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a b s t r a c t

In many real-world group decision making problems, the set of
alternatives is a Cartesian product of finite value domains for each
of a given set of variables (or issues). Dealing with such domains
leads to the following well-known dilemma: either ask the voters
to vote separately on each issue, which may lead to the so-called
multiple election paradoxes as soon as voters’ preferences are not
separable; or allow voters to express their full preferences on the
set of all combinations of values, which is practically impossible as
soon as the number of issues and/or the size of the domains are
more than a few units. We try to reconciliate both views and find
a middle way, by relaxing the extremely demanding separability
restriction into thismuchmore reasonable one: there exists a linear
order x1 > · · · > xp on the set of issues such that for each voter,
every issue xi is preferentially independent of xi+1, . . . , xp given
x1, . . . , xi−1. This leads us to define a family of sequential voting
rules, defined as the sequential composition of local voting rules.
These rules relate to the setting of conditional preference networks
(CP-nets) recently developed in the Artificial Intelligence literature.
Lastly, we study in detail how these sequential rules inherit, or do
not inherit, the properties of their local components.
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1. Introduction

In many contexts, a group of voters has to make a common decision on several possibly related
issues, such as in multiple referenda, or voting for committees (the issues then are the positions to be
filled— see Benoit and Kornhauser (1991)). As soon as voters have preferential dependencies between
issues, it is generally a bad idea to decompose a voting problem on p issues into a set of p smaller
problems, each one bearing on a single issue: ‘‘multiple election paradoxes’’ (or ‘‘paradoxes ofmultiple
referenda’’) then arise.
Since the number of possible alternatives is then exponential in the number of variables, it is not

reasonable to ask voters to rank all alternatives explicitly. Consider for example that voters have to
agree on a common menu to be composed of a first course, a main course, a dessert and a wine, with
a choice of 6 items for each. This makes 64 candidates. This would not be a problem if each of the
four items to be chosen were mutually independent: in this case, this vote over a set of 64 candidates
would come down to four independent votes over 6 candidates each, and any standard voting rule
could be applied without difficulty. Things become more complicated if voters express dependencies
between items, such as ‘‘if the main course is meat then I prefer red wine, otherwise I prefer white
wine’’.
As soon as voters have preferential dependencies between issues, it is generally a bad idea to

decompose a voting problem on p issues into a set of p smaller problems, each one bearing on a
single issue: ‘‘multiple election paradoxes’’ (or ‘‘paradoxes of multiple referenda’’) then arise. Such
paradoxes have been studied in several papers, with two slightly different views. In Brams et al. (1998)
and Scarsini (1998), voters can vote only Y or N on each issue; the paradox occurs when the set of
propositions thatwins,when votes are aggregated separately for each proposition, receives the fewest
votes when votes are aggregated by combination: for instance, suppose there are 3 propositions A, B,
C and three voters voting respectively for ABC̄ , AB̄C and ĀBC . Propositionwise aggregation leads to
ABC , whereas ABC receives support from zero voter. As argued in Saari and Sieberg (2001), ‘‘these
paradoxical behaviors arise because the separation of inputs into disconnected parts can cause a
concomitant loss of available and crucial information’’. The source of these paradoxes is the loss of
available information occurring when separating the input profile into a set of profiles—one profile
per each single issue. Both Brams et al. (1998) and Saari and Sieberg (2001) argue that the only way of
avoiding the paradox would consist in voting for combinations of values (‘‘bundle voting’’), but they
stress its practical difficulty caused by the too large number of possible bundles.
The paradox studied in Lacy and Niou (2000) is a little bit different. They show that voting issue-

by-issue is feasible (to some extent) when preferences are separable, and that it generally fails when
they are not (a voter’s preferences are separable if her preferences on an issue does not depend on the
choice to be made for other issues).1 However, separability is an extremely strong assumption that
is unlikely to be met in practice. Furthermore, even when preferences are separable, some paradoxes
still arise, such as the choice of a Pareto-dominated outcome (Özkal-Sanver and Sanver, 2006; Benoit
and Kornhauser, 2006).

Example 1. A common decision has to be made about whether or not to build a new swimming
pool (S or S̄) and a new tennis court (T or T̄ ). Assume that the preferences of voters 1 and 2 are
ST̄ � S̄T � S̄T̄ � ST , those of voters 3 and 4 are S̄T � ST̄ � S̄T̄ � ST and those of voter 5 are
ST � ST̄ � S̄T � S̄T̄ .

The first problem with Example 1 is that voters 1 to 4 feel ill at ease when asked to report
their projected preference on {S, S̄} and {T , T̄ }. Only voter 5 knows that whatever the other voters’
preferences about {S, S̄} (resp. {T , T̄ }), she can vote for T (resp. S) without any risk of experiencing
regret (this is called simple voting in Benoit and Kornhauser (1991)). The analysis of the paradox in

1 When the value domains are intervals of real numbers, and preferences continuous, separability is essentially equivalent
to additivity (Debreu, 1960; Gorman, 1968). Later work (Hodge, 2002; Bradley et al., 2005; Hodge and Ter Haar, 2008) showed
that separability is stronger than additivity in finite value domains, and explored the differences.
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Lacy and Niou (2000) considers that voters report their preferences optimistically (thus voters 1–2
report a preference for S over S̄), but this assumption, even if it has been justified by experimental
studies (see Plott and Levine (1978)), remains arbitrary, and would not necessarily carry on to more
complex situations such as a voter with the following preference relation: ABC � ĀB̄C̄ � ĀB̄C �
ĀBC̄ � ĀBC � AB̄C̄ � AB̄C � ABC̄: only a very optimistic voter would report a preference for
A (except, of course, if some prior beliefs about the others’ preferences make him believe that the
common decision about B and C will be BC .)
The second problem (the paradox itself) is that under this assumption that voters report optimistic

preferences, the outcome in Example 1 will be ST , which is the worst outcome for all but one voter, and
a fortiori, is a Condorcet loser. Lacy and Niou (2000) and Benoit and Kornhauser (2006) give more
complicated examples, with three issues, leading to an even worse paradox where the outcome is
ranked last by everyone.
The main question is now, how can these paradoxes be avoided? Reformulating the question in a

more constructive way, how should a vote on related issues be conducted? We argue that we have
to choose one of the following two ways, each of which has some specific pitfalls: either work at the
global level and vote for combinations of values, or work at the local level and vote separately on each
issue, sequentially or simultaneously.2

The ‘‘global way’’ consists in giving up decomposing the global vote into local votes and voting for
combinations of values. This solution is supported by Brams et al. (1997, 1998). There is some ambiguity
on how the process should be conducted, thus leading to three possible methods:

1. ask voters to report their entire preference relation on the set of alternatives, and then apply an
usual voting rule such as Borda.

2. ask voters to report only a small part of their preference relation and apply a voting rule that needs
this information only, such as plurality;

3. limit the number of possible combinations that voters may vote for.

From a theoretical point of view, Solution 1 works: each agent specifies his preference relation in
extenso and then any fixed voting rule is applied to the obtained profile, with no risk of a paradoxical
outcome. However, as noticed in Brams et al. (1997), this solution is practically unfeasible if the
number of issues is more than a small number (say, 3): the exponential number of alternatives
makes it unreasonable to ask voters to rank all alternatives explicitly. In other words, implementing
such a voting rule on a multi-issue domain needs an exponential protocol. Clearly, exponentially long
protocols are not acceptable. Therefore, as soon as the number of issues is not very small, this solution
is ruled out by communication complexity considerations.
Solution 2 requires little communication, but it is its only merit. Voting rules that are

implementable by a cheap protocol make use of a very small part of the voters’ preferences: if
the protocol is required to have a polynomial communication complexity, then the voting rule it
implements uses at most a logarithmic part of the profile. Such rules do exist: not only plurality and
veto, but more generally all rules that require, for instance, the K top candidates of each voter, where
K is a fixed integer. However, when the number of issues grows, these rules could give extremely
bad results. For instance, using plurality when the number of issues is significant and the number of
voters is small could well result in a situation where no outcome gets more than one vote, in which
case plurality would give an extremely poor result.
Solution 3, sketched in Brams et al. (1997), presents the chairperson with a very problematic

choice (‘‘How to package combinations (e.g., of different propositions on a referendum, different
amendments to a bill) so as not to swamp the voter with inordinately many choices – some perhaps
inconsistent – is a practical problem that will not be easy to solve’’.) This may be feasible when issues
can clearly be packaged into groups of issues such that two groups are clearly independent, but this
favorable situation is far from being a general rule.

2 In the context of assembly elections, these two families of voting rules are called assembly-based and seat-based,
respectively (Benoit and Kornhauser, 1991, 2006).
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The ‘‘local’’ way, supported by Lacy and Niou (2000) for multiple referenda, consists in sticking
to a vote issue-by-issue, the outcome of the vote on one issue being revealed before the vote on
other issues. They show that sequential voting (withwhichever agenda) allows for escaping theworst
versions of themultiple electionparadoxes, namely, it avoids a Condorcet loser to be elected.However,
this method still has three major drawbacks. First, the voters may still feel ill at ease when reporting
their preference on an issue, when this preference depends on the value of issues not decided yet.
Second, the study is based on the assumption that voters will behave optimistically, by reporting the
projection of their preferred outcome, which is debatable except in some specific cases. Third, even
if a sequential vote avoids the final outcome to be a Condorcet loser, the paradox remains to a large
extent, as can be seen in the following example:

Example 2. We have three issues A, B, C and 2M + 1 voters.

M voters: ABC̄ � ĀB̄C̄ � · · · � AB̄C � ABC
M voters: AB̄C � ĀB̄C̄ � · · · � ABC � ABC̄
1 voter: ĀBC � ĀB̄C̄ � ĀBC̄ � ĀB̄C � ABC � ABC̄ � AB̄C̄ � AB̄C .

