ra-
tionality or stability concepts. However, expressing prefer-
ences over coalitions needs exponential space. This lead to
studying hedonic games under various compact representa-
tions. In [Lang et al., 2015], this is done via a generalization
of the responsive extension, where an agent partitions other
agents between friends, enemies, and neutral agents, and rank
friends and enemies. Since the resulting preferences over sets
of agents are incomplete, concepts are modalized: given a
concept X, a coalition structure is possibly X if it satisfies X
for some completion of the partial profile. The characteriza-
tions and complexity results in [Lang et al., 2015] have been
complemented by those in [Kerkmann and Rothe, 2019].

Beyond social choice, possible and necessary solution con-
cepts have also been studied in noncooperative games [Brill
et al., 2016].

4 Discussion
A quick look at the bibliography shows that while in years
2005-2015 there was a focus on the classical possible winner
problem in voting, in the last 5 years the focus moved to vari-
ants and extensions of the model and expanded to other social
choice settings.

A key question for future research is the interleaving be-
tween reasoning about possible outcomes and eliciting fur-
ther the agents’ preferences. To say it differently: how can
identifying possible and necessary winners help in making
the decision quicker? The existence of a necessary winner is
a safe stopping criterion for the elicitation process, but before
this point is reached, how can the identification of possible
winners help? Removing necessary losers is generally not a
good idea, as it could change the result; but sometimes re-
moving some of them is safe (see e.g., [Ayadi et al., 2019] for
the special case of the STV rule).

One may also wonder if other meaningful classes of incom-
plete preferences are yet to be considered. The answer is yes:
one should devote some attention to multichotomies (each
voter divides candidates in clusters, such as good, acceptable
and unacceptable candidates, with all candidates in a cluster
being initially incomparable), and multi-attribute preferences
with incompletely specified importance over attributes.
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