In Example 2, having voters decide first on A, then to B and then to C , and assuming they
behave optimistically, will lead to ABC , which is (a) a ‘‘nearly-Condorcet loser’’ (it is dominated by
all candidates except one) and (b) Pareto-dominated by half of the outcomes. (More acute paradoxes
can be found with more issues.) Actually, the reason why the sequential process avoids a Condorcet
loser to be elected is only because the last vote is made with a full knowledge of the values of other
issues, thus this result loses his significance when the number of issues becomes bigger.
There is a well-known restriction on voter preferences that allows for such paradoxes to be

avoided, that is, when all voters have separable preferences across the outcomes of the issues. Then,
a voter’s preferences on the values of an issue is independent from the values of other issues, and
the elicitation process can be performed safely issue-by-issue (and even without needing to resort to
sequentiality). Under the separability assumption, voting separately on each issue (either sequentially
or simultaneously) enjoys good properties, including the election of a Condorcet winners when there
is one. However, the separability restriction is very demanding, and unlikely to be met in practice,
especially because separable preferences constitute a very tiny proportion of possible preferences on
multiple issues (see Hodge (2002)).
The question is now, can this extreme separability assumption be relaxed without hampering the

nice properties of sequential voting? As it stands, the answer is positive, as the method can be safely
applied to farmany profiles than separable profiles. Informally, the condition should be that each time
a voter is asked to report his preferences on a single issue or a small set of issues, these preferences
do not depend on the values of the issues that have not been decided yet.
Formally, this can be expressed as the following condition: there is a linear order O = x1 >

· · · > xp on the set of issues such that for every voter V and every j, the preferences of V on xj
are preferentially independent from xj+1, . . . , xp given x1, . . . , xj−1. If this property is satisfied, then
a simple protocol can be implemented: the voters’ preferences about issue x1 are elicited; then a
‘‘local’’ voting rule is applied so as to make a decision on the value of x1; then this chosen value of
x1 is communicated to the voters, who then report their preferences on the values of x2 given the
fixed value of x1, and so on. Such preference profiles are called O-legal and abbreviated as legal for
O = x1 > · · · > xp in this paper. This protocol generalizes to clusters of issues I1, . . . , In where
for each voter and each i, Ii is preferentially independent of Ij+1, . . . , Im given I1, . . . , Ii−1, where
{I1, . . . , Im} forms a partition of the set I of issues.
This domain restriction (O-legality) and the resulting sequential voting rules and correspondences

that are then applicable are defined in Section 4. In Section 5 we focus on the natural notion
of sequential Condorcet winner. In Section 6 we study in detail the properties of these sequential
compositions of voting rules, by relating them to the corresponding properties of the local voting
rules. It turns out that while many properties expectedly transfer from local rules to their sequential
composition, this is not the case for two important properties, namely neutrality and efficiency.
Related and further issues are discussed In Section 7.
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2. Preferences on multi-issue domains

Let I = {x1, . . . , xp} be a set of issues. For each xi ∈ I , Di is the finite value domain of xi. Without
loss of generality, we assume |Di| ≥ 2 for every i. An issue xi is binary if |Di| = 2; in this case, we use
the following two notations: Di = {xi, xi} and Di = {1i, 0i}. (Note the difference between the issue xi
and the value xi.) If X = {xi1 , . . . , xim} ⊆ I , with i1 < · · · < ip, then DX denotes Di1 × · · · × Dim .

X = D1×· · ·×Dp is the set of all alternatives (or candidates). Elements ofX are denoted by vectors
Ex, Ex′ etc. and represented by concatenating the values of the issues: for instance, if I = {x1, x2, x3},
x1x2x3 assigns x1 to x1, x2 to x2 and x3 to x3. We allow concatenations of vectors of values: for instance,
let I = {x1, x2, x3, x4, x5}, Y = {x1, x2}, Z = {x3, x4}, Ey = x1x2, Ez = x3x4, then Ey.Ez.x5 denotes the
alternative x1x2x3x4x5.
A (strict) preference relation onX is a strict order (an irreflexive, asymmetric and transitive binary

relation). A vote V is a linear preference relation onX, i.e., a complete strict order (for any Ex and Ey 6= Ex,
either Ex � Ey or Ey � Ex holds). We often note Ex�V Ex′ instead of V (Ex, Ex′). An N-voter profile w.r.t.X is a
collection of N individual linear preference relations overX: P = (V1, . . . , VN).
Let {X, Y , Z} be a partition of the set I and V be a linear preference relation over X = DI . X

is conditionally preferentially independent of Y given Z (w.r.t. V ) if and only if for all Ex1, Ex2 ∈ DX ,
Ey1, Ey2 ∈ DY , Ez ∈ DZ ,

Ex1.Ey1.Ez�V Ex2.Ey1.Ez iff Ex1.Ey2.Ez�V Ex2.Ey2.Ez.

Informally, X is conditionally preferentially independent of Y given Z , if for any fixed value Ez of Z , the
preference over the possible values of X is independent from the value of Y . We use the notation
CPIV (X, Y , Z) to denote that X is conditionally preferentially independent of Y given Z (w.r.t. V ).
When X is a singleton we simply note CPIV (x, Y , Z) instead of CPIV ({x}, Y , Z).3 A preference relation
is separable if for every xi ∈ I , xi is preferentially independent from I \ {xi}.
Conditional preferential independence originates in the literature of multiattribute decision

theory (Keeney and Raiffa, 1976). Unlike probabilistic independence, it is a directed notion: X may
be independent of Y given Z without Y being independent of X given Z .
Conditional preference networks, or CP-nets, are a language for specifying preferences based on the

notion of conditional preferential independence. They allow for eliciting preferences, and for storing
them, as economically as possible.

Definition 1 (CP-nets (Boutilier et al., 2004a)). Let I = {x1, . . . , xp} be a set of variables (or issues); for
each i, let Di be the finite domain of xi, and letX = D1 × · · · × Dp be the set of alternatives. A CP-net
N over I is a pair consisting of:

• a directed acyclic4 graph G = 〈I, E〉whose set of vertices is the set of issues I , and the set of edges is
E. For every vertex x ∈ I , PaG(x) denotes the set of parents of x in G, that is, {y ∈ I | (y, x) ∈ E}, and
NonPaG(x) denotes the set of ‘‘non-parents’’ of x in G, defined by NonPaG(x) = I \ ({x} ∪ PaG(x)).
• a collection of conditional preference tables CPT (xi) for each xi ∈ I , defined as follows: each
conditional preference table CPT (xi) associates a total order �iEu on Di with each instantiation Eu
of xi’s parents PaG(xi) = U .

Intuitively, the edges of G represent preferential dependencies: for every i, xi is preferentially
independent from its ‘‘non-parents’’ given its parents.

Example 3. Let N be the following CP-net, whose graph G is depicted below, and the conditional
preference tables below it.

3 Conditional preference independence is also considered in Bradley et al. (2005) under the name non-influenceability. A
related notion investigated in Bradley et al. (2005) is that of separable subsets: a subset S of I is separable with respect to V if S
is preferentially independent from I \ S with respect to V .
4 The original definition of CP-nets (Boutilier et al., 2004a) allows G to contain cycles. However, in this paper we do not need
to refer to this more general framework. Note that the assumption that G is acyclic is usual (see Boutilier et al. (2004a,b)).
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The graph in Example 3 means that the agent has unconditional preferences over the values of
x, that her preferences over the values of y are fully determined given the value of x, and that her
preferences over the values of z depend both on x and y. The conditional preference table for x
means that x is preferred to x̄ (unconditionally). The conditional preference table for y means that
y is preferred to ȳwhen x = x, and ȳ is preferred to ywhen x = x̄.
A CP-netN induces a partial preference relation in the following way.

Definition 2 (Preference Relation Induced by a CP-net). LetN be a CP-net over I .

• for each xi ∈ I , let Z = PaG(xi) and Y = NonPa(xi). The relation�
xi
N induced from the conditional

preference table for xi is defined by

�
xi
N = {(xi.Ey.Ez, x

′

i.Ey.Ez)|Ey ∈ DY , Ez ∈ DZ , CPT (xi) contains Ez : xi � x
′

i}

• the primitive relation induced by N is defined as the union of the relations induced by the
conditional preference tables:

Prim(N ) =
⋃
{�

xi
N |xi ∈ I}

• the preference relation�N induced byN is the transitive closure of Prim(N ).

Note that �N is an irreflexive and asymmetric relation that possesses a dominating
element (Boutilier et al., 2004a).5 Note that the preference relation induced by a CP-net is generally not
complete. We say that a linear preference V extendsN , or�N , if�N ⊆ V , namely for any α, β ∈ X,
α�N β implies α�V β .

Example 3, continued. The relations induced by the conditional preference tables ofN are

�
x
N : xyz � x̄yz, xyz̄ � x̄yz̄, xȳz � x̄ȳz, xȳz̄ � x̄ȳz̄

�
y
N : xyz � xȳz, xyz̄ � xȳz̄, x̄ȳz � x̄yz, x̄ȳz̄ � x̄yz̄
�

z
N : xyz � xyz̄, xȳz � xȳz̄, x̄yz � x̄yz̄, x̄ȳz̄ � x̄ȳz.

The preference relation�N is the transitive closure of�x
N ∪�

y
N ∪�

z
N :

�N : xyz ↗
↘

xȳz

xyz̄

↘

↗
xȳz̄ → x̄ȳz̄ → x̄ȳz → x̄yz → x̄yz̄.

Let G be a directed graph over I , and� a linear preference relation.� is said to be compatible with
G if and only if for each x ∈ I , x is preferentially independent ofNonPaG(x) given PaG(x). The following
fact is important:

Observation 1. A linear preference relation V is compatible with G if and only if there exists a CP-net N
whose associated graph is G such that V extends�N .

5 The assumption that G is acyclic is crucial for this statement to hold.
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Proof. (⇒) Let V be a linear preference relation compatible with G: for each x ∈ V , we have
CPIV (x, Y , Z) where Z = PaG(x) and Y = NonPaG(x). Let us build the following CP-net NR
whose associated graph is G and the conditional preference table for each issue x ∈ I contains
Ez : x1 � x2 if and only if x1.Ey.Ez � x2.Ey.Ez for all Ey ∈ DY . First notice that since CPIV (x, Y , Z)
holds, if x1.Ey.Ez�V x2.Ey.Ez holds for some Ey ∈ DY then x1.Ey.Ez � x2.Ey.Ez holds for all Ey ∈ DY .
Therefore, for each issue x ∈ I and each x1, x2 ∈ Dx, and each Ez ∈ DZ , the conditional preference
table for x contains either Ez : x1 � x2 or Ez : x2 � x1 (and not both). This shows that NR
is a well-defined CP-net. Consider an element (xi.Ey.Ez, x′i.Ey.Ez) of Prim(N ). By construction of N ,
(xi.Ey.Ez, x′i.Ey.Ez) ∈ Prim(N ) implies xi.Ey.Ez�V x

′

i.Ez.Ey. Hence, Prim(N ) ⊆ V . Because �N and V are
both transitive,�N = Prim(N )∗ ⊆ V ∗ = V , where Prim(N )∗ (resp. V ∗) is the transitive closure
of Prim(N ) (resp. V ). Therefore, V extends�N .

(⇐) Let N = (G, CPT ) and let V such that V extends �N . Let x ∈ I , Z = PaG(x), Y = NonPaG(x),
Ez ∈ DZ , x1, x2 ∈ Dx and assume without loss of generality that CPT (x) contains Ez : x1 � x2. Then
for all Ey ∈ DY , we have x1.Ey.Ez�N x2.Ey.Ez, and since V extends�N , we have x1.Ey.Ez�V x2.Ey.Ez. This
holds for all Ey ∈ DY , henceforth CPIR(x, Y , Z) holds. �

Definition 3 (O-legality). Let G be an acyclic graph over I and letO = x1 > · · · > xp be a linear order
on I .G is said to followO if for every edge (xi, xj) inGwehave xi > xj, namely i < j. A linear preference
relation � is said to be O-legal if and only if it is compatible with some acyclic graph G following O.
We denote by Legal(O) the set of all O-legal linear preference relations.

Let O = x1 > · · · > xp. Clearly, V ∈ Legal(O) if and only if for all i < p, xi is preferentially
independent of {xi+1, . . . , xp} given {x1, . . . , xi−1}with respect to V .

Definition 4 (Projection of a Preference Relation on an Issue). Let V ∈ Legal(O) and xi ∈ I . The
projection of V on xi given (x1, . . . , xi−1) ∈ D1 × · · · × Di−1, denoted by �

xi|x1=x1,...,xi−1=xi−1
V , is

the linear preference relation on Di defined by: for all xi, x′i ∈ Di, xi �
xi|x1=x1,...,xi−1=xi−1
V x′i iff

x1 . . . xi−1xixi+1 . . . xp�V x1 . . . xi−1x′ixi+1 . . . xp holds for all (xi+1, . . . , xp) ∈ Di+1 × · · · × Dp.

Due to the fact that V ∈ Legal(O) and that V is a linear order, �xi|x1=x1,...,xi−1=xi−1
V is a well-

defined linear order on Di. Note also that if V is legal with respect to both O = x1 > · · · > xp
and O′ = xσ(1) > · · · > xσ(k−1) > xi(= xσ(k)) > · · · > xσ(p), then �

xi|x1=x1,...,xi−1=xi−1
V and

�
xi|xσ(1)=xσ(1),...,xσ(k−1)=xσ(k−1)
V coincide. In other words, the local preference relation on xi depends only
on the values of the variables that precede xi in O and in O′.

Example 4. Let I = {x, y, z}, all three issues being binary, and let V be the following linear preference
relation:

xyz � xyz̄ � xȳz̄ � xȳz � x̄yz̄ � x̄ȳz̄ � x̄yz � x̄ȳz.

Let G be the graph over I whose set of edges is {(x, z), (y, z)}. The orders x > y > z and y > x > z
both follow G; therefore, V is both in Legal(x > y > z) and in Legal(y > x > z). Fix the order to be
x > y > z; then we have x�x

V x̄, y�
y|x=x
V ȳ, y�y|x=x̄

V ȳ, z�z|x=x,y=y
V z̄, z̄�z|x=x,y=ȳ

V z̄ etc.

Lastly, for any acyclic graph G over I , we say that two linear preference relations V1 and V2 are G-
equivalent, denoted by V1∼G V2, if and only if V1 and V2 are both compatible with G and for any x ∈ I ,
for any Ey, Ey′ ∈ DPaG(x) we have V

x|PaG(x)=Ey
1 = V x|PaG(x)=Ey

2 .

Observation 2. For any linear preference relations V1 and V2, V1∼G V2 if and only if there exists a CP-net
N whose associated graph is G and such that V1 and V2 both extend�N .

Proof. (⇒) Assume V1∼G V2. This entails, by definition, that V1 and V2 are both compatible with G,
which by Observation 1 entails that there exist two CP-netsN1 andN2 whose associated graphs
are G and such that V1 extends �N1 and V2 extends �N2 . Furthermore, for any x ∈ I , for any
Ey, Ey′ ∈ DPaG(x) we have V

x|PaG(x)=Ey
1 = V x|PaG(x)=Ey

2 , which implies thatN1 = N2.
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(⇐) Assume there exists a CP-netN whose associated graph isG such that V1 and V2 both extend�N .
By Observation 1, V1 and V2 are both compatible with G. Let x ∈ I , x1, x2 ∈ Dx and Ey, Ey′ ∈ DPaG(x).
Because V1 extends�N , we have x1�

x|PaG(x)=Ey
V1

x2 if and only ifN contains Ey : x1 � x2. Similarly,

because V2 extends�N , we have x1�
x|PaG(x)=Ey
V2

x2 if and only ifN contains Ey : x1 � x2. Therefore,

we have V x|PaG(x)=Ey
1 = V x|PaG(x)=Ey

2 . �

Example 5. Let I = {x, y, z}, all three issues being binary, and let V and V ′ be the following linear
preference relations:

V : xyz � xyz̄ � xȳz̄ � xȳz � x̄yz̄ � x̄ȳz̄ � x̄yz � x̄ȳz
V ′ : xyz � xyz̄ � x̄yz̄ � xȳz̄ � x̄yz � x̄ȳz̄ � xȳz � x̄ȳz.

Let G be the graph over I whose set of edges is {(x, z), (y, z)}. V and V ′ are both compatible with G.
Moreover, V ∼G V ′, since all local preference relations coincide: x�x

V x̄ and x�
x
V ′ x̄; z�

z|x=x,y=y
V z̄ and

z�z|x=x,y=y
V ′ z̄; etc. The CP-netN such that V and V ′ both extend�N is defined by the following local

conditional preference tables: x � x̄; y � ȳ; xy : z � z̄; xȳ : z̄ � z; x̄y : z̄ � z; x̄ȳ : z̄ � z.

3. G-legal profiles

Let I be a set of issues, with |I| ≥ 2, and {1, . . . ,N} be a set of voters, with N ≥ 2. We now define
a crucial domain restriction for the rest of the paper:

Definition 5. Given an acyclic graph G on I , we define Legal(G) as the set of all collective profiles
P = (V1, . . . , VN) such that each Vi is compatible with G. For any order O, we also define Legal(O) as
the set of all profiles P = (V1, . . . , VN) such that each Vi is in Legal(O).

The following observation is straightforward but important:

Observation 3. P ∈ Legal(G) if and only if P ∈ Legal(O) for all O that G follows

Wemight wonder how strong the restriction to O-legal profiles is.
First, this restriction is much less demanding than separability. To see this, let G∅ be the graph

whose set of vertices is I and that contains no edge; thenwe have the following important fact (whose
proof is obvious):

Observation 4. The following three assertions are equivalent:

1. V ∈ Legal(G∅).
2. for any order O on I, V ∈ Legal(O).
3. V is separable.

Thus, O-legality is a family of domain restrictions that includes separability as a special case but
contains much more profiles. More precisely, the set of O-legal preference relations for some fixed
order O is exponentially larger than the set of separable preference relations. We prove this in the
particular case of two issues, one of which is binary and the other one contains k values (with k
varying).
Let Xk = {0, 1} × {0, 1, . . . , k − 1}, where D1 = {0, 1} and D2 = {0, 1, . . . , k − 1}. Let

Legal(x1 > x2)(Xk) denote the set of all linear orders over Xk that are compatible with x1 > x2,
and αk = |Legal(x1 > x2)(Xk)|. Let Separable(Xk) denote the set of separable linear orders over xk,
and βk = |Separable(Xk)|.

Proposition 1. limk→∞ αk
βk
≥

2k
√
πk
.
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Proof. We first prove that αk = 2(2k)!
2k
. Let Legal∗(x1 > x2)(Xk) be the set of all preference relations V

in Legal∗(x1 > x2)(Xk) such that V |x1 = 0 � 1. Equivalently, Legal∗(x1 > x2)(Xk) is the set of linear
orders compatible with x1 > x2, and in which x1 = 0 is preferred to x1 = 1. We note that a linear
order is in Legal∗(x1 > x2)(Xk) if and only if it satisfies the following constraints: for every i ≤ k− 1,
0i�V 1i. Therefore, αk can be counted as follows. We first select the positions of 00 and 10 (among
1, 2, . . . , 2k), given that 00 is in the higher position and 10 in the lower. For this there are exactly

(
2k
2

)
possibilities. Then, we select the positions of 01 and 11 from the remaining positions, given that 01
is in the higher position and 11 in the lower. There are

(
2k−2
2

)
possibilities in this second step. From

steps 3 to k, we fix the positions for (02, 12), . . . , (0(k − 1), 1(k − 1)), respectively. In the end we
have a linear order compatible with x1 > x2, and every linear order compatible with x1 > x2 can be
obtained this way. It follows that |Legal∗(x1 > x2)(Xk)| =

(
2k
2

)
×

(
2k−2
2

)
× · · · ×

(
2
2

)
=

(2k)!
2k
, and

finally αk = 2|Legal∗(x1 > x2)(Xk)| =
2(2k)!
2k
.

Next, we show that βk ≤ 2(k!)2. Let Separable∗(Xk) be the set of all preference relations V in
Separable(Xk) such that V |x1 = 0 � 1 and V |x2 = 0 � 1 � · · · � k−1. Equivalently, Separable∗(Xk)
is the set of separable preference relations V whose marginal preference over x1 is 0 � 1, and the
marginal preference over x2 is 0 � 1 � · · · � k− 1. We note that a linear order is in Separable∗(Xk)
if and only if it satisfies the following two constraints: (1) for every i ≤ k − 1, 0i�V 1i, and (2) for
j = 0, 1, j0�V j1�V . . .�V j(k − 1). Therefore, any linear order in Separable∗(Xk) can be generated
in the following way: we start from the initial partial order 00 � 01 � · · · � 0(k − 1); at the first
step we include 10 in the partial order in such a way that 00 � 10. There are k possibilities in this
step. Then, we include 11 in the partial order in such a way that 01 � 11 and 10 � 11. There are
no more than k− 1 possibilities in this second step. At the subsequent steps we include successively
02, . . . , 0k − 1. For every j, there are no more than k + 1 − j possibilities at step j. It follows that
|Separable∗(Xk)| ≤ k!. Finally, there are 2k! different way of fixing the marginal preference relations
on x1 and x2 (2 for x1 and k! for x2). Therefore, βk = 2k!|Separable∗(Xk)| ≤ 2(k!)2.
By applying Stirling’s formula, we have that limk→∞ (2k)!

√
2π2k( 2ke )

2k = 1 and limk→∞
k!

√
2πk( ke )

k = 1. It

follows that

lim
k→∞

βk

αk
≥

2(2k)!
2k

2(k!)2
≥ lim
k→∞
=
2
√
2π2k( 2ke )

2k

2(
√
2πk( ke )

k)22k
=

2k
√
πk
. �

After noticing that |Xk| = 2k, the above proposition tells us that the number of legal linear orders
is exponentially larger (in the size of alternatives) than the number of separable votes, thus showing
that O-legality is a much less demanding domain restriction than separability. Note that a related
weakening of separability is considered in Hodge and Ter Haar (2008): a preference relation V is
completely nonseparable if there does not exist any proper subset S of I such that S is preferentially
independent of I \ S with respect to V . We say that V satisfies ‘‘noncomplete nonseparability’’ (NCNS)
if it fails to be completely nonseparable. Obviously, O-legality, while being weaker than separability,
is stronger than NCNS.
Second, in many real-life domains it may be deemed reasonable to assume that preferential

dependencies between variables coincide for all voters. For instance, in a designated-seat election
process (Benoit and Kornhauser, 2006) where an assembly composed of a president, a vice-president
and a secretary has to be elected, it may be intuitively reasonable to assume that voters’ preferences
are compatible with the order president> vice-president> treasurer.
Third, having P1 ∈ Legal(G1) and P2 ∈ Legal(G2) forG2 6= G1 does notmean that a profile containing

P1 and P2 is not G-legal for some acyclic graph G. Indeed, suppose that the linear preference relations
(�1, . . . ,�N) are compatible with the acyclic graphs G1, . . . ,GN , whose sets of edges are E1, . . . , EN .
Then they are a fortiori compatible with the graph G∗ whose set of edges is E1 ∪ · · · ∪ EN . Therefore, if
G∗ is acyclic, then the profile is admissible (of course, this is no longer true if G∗ has cycles — see the
last paragraph of Section 4).
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Lastly, the O-legality restriction can be generalized by partitioning the set of issues into subsets
I1, . . . , Iq such that Ii is preferentially independent of Ii+1 ∪ · · · ∪ Iq given I1 ∪ · · · ∪ Ii−1. Obviously,
all profiles are of this form, the worst case being q = 1. However, we can assume without loss of
generality (and wewill do so in the remainder of the paper) that each cluster consists of a single issue
(if this were not the case from the beginning, then each cluster Ii can be considered as a new single
issue, with domain DIi =

∏
xj∈Ii Dj).

We end this section by remarking that O-legality generalizes the decomposability property
of Laffond et al. (1996), thatwe first recall. LetX be a set of alternatives and V a vote onX. A nonempty
subset Y ofX is a component of V if it verifies: ∀(y, y′) ∈ Y 2, ∀x ∈ X \ Y , x�V y⇔ x�V y′. LetD be
a partition ofX. A profile P = (V1, . . . , VN) admits D = (Y1, . . . , Yq) as decomposition if for every
i ≤ N and j ≤ q, Yj is a component of Vi. Lastly, P is decomposable if it admits a proper decomposition
(i.e., a decomposition different from {X} and {{x}, x ∈ X}). The intuition beyond decomposability
is that the components of the decomposition correspond to projects, and elements of a component
correspond to variants of the same project. Decomposability is used for defining a two-step procedure,
where the project is chosen first, and the variant next. To see why decomposability is a particular case
of O-legality, assume P admits D as decomposition and rewrite X as a Cartesian product D1 × D2,
with |D1| = |D| = q and |D2| = maxi≤q |Yi|; that is, every alternative x is identified by the project
x1 ∈ D1 to which it belongs, and the variant x2 ∈ D2 of the project. Then P is x1 > x2-legal, and the
sequential composition of voting rules, that we describe below, intuitively corresponds to the two-
step procedure of Laffond et al. (1996).

4. Sequential voting rules and correspondences

We start by recalling briefly some necessary background on voting rules and correspondences. Let
PN,X be the set of all N-voter preference profiles for the set of candidatesX. A voting correspondence
C : PN,X → 2X

\{∅}maps each preference profile P of PN,X into a nonempty subset C(P) ofX. A voting
rule r : PN,X → X maps each preference profile P of PN,X into a single candidate r(P). When there
are only two candidates {x, y}, themajority correspondencemaj is defined bymaj(P) = {x} (resp. {y})
if more voters in P prefer x to y (resp. y to x), andmaj(P) = {x, y} in case of tie.
From now on, we assume that the set of candidates is a multi-issue domainX = D1 × · · · × Dp.

Sequential voting consists in applying ‘‘local’’ voting rules or correspondences on single issues, one
after the other, in such an order that the local vote on a given issue can be performed only when the
local votes on all its parents in the graph G have been performed (Lang, 2007).

Definition 6. Let G be an acyclic graph on I; let P = (V1, . . . , VN) be in Legal(G)N ,O = x1 > · · · > xp
be a linear order on I that G follows and (r1, . . . , rp) a collection of voting rules (one for each variable
xi). The sequential voting rule Seq(r1, . . . , rp) is defined as follows:

• x∗1 = r1(V
x1
1 , . . . , V

x1
N );

• x∗2 = r2(V
x2|x1=x∗1
1 , . . . , V

x2|x1=x∗1
N );

• . . .
• x∗p = rp(V

xp|x1=x∗1,...,xp−1=x
∗
p−1

1 , . . . , V
xp|x1=x∗1,...,xp−1=x

∗
p−1

N )

Then Seq(r1, . . . , rp)(P) = (x∗1, . . . , x
∗
p).

Example 6. Let N = 8, I = {x, y}with Dx = {x1, x2, x3} and Dy = {y, ȳ}, and P = (V1, . . . , V8) be the
following 8-voter profile:

V1, V2, V3 : x1ȳ � x1y � x2ȳ � x2y � x3y � x3ȳ
V4, V5 : x2y � x3y � x2ȳ � x1y � x3ȳ � x1ȳ
V6 : x3ȳ � x1ȳ � x3y � x1y � x2y � x2ȳ
V7, V8 : x3ȳ � x3y � x2y � x2ȳ � x1y � x1ȳ.
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All these preference relations are compatible with the graph G over {x, y} whose single edge is
(x, y); equivalently, they follow the order x > y. Hence, P ∈ Legal(G). The corresponding conditional
preference tables are:

voters 1,2,3 voters 4,5 voter 6 voters 7,8
x1 � x2 � x3
x1 : ȳ � y
x2 : ȳ � y
x3 : y � ȳ

x2 � x3 � x1
x1 : y � ȳ
x2 : y � ȳ
x3 : y � ȳ

x3 � x1 � x2
x1 : ȳ � y
x2 : y � ȳ
x3 : ȳ � y

x3 � x2 � x1
x1 : y � ȳ
x2 : y � ȳ
x3 : ȳ � y

Take rx to be the Borda rule, and ry to be the majority rule. The projection of P on x, namely
Px = (V x

1 , . . . , V
x
8 ), contains three votes x1 � x2 � x3, two votes x2 � x3 � x1, one vote x3 � x1 � x2

and two votes x3 � x2 � x1, therefore, the Borda winner for Px is x∗ = rx(Px) = x2. Now, the
projection of P on y given x = x2, namely Py|x=x2 = (V

y|x=x2
1 , . . . , V y|x=x2

8 ), is composed of 5 votes for
y and 3 for ȳ, therefore y∗ = ry(Py|x=x2) = y. The sequential winner is now obtained by combining
the x-winner and the conditional y-winner given x = x∗, namely Seq(rx, ry)(P) = x2y.

In addition to sequential voting rules, we also define sequential voting correspondences in
a similar way: if for each i, Ci is a correspondence on Di, then Seq(C1, . . . , Cp)(P) is the set
of all outcomes (x1, . . . , xp) such that x1 ∈ C1(V

x1
1 , . . . , V

x1
N ), and for all i ≥ 2, xi ∈

Ci(V
xi|x1=x1,...,xi−1=xi−1
i , . . . , V xi|x1=x1,...,xi−1=xi−1

N ).
For instance, in Example 6, if we take Cx to be the plurality correspondence (electing the candidates

that are ranked first by the largest number of voters) and Xy to be the majority correspondence, then
Cx(Px) = {x1, x3}, and Seq(Cx, Cy)(P) = {x1y, x1ȳ, x3y}.
For the sake of brevity we give results for voting rules only. Unless stated otherwise, similar results

hold for correspondences.
An important property of such sequential voting rules and correspondences is that the outcome

does not depend on O, provided that G follows O. This can be expressed formally:

Observation 5. Let O = (x1 > · · · > xp) and O′ = (xσ(1) > · · · > xσ(p)) be two linear orders on I
such that G follows both O and O′. Then, for any G-legal profile P,

Seq(r1, . . . , rp)(P) = Seq(rσ(1), . . . , rσ(p))(P)

and similarly for voting correspondences.

Proof. Assume that G follows both O = x1 > · · · > xp and O′ = xσ(1) > · · · > xσ(p). Let i ≤ N
and let j be such that σ(j) = i. Because G follows O and O′, we have PaG(xi) ⊆ {x1, . . . , xi−1} and
PaG(xi) ⊆ {xσ(1), . . . , xσ(j−1)}. Let P = (V1, . . . , VN) ∈ Legal(G). For every i ≤ N , and for every voter
k, xi is preferentially independent ofNonPaG(xi) given PaG(xi)w.r.t. Vk, that is, the preference of voter k
on the values of xi depends only on the values of the issues in PaG(xi). Therefore, V

xi|x1=v1,...,xi−1=vi−1
k =

V xi|PaG(xi)=Ez
k , where Ez = 〈vl|xl ∈ PaG(xi)〉. Similarly, V

xi|xσ(1)=vσ(1),...,xσ(j−1)=vσ(j−1)
k = V xi|PaG(xi)=Ez

k =

V xi|x1=v1,...,xi−1=vi−1
k . This entails that ri(Pxi|x1=x

∗
1,...,xi−1=x

∗
i−1) = ri(P

xi|xσ(1)=x∗σ(1),...,xσ(j−1)=x
∗
σ(j−1)). This

being true for every i ≤ p, we get Seq(r1, . . . , rp)(P) = Seq(rσ(1), . . . , rσ(p))(P). �

Note that when all variables are binary, all ‘‘reasonable’’ neutral voting rules coincide with the
majority rule (plus some tie-breaking mechanism). Therefore, if all variables are binary and the
number of voters is odd (in which case the tie-breaking mechanism is irrelevant), then the only
‘‘reasonable’’ sequential voting rule is Seq(r1, . . . , rn)where each ri is the majority rule.6
It is important to note that, in order to compute Seq(r1, . . . , rp)(P), we do not need to know the

linear preference relations V1, . . . , VN entirely: everything we need is the local preference relations: for

6 A further issue is a characterization of sequential majority, that would generalize May’s theorem to multi-issue domains.
See Section 5 of Xia et al. (2007a).
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instance, if V = {x, y} and G contains the only edge (x, y), then we need first the unconditional linear
preference relations on x and then the linear preference relations on y conditioned by the value of x. In
other words, if we know the conditional preference tables (for all voters) associated with the graph G,
then we have enough information to determine the sequential winner for this profile, even though some
of the preference relations induced from these tables are incomplete. This is expressed more formally
by the following fact (a similar result holds for correspondences):

Observation 6. Let I = {x1, . . . , xp}, G an acyclic graph over V , and P = (V1, . . . , VN), P ′ =
(V ′1, . . . , V

′

N) be two complete preference profiles such that for all i = 1, . . . ,N we have Vi∼G V
′

i . Then,
for any collection of local voting rules (r1, . . . , rp), we have

Seq(r1, . . . , rp)(P) = Seq(r1, . . . , rp)(P ′).

This, together with Observation 2, means that applying sequential voting to two collections of
linear preference relations corresponding to the same collection of CP-nets gives the same result. This
is illustrated in the following example.

Example 7. Everything is as in Example 6, except thatwedonot know the voters’ complete preference
relations, but only their corresponding conditional preference tables. These conditional preferences
contain strictly less information than P , because some of the preference relations they induce are not
complete: for instance, in the preference relation for the first 3 voters induced by their conditional
preference tables, x1y and x2ȳ are incomparable. However, we have enough information to determine
the sequential winner for this profile, even though some of the preference relations are incomplete:
everything we need is the marginal preference relations (first the unconditional preference relation
on x and then the preference relation on y conditioned by the value of x). In other words, we need to
know the CP-nets and nothing else. For instance, taking again the Borda rule for rx and the majority
rule for ry, the sequential winner is x2y for any complete profile P ′ = (V ′1, . . . , V

′

8) extending the
incomplete preference relations induced by the 12 conditional preference tables above.

Note that the assumption that G is acyclic is crucial for the definition of sequential voting rules. If G
contains cycles, then no order O following G can be found. Certainly, one can proceed to a sequential
vote anyway, but then some voters at some stage will not be able to vote ‘‘safely’’. This is the case in
Example 1: whatever the order chosen (S > T or T > S), voters 1 to 4 cannot vote safely on the first
issue, and may experience regret after the final decision is made.

5. Sequential Condorcet winners

Recall that x ∈ X is a Condorcet winner (CW) for a profile P if it is preferred to any other candidate
by a majority of voters: for all y 6= x, #{i : x�i y} > N

2 . A Condorcet-consistent rule is a voting rule r
such that whenever there exists a CW x for the profile P then r(P) = x. Wemay nowwonder whether
a CW, when there exists one, can be computed sequentially. Sequential Condorcet winners (SCW) are
defined similarly as for sequential winners for a given rule: the SCW is the sequential combination of
‘‘local’’ Condorcet winners.

Definition 7. Let O = x1 > · · · > xp, and P = (�1, . . . ,�N) ∈ Legal(O)N . (x∗1, . . . , x
∗
p) be a

sequential Condorcet winner for P if and only if

• ∀x′1 ∈ D1, #{i : x
∗

1 �
x1
i x

′

1} >
N
2 ;

• for every k > 1 and ∀x′k ∈ Dk, #{i : x
∗

k �
xk|x1=x∗1,...,xk−1=x

∗
k−1

i x′k} >
N
2 .

This definition is well founded because we obtain the same set of SCWs for anyO following G. The
question is now, do SCWs and CWs coincide? Clearly, the existence of a SCW is no more guaranteed
than that of a CW, and there cannot be more than one SCW. We have the following positive result:

Proposition 2. Let G be an acyclic graph and P = (�1, . . . ,�N) in Legal(G). If (x∗1, x
∗

2, . . . , x
∗
n) is a

Condorcet winner for P, then it is a sequential Condorcet winner for P.
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Proof. Let O = x1 > · · · > xp be an order on I following G. Assume that there is a CW Ex∗ for P: for
any Ex′ 6= Ex∗, #{i : Ex∗�i Ex′} > N

2 . Let x1 ∈ D1 s.t. x
′

1 6= x
∗

1 . Since x1 is preferentially independent of
x2, . . . , xp, x∗1 �

x1
i x
′

1 iff (x
∗

1, x
∗

2, . . . , x
∗
p)�i(x

′

1, x
∗

2, . . . , x
∗
p); hence, #{i : x

∗

1 �
x1
i x
′

1} >
N
2 : x
∗

1 is a ‘‘local’’
CW. Similarly, for all k, by comparing Ex∗ to (x∗1, . . . , x

∗

k−1, x
′

k, x
∗

k+1, . . . , x
∗
p), we show that x

∗

k is a ‘‘local’’

CW for (�
xk|x1=x∗1,...,xk−1=x

∗
k−1

i )i=1,...,N . Therefore Ex∗ is a SCW for P . �

This simple result generalizes a result known for separable preferences (Laslier (2004, Proposition
16)). The converse fails, that is, a SCW may not always be a CW.7 Consider for example 2 voters with
the preference relation xȳ � x̄ȳ � xy � x̄y, one voter with xy � xȳ � x̄y � x̄ȳ, and 2 voters with
x̄y � x̄ȳ � xy � xȳ. All three preference relations are separable, therefore the SCW is the combination
of the local CWs for {x} and for {y}, provided they exist. Since 3 voters unconditionally prefer x to
x̄, x is the local CW for x; similarly, 3 voters unconditionally prefer y to ȳ and y is the local CW for
y. Therefore, xy is the SCW for the given profile; but xy is not a CW for this profile, because 4 voters
prefer x̄ȳ to xy.
Wenowgive a condition on the preference relations ensuring that SCWs andCWs coincide. LetO =

x1 > · · · > xp be a linear order on I . We say that a linear preference relation � onX is conditionally
lexicographic w.r.t. O if there exist local conditional preference relations �xi|x1=x1,...,xi−1=xi−1 , such
that Ex � Ey if and only if there is a j ≤ p such that (a) for every k < j, xk = yk and (b)
xj�xj|x1=x1,...,xj−1=xj−1 yj. A profile P = (�1, . . . ,�N) is conditionally lexicographic w.r.t. O if each
�i is conditionally lexicographic w.r.t. O.

Proposition 3. Let O be a linear strict order over I. If P = (�1, . . . ,�N) is conditionally lexicographic
w.r.t. O, then Ex is a sequential Condorcet winner for P if and only if it is a Condorcet winner for P.

Proof. Let Ex∗ be a SCW for P , and Ex′ = (x′1, . . . , x
′
p) 6= Ex

∗. Let k = min{i : x∗i 6= x
′

i} and Ik ⊆ P be the
set of voters who prefer x∗k to x

′

k given x1 = x1, . . . , xk−1 = xk−1. Because Ex∗ is a SCW, |Ik| > N
2 . We

have Ex∗�i Ex′ for every i ∈ Ik, because�i is lexicographic w.r.t. x1 > · · · > xp. Therefore a majority of
voters prefers Ex∗ to Ex′. This being true for all Ex′ 6= Ex∗, Ex∗ is a CW. �

Note that a similar restriction to (unconditionally) lexicographic preferences was used in Benoit
and Kornhauser (1994) to guarantee that seat-by-seat plurality elects an efficient assembly.
An important corollary of Proposition 2 is the following:

Corollary 1. If every ri is Condorcet-consistent then Seq(r1, . . . , rn) is Condorcet-consistent.

Therefore, the output of a sequential voting rule will be the CW when there exists one, provided
that each local rule ri is Condorcet-consistent. This applies in particular to sequential majority on
domains composed of binary issues, which was already known in the particular case when all voters
have separable preferences (see Lacy and Niou (2000)). This allows us to claim that the restriction
to O-legal profiles allows for escaping multiple election paradoxes, at least the version of the paradox
that deals with Condorcet winners failing to be elected. For the version of the paradox concerning
Condorcet losers, a sequential voting rule never elects a Condorcet loser, provided that each of its
local rules never does either8:

Proposition 4. If there exists i ≤ p such that ri never elects a Condorcet loser, then Seq(r1, . . . , rp) never
elects a Condorcet loser.

Proof. If ri never elects a Condorcet loser and for a profile P , Seq(r1, . . . , rp)(P) = (d1, . . . , dp)
is the Condorcet loser of P , then for any d′i ∈ Di, (d1, . . . , di−1, d′i, di+1, . . . , dp) Condorcet-
dominates (d1, . . . , dp). Therefore in Pxi|x1=d1...xi−1=di−1 , d′i Condorcet-dominates di, which means

7 Evenworse, theremay exist a candidate unanimously preferred to the sequential Condorcet winner evenwhen preferences
are separable (see Section 4.1.2 of Laslier (2004) and Benoit and Kornhauser (2006)).
8 This holds even if the profile is not legal; see Lacy and Niou (2000) for the case of separable preferences.
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di is the Condorcet loser in Pxi|x1=d1...xi−1=di−1 . Since ri does not select a Condorcet loser,
ri(Pxi|x1=d1...xi−1=di−1) 6= di. This contradicts Seq(r1, . . . , rp)(P) = (d1, . . . , dp). So Seq(r1, . . . , rp)(P)
is not a Condorcet loser. �

6. Properties of sequential voting rules

Apart from Condorcet-consistency, there are many other classical properties that voting rules may
(or may not) satisfy. A voting rule satisfies

anonymity if it is unsensitive to any permutation of the voters;
neutrality if for any profile P and any permutationM on candidates, r(M(P)) = M(r(P)).
monotonicity if for any profiles P = (V1, . . . , VN) and P ′ = (V ′1, . . . , V

′

N) such that each V
′

i is
obtained from Vi by raising only r(P), we have r(P ′) = r(P).

strong monotonicity if for any profile P , any Y ⊆ X, and any P ′ obtained from P only by raising the
candidates in Y while keeping their relative position unchanged, we have r(P ′) ∈ r(P) ∪ Y .

consistency (or reinforcement) if for any two disjoint profiles (given by two disjoint electorates)
P1, P2 such that r(P1) = r(P2), we have r(P1 ∪ P2) = r(P1) = r(P2).

participation if for any profile P and any vote V , r(P ∪ {V })�V r(P).
efficiency (or consensus) if for any profile P = (V1, . . . , VN), there is no candidate c such that

c �Vi r(P) for all i ≤ N .

Since sequential voting rules are sequential composition of multiple local rules, we may wonder
whether the properties of local rules carry on to their sequential composition, and vice versa.
In the whole section we fix O = (x1 > · · · > xp), and we let Pxi:d1...di−1 be Pxi:x1=d1...xi−1=di−1 .

6.1. From local rules to sequential rules

We first give results on whether the sequential composition of local rules inherits a given property
satisfied by all local rules.
First, we need to make an important remark. Sequential compositions of voting rules are defined

for O-legal profiles only, therefore, when we say that Seq(r1, . . . , rp) satisfies a property involving
several profiles, wemean that the property holds for allO-legal profiles. In some cases, the restriction
to O-legal profiles renders the property much weaker. This applies especially to neutrality and
monotonicity. Indeed, the usual definition of neutrality is not directly applicable to sequential
voting rules, because permuting two alternatives in a O-legal profile generally results in a profile
that is not O-legal. Therefore, the definition that we take is a straightforward generalization of s-
neutrality as defined in Benoit and Kornhauser (2006): a sequential voting rule Seq(r1, . . . , rp) on
Legal(O) is neutral9 if for any permutation M on X and any O-legal profile P , if M(P) is O-legal,
then M(Seq(r1, . . . , rp)(P)) = Seq(r1, . . . , rp)(M(P)). Things are similar, and even more drastic, for
monotonicity (we will come back on this later).
We start by the positive results:

Proposition 5. If for all 1 ≤ i ≤ p, ri satisfies anonymity (resp. consistency, strong monotonicity), then
Seq(r1, . . . , rp) also satisfies anonymity (resp. consistency, strong monotonicity).

Proof. The proof for anonymity is straightforward.

Consistency Assume that r1, . . . , rp all satisfy consistency. Let P1 and P2 be two profiles on D such
that

Seq(r1, . . . , rp)(P1) = Seq(r1, . . . , rp)(P2) = (d1, . . . , dp),

9 We choose to call this property of sequential voting rules neutrality rather than s-neutrality; it is not ambiguous, provided
that O is fixed.
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which means that for every i = 1, . . . , n,

ri(P
xi|d1...di−1
1 ) = ri(P

xi|d1...di−1
2 ) = di. (1)

From the consistency of r1, together with d1 = r1(P
x1
1 ) = r1(P

x1
2 ), we get r1(P

x1
1 ∪ P

x1
2 ) =

r1((P1 ∪ P2)x1) = d1.
Let i ≥ 2 and suppose that rk(P1 ∪ P2)xk|d1...dk−1 = dk holds for all k ≤ i. From (1),

ri+1(P
xi+1|d1...di
1 ) = ri+1(P

xi+1|d1...di
2 ) = di+1. Now, from the consistency of ri+1, we have

ri+1(P
xi+1|d1...di
1 ∪ Pxi+1|d1...di2 ) = ri+1((P1 ∪ P2)xi+1|d1...di) = di+1.

Therefore, Seq(r1, . . . , rp)(P1 ∪ P2) = Seq(r1, . . . , rp)(P1) = Seq(r1, . . . , rp)(P2), and
Seq(r1, . . . , rp) satisfies consistency.

Strong monotonicity For any Y ⊆ X and (d1 . . . di−1) ∈ D1 × · · · × Di−1, we write

Y xi|d1...di−1 = {xi : Ex ∈ Y , xj = dj for all j ≤ i− 1}.

Suppose r1, . . . , rp all satisfy strong monotonicity. First we prove that for any profiles P and
P ′, if P ′ is obtained from P by raising candidates in Y , then

Seq(r1, . . . , rp)(P ′)|x1 ∈ {Seq(r1, . . . , rp)(P
′)|x1} ∪ Y

x1 (2)

where Seq(r1, . . . , rp)(P ′)|x1 is the x1 component of Seq(r1, . . . , rp)(P
′). To prove this, we

only need to check that P ′x1 is obtained from Px1 by raising Y x1 . By strong monotonicity of
r1, it suffices to check for any V ∈ P and its counterpart V ′ ∈ P ′, that for any y ∈ Y x1 and
x ∈ D1,

y�x1
V x⇒ y�

x1
V ′ x.

If not, suppose y�x1
V x but x�

x1
V ′ y, and (y, Ed2) ∈ Y for some Ed2 ∈ D2 × · · · × Dp. Then

we know that (y, Ed2)�V (x, Ed2) and (x, Ed2)�V ′(y, Ed2). Since V ′ is obtained from V by raising
candidates in Y , for any Ed ∈ Y we have

{Ex : Ex�V ′ Ed} ⊆ {Ex : Ex�V Ed}.

Take Ed = (y, Ed2), it follows that (x, Ed2) ∈ {Ex : Ex�V ′ Ed}, and (x, Ed2) 6∈ {Ex : Ex�V Ed}, which
leads to a contradiction.
Therefore, we know that Eq. (2) holds. Denote w1 = r1(P ′

x1). Now there are two cases:
w1 6= r1(Px1) and w1 = r1(Px1). For the first case there must exist V ∈ P such that
the rank of w1 in V ′

x1 is higher than the rank of w1 in V x1 . If not, then V ′x1 is obtained
from V x1 by raising candidates in Y x

\ {w1} for all V ∈ P , so by strong monotonicity of
r1,w1 ∈ ({r1(Px1)} ∪ Y x1) \ {w1}, which leads to a contradiction. Suppose there exist V ∈ P
and y ∈ D1 such that y�

x1
V w1 and w1�

x1
V ′ y. Then we know that for all Ed2 ∈ D2 × . . .Dp,

(w1, Ed2)�V ′(y, Ed2) and (y, Ed2)�V (w1, Ed2). Therefore in V ′, (w1, Ed2) must be raised, which
means that {w2} × D2 × · · · × Dp ⊆ Y . So Seq(r1, . . . , rp)(P ′) ∈ Y .
For the second case, we can move to the second step of sequential voting process,

and fix x1 = w1. Then following the same proof we have that Seq(r1, . . . , rp)(P ′) ∈
Y or r2(Px2|w1) = r2(P ′

x2|w1). Repeating this process recursively, finally we get that
Seq(r1, . . . , rp)(P ′) ∈ Y or Seq(r1, . . . , rp)(P ′) = Seq(r1, . . . , rp)(P), which completes the
proof. �

We now consider monotonicity. We get the seemingly strange result that the monotonicity of
Seq(r1, . . . , rp) depends only on the monotonicity of the last rule rp.

Proposition 6. If rp satisfies monotonicity, then Seq(r1, . . . , rp) also satisfies monotonicity.
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This seemingly strange result is mainly due to the fact that the restriction to O-legal profiles
considerably restricts the set of pairs consisting of two profiles P and P ′ such that P ′ is obtained from
P by raising exactly one candidate. This is stated more precisely by the following Lemma:

Lemma 1. Let V ,W be two preference relations on D1 × · · · × Dn such that (1)W is obtained from V
by raising one candidate Ex = (x1, . . . , xp), and (2) V and W are O-legal. Then (a) for every i ≤ p − 1,
and every (d1, . . . , di−1) ∈ D1× · · · ×Di−1, we have V xi|d1,...,di−1 = W xi|d1,...,di−1 and (b)W xi|x1,...,xi−1 is
obtained from W xi|x1,...,xi−1 by raising xp.

Proof. Let V ,W be as specified, V extendNV andW extendNW , and assume that there exist i ≤ p−1
and sj ∈ Dj, j < i such that

W xi|s1...si−1 6= V xi|s1...si−1 .

Then there exist two values si, s′i ∈ Di such that s1 . . . si−1 : si�NV s
′

i and s1 . . . si−1 : s
′

i �NW si. Choose
any Ev1, Ev2 ∈ Di+1×· · ·×Dp such that Ev1 6= Ev2. Then the relative order of two pairs: (s1, . . . , si, Ev1) and
(s1, . . . , s′i, Ev1), (s1, . . . , si, Ev2) and (s1, . . . , s

′

i, Ev2), are exchanged when moving from V to W . Now,
assumption 1 implies that if a pair of candidates is ordered differently in V andW , then the pair must
contain Ex. Now, the four candidates involved in the latter two pairs are all different from one another,
therefore they cannot both contain Ex, hence a contradiction, which proves part (a) of the lemma. Part
(b) is proved in a similar way from the observation that any pair ordered differently in V andW must
contain Ed. �

Proof of Proposition 6. Let P = (V1, . . . , VN) be an O-legal profile and Q = (W1, . . . ,WN) an O-
legal profile obtained by raising only Seq(r1, . . . , rp)(P) = (d1, . . . , dp). From Lemma 1 we get:

1. W xi|Esi
j = V xi|Esi

j for all i ≤ N, i ≤ p− 1, Esi ∈ D1 × · · · × Di−1
2. W

xp|d1...dp−1
j is obtained by V

xp|d1...dp−1
j by raising dp.

So from the definition of Seq(r1, . . . , rp), we know that ri selects di from Q for all i ≤ p − 1 and that
rp selects rp(W

xp|d1...dp−1
1 , . . . ,W

xp|d1...dp−1
N ). Since rp satisfies monotonicity, we have

rp(W
xp|d1...dp−1
1 , . . . ,W

xp|d1...dp−1
N ) = dp.

Hence Seq(r1, . . . , rp)(Q ) = (d1, . . . , dp) = Seq(r1, . . . , rp)(P), which proves that Seq(r1, . . . , rp)
satisfies monotonicity. �

On the other hand, three important properties cannot be lifted from local rules to their sequential
composition: neutrality, efficiency, and participation. In the case of efficiency, this was remarked
by several authors in the more specific case of multiple referenda with separable preferences. In
particular, Özkal-Sanver and Sanver (2006) prove that if there are at least three binary issues (or two
binary issues and an even number of voters) then the parallel composition of the majority rule is not
efficient (although the majority rule is, of course, efficient). The issue was developed further in Benoit
and Kornhauser (2006), who prove the following: if the number of issues is at least 3, or if there are
two issues, one of which has a domain with at least 3 values, then a (parallel) composition of local
voting rules satisfies efficiency if and only if it is a dictatorship (this, a fortiori, applies to sequential
voting rules).
The next example shows that participation cannot be lifted from local rules to their sequential

composition.

Example 8. Let I = {x, y}, with Dx = {0x, 1x, 2x} and DY = {0y, 1y}. Take r1 to be the scoring rule
with score vector (3, 2, 0), and r2 to be the majority rule. r1 and r2 satisfy participation. Consider now
the following three votes:

V1, V2 : 0x1y � 0x0y � 1x0y � 1x1y � 2x0y � 2x1y
V3 : 1x1y � 2x1y � 0x1y � 1x0y � 2x0y � 0x0y
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V1, V2 and V3 are all in Legal(x > y) and the associated conditional preference tables are

V1, V2 V3
0x � 1x � 2x
0x : 1y � 0y
1x : 0y � 1y
2x : 0y � 1y

1x � 2x � 0x
0x : 1y � 0y
1x : 1y � 0y
2x : 1y � 0y

Let P = {V1, V2}. We have Seq(r1, r2)(P) = 0x1y. Now, let P ′ = {V1, V2, V3}: we have
Seq(r1, r2)(P ′) = 1x0y. However, voter 3 prefers 0x1y to 1x0y, thus she has no interest in participating,
which shows that Seq(r1, r2) does not satisfy participation.

6.2. From sequential rules to local rules

Now we focus on the reverse direction, namely, whether the individual local rules inherit a given
property from their sequential composition, or, more intuitively, whether the failure of one of the
local rules to satisfy some given property implies that the sequential composition fails to satisfy the
property as well.

Proposition 7. If for some i ∈ {1, . . . , p}, ri does not satisfy anonymity (resp. neutrality, consistency,
participation, efficiency, strong monotonicity), then Seq(r1, . . . , rp) does not satisfy anonymity (resp.
neutrality, consistency, participation, efficiency, strong monotonicity).

Proof. The proof for anonymity is straightforward.

Neutrality Assume that for some i ≤ N , ri is not neutral. Then there exists a permutation M i on Di
and a profile P i = (V i1, . . . , V

i
N) on Di such that

M i(ri(Pi)) 6= ri(M i(P i)). (3)

Then, we construct the following separable profile Q on D: Q = (W1, . . . ,WN) where for
every k = 1, . . . ,N ,W xi

k = V
i
k (and whatever local preferences for other variables than xi).

Then, we define a permutationM on D such that for every Ex = (d1, . . . , di) ∈ D,

M(Ex) = (d1, . . . , di−1,M i(di), di+1 . . . , dp).

Suppose that Seq(r1, . . . , rp)(P) = (d1, . . . , dp). Then

Seq(r1, . . . , rp)(M(P)) = (d1, . . . , di−1, ri(M i(P i)), di+1, . . . , dp).

Now, from Eq. (3) we have that

(d1, . . . , di−1, ri(M i(P i)), di+1, . . . , dp) 6= (d1, . . . , di−1,M i(ri(Pi)), di+1, . . . , dp)

that is, Seq(r1, . . . , rp)(M(P)) 6= M(Seq(r1, . . . , rp)(P)), which shows that Seq(r1, . . . , rp) is
not neutral.

Participation Suppose that ri does not satisfy participation, which means that there exists a profile
P i = (V i1, . . . , V

i
N) and a vote V

i
N+1 on Di such that

ri(P i)�V iN+1 ri(P
i
∪ {V iN+1}).

Let us construct the following separable profile P = (V1, . . . , VN , VN+1) onX as follows:

1. for any k = 1, . . . ,N + 1, V xi
k = V

i
k.

2. for any j 6= i, the voters have whatever preferences on issue xj.
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Then, Seq(r1, . . . , rp)(P) = (d1, . . . , di−1, ri(P i), di+1, . . . , dp) for some (d1, . . . , di−1, di+1,
. . . , dp) ∈ D1 × · · · × Di−1 × Di+1 × · · · × Dp, whereas Seq(r1, . . . , rp)(P ∪
{VN+1}) = (d1, . . . , di−1, ri(P i ∪ {V iN+1}), di+1, . . . , dp). Assume that voter N + 1 has a
lexicographic preference relation,where themost important variable is xi (such a preference
relation is of course separable). Then, because ri(P i)�V iN+1 ri(P

i
∪ {V iN+1}), we have that

Seq(r1, . . . , rp)(P)�VN+1 Seq(r1, . . . , rp)(P ∪ {VN+1}), hence shows Seq(r1, . . . , rp) does not
satisfy participation.

Efficiency Assume ri does not satisfy efficiency. Then there exists a profile P i = (V i1, . . . , V
i
N) on

Di and a value di ∈ Di such that for all V i ∈ P i, di�V i ri(P
i). We construct the following

separable profile P = (V1, . . . , VN) on D similarly as in the proof for participation above:
for any k = 1, . . . ,N , V xi

k = V
i
k, and for all j 6= i, the voters have whatever preferences on

issue xj. Now, assume all voters have a lexicographic preference relation, where the most
important variable is xi. We have

Seq(r1, . . . , rp)(P) = (d1, . . . , di−1, ri(P i), di+1, . . . , dp).

But for any Vj ∈ P ,

(d1, . . . , di−1, di, di+1, . . . , dp)�Vj(d1, . . . , di−1, ri(P
i), di+1, . . . , dp),

hence Seq(r1, . . . , rp) does not satisfy efficiency.
Consistency The proof is again very similar as for the two previous properties. Assume there exists

i ≤ p such that ri does not satisfy consistency, then there exist two profiles

P i = (V i1, . . . , V
i
N1), Q i = (W i1, . . . ,W

i
N2)

on Di such that ri(P i) = ri(Q i) and ri(P i ∪ Q i) 6= ri(P i1). We construct two separable profiles

P = (V1, . . . , VN1), Q = (W1, . . . ,WN2)

such that

1. for all k ≤ N1, V
xi
k = V

i
k and for all l ≤ N2,W

xi
l = W

i
l .

2. the local preference on issue xj, j 6= i of the N1+N2 voters in P ∪Q all coincide: for every
j 6= i, every k ≤ N1 and every l ≤ N2, V

xj
j = W

xj
j = �

j.

Now, we have that

Seq(r1, . . . , rp)(P) = Seq(r1, . . . , rp)(Q ) = (d1, . . . , di−1, ri(P i), di+1, . . . , dp)

where for every j 6= i, dj = rj(�j). Then,

Seq(r1, . . . , rp)(P ∪ Q ) = (d1, . . . , di−1, ri(P i ∪ Q i), di+1, . . . , dp).

Therefore Seq(r1, . . . , rp)(P∪Q ) 6= Seq(r1, . . . , rp)(P). This shows that Seq(r1, . . . , rp) does
not satisfy consistency.

Strong monotonicity Suppose that ri does not satisfy strong monotonicity. This means that there
exist two profiles P i,Q i on Di such that Q i is obtained from P i by raising candidates in
some subset Y of Di, and ri(Q i) 6∈ {ri(Pi) ∪ Y }. Let P i = (V i1, . . . , V

i
N), we construct two

collections of CP-nets (N1, . . . ,NN), (N ′1, . . . ,N
′

N) by lifting each linear order in P
i and

Q i to a linear order on X similarly as in the proof of Proposition 8. Denote P and Q the
resulting profiles overX. Then it is easy to see P ′ is obtained from P by raising candidates in
YX = D1 × . . .Di−1 × Y × Di+1 × · · · × Dp. Since ri(P ′

i
) 6∈ {ri(Pi) ∪ Y }, we get

Seq(r1, . . . , rp)(P ′) 6∈ {Seq(r1, . . . , rp)(P)} ∪ YX.

This shows that Seq(r1, . . . , rp) does not satisfy strong monotonicity. �
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The following result is the converse of Proposition 6: if the last voting rule fails to satisfy
monotonicity then so does the sequential composition.

Proposition 8. If rp does not satisfy monotonicity, then Seq(r1, . . . , rp) does not satisfy monotonicity.

Proof. Assume that rp does not satisfy monotonicity. Then there exist two profiles Pp = (V
p
1 , . . . , V

p
N)

on Dp and Q p = (W
p
1 , . . . ,W

p
N) such thatW

p
i is obtained from V

p
i by raising rp(P

p) and keeping the
relative positions of other values of xp unchanged, and rp(Q p) 6= rp(Pp),
We now construct a separable profile V = (V1, . . . , VN) such that for every voter k ≤

N , V xp
k = V pk and whatever preferences on the other issues than xp. Denote (d1, . . . , dp) =

Seq(r1, . . . , rp)(V1, . . . , VN). Next, we construct the profile W consisting of the CP-nets N1, . . . ,Np
in Legal(G), whose common graph G contain the edges {(xi, xp) | 1 ≤ i ≤ p − 1}, and such that the
preference table of every voter k, for k = 1, . . . ,≤ N , is defined as follows:

• for every issue xi, i 6= p:W
xi
k = V

xi
k ;

• W
xp|x1=d1,...,xp−1=dp−1
k = W pk ;

• for every tuple of values (d′1, . . . , d
′

p−1) 6= (d1, . . . , dp−1),W
xp|x1=d′1,...,xp−1=d

′
p−1

k = V pk .

We note that W is obtained from V by raising (d1, . . . , dp−1, rp(Pp)), the relative order of other
alternatives being unchanged, exactly the same as Q p is obtained from Pp by raising rp(Pp). Now,

Seq(r1, . . . , rp)(W1, . . . ,WN) = (d1, . . . , dp−1, rp(Q p)),
Seq(r1, . . . , rp)(V1, . . . , VN) = (d1, . . . , dp−1, rp(Pp)),

and since rp(Q p) 6= rp(Pp), we have

Seq(r1, . . . , rp)(W1, . . . ,WN) 6= Seq(r1, . . . , rp)(V1, . . . , VN),

therefore Seq(r1, . . . , rp) does not satisfy monotonicity. �

For the same reasons as in Proposition 6, the failure of r1, . . . , rp−1 to satisfy monotonicity does
not imply that Seq(r1, . . . , rp) fails to satisfy monotonicity.

6.3. Summary

The following table summarizes the results of this section.

Criteria Global to local Local to global

Anonymity Y Y
Neutrality Y N
Monotonicity Only rp Only rp
Consistency Y Y
Participation Y N
Efficiency Y N
Strong monotonicity Y Y

We end this section with some considerations on manipulability. We know that the majority rule
for 2 candidates is not manipulable. What about the sequential composition of majority rules? We
know from Lacy andNiou (2000) that if all voters have separable preferences, then sequentialmajority
is non-manipulable. Does this extend to legal profiles in which some voters have nonseparable
preferences? Unfortunately, it does not:

Proposition 9. Let I = {x1, . . . , xp} be a set of binary issues, with p ≥ 2. For each i = 1, . . . , p, let
maji be the majority rule on {xi, x̄i} (plus some tie-breaking mechanism). Then Seq(maj1, . . . ,majp) is
manipulable.
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Proof. Wegive a counterexample for two binary issues (it is straightforward to extend it tomore than
two issues). Consider two binary issues x and y, and the following 3-voters profile:

voter 1 : (x, y) � (x̄, y) � (x̄, ȳ) � (x̄, ȳ)
voter 2 : (x, ȳ) � (x, y) � (x̄, y) � (x̄, ȳ)
voter 3 : (x̄, y) � (x̄, ȳ) � (x, ȳ) � (x, y).

The profile is in Legal(x > y). (Note that voter 1’s preference order is separable). If 1 knows the
preferences of 2 and 3 then he has no interest to vote sincerely on issue x, even though his preference
relation is separable: if he votes sincerely, then he votes x and then the outcome is xȳ. If he votes for x̄
instead, then the outcome is x̄y, which is better to him. �

As a corollary of this result, strategyproofness does not transfer from the local level to the global
level.
See Le Breton and Sen (1999) for a more general study of strategyproofness of voting rules on

combinatorial domains, under the separability assumption.

7. Discussion

We have shown that the sequential composition of local voting rules allows for escaping usual
multiple election paradoxes, under a domain restriction much weaker than separability. We have
established many results concerning the transfer (or the failure of transfer) of important properties
from local rules to/from their sequential composition.
Our work has benefited from several previous streams of work that were almost unrelated: on

the one hand, social choice, and on the other hand, conditional preferential independence, initially
developed in the literature of multiattribute decision making and now widely used in Artificial
Intelligence (with CP-nets).
The sequential combination of local rules advocated in this paper relies on the crucial assumption

that all voters’ preference relations follow a common acyclic graph, or, equivalently, that they are legal
with respect to a common order of the issues. Even if this domain restriction is much less demanding
than separability (as it allows for many more profiles), it is not innocuous.
As it stands, sequential voting in the way that was advocated in this paper should be applied when

the choice of the structure underlying the CP-net is clear enough (such as in the case of a meal, where
main dish is obviously the first variable to vote on, etc.). In the absence of such a graph, it should be
clear that imposing to the voters an arbitrary graph (or an arbitrary order on the issues) that does
not fit their preferences will not only make them feel uncomfortable, as they might be unable to
vote ‘‘simply’’ (Benoit and Kornhauser, 1991), but also will possibly lead to a paradoxical outcome.
This leads us to wonder whether we can find weaker domain restrictions, or better, to find a way of
conducting multiple elections without any domain restriction.
A first possible relaxation of theG-legality restriction consists in giving up the requirement that the

graph G is known from the beginning, and then generalize the (fixed-order) sequential compositions
of voting rules to ordered-independent composition of voting rules, which apply toO-legal profiles for
some order O (not fixed from the beginning). This way is pursued in Xia et al. (2007b). However, this
generalization comeswith a cost: the loss of the cheap sequential protocol that elicits local preferences
from the voters one issue after the other. Now, it is possible to go much further and generalize the
framework developed in this article into a family of voting rules applicable to all profiles. The idea
developed in Xia et al. (2008) goes along this way: the acyclicity restriction is dropped, and every
voter expresses a CP-net (with whatever structural graph – the graphs needs not being common to
all voters, nor do they need to be acyclic); these CP-nets are then aggregated into a common CP-net,
from which a winner is determined. However, this generalization comes with a major drawback: not
only the elicitation is extremely costly (voters may have report an exponentially large input), but the
computation of the winner is also extremely costly. A similar solution consists in expressing voters’
preferences in some other compact representation language than CP-nets (see, noticeably, Gonzales
et al. (2008) for the aggregation of cardinal preferences expressed by GAI-nets), but again, in that case,
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most voting rules are computationally hard to apply (see Lang (2004)). In summary, there seems to
be a choice to make between a strong domain restriction (such as G-legality, for G acyclic), or a wider
applicability coming with a prohibitive communication and computation cost.
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