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Abstract

Belief-based programs generalize knowledge-
based programfFagin et al, 1995 by allowing

for incorrect beliefs, unreliable observations,
and branching conditions that refer to implicit
graded beliefs, such as imhile my belief about
the direction to the railway station is not strong
enoughdo ask someone”. We show how to
reason off-line about the possible executions of a
belief-based program, which calls for introducing
second-order uncertainty in the model.

1 Introduction

Knowledge-based programer KBPs[Faginet al, 1999
are a powerful notion for expressing action policies in
which branching conditions refer to knowledge (an agen

acts according to what he knows), such as, typically,

if Kethen welse =’

whereK is an epistemic (usuall$$5) modality, andr, 7’
are subprograms. However, branching conditions in KB
cannot refer to possibly erroneous beliefs or to graded b
lief, such as in fepeat ask to someone about the way to
the railway statioruntii  my belief about the direction to
take is strong enough”. Recently,averny and Lang, 2034
made a first step towards reasoning witblief-based pro-

grams(BBPs), where knowledge modalities of KBPs are re-

Ps . g . - ;
drograms are introduced in Section 3. Section 4 deals with
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that answers, although not fully reliable, are normally cor-
rect. Each time A gets a direction confirming (resp. contra-
dicting) her current belief, this belief becomes stronger (resp.
weaker). Now, the assumption that answers are normally cor-
rect implies, for instance, that if A has already got 3 “right”
and no “left” then the next answer is more likely to be “right”
again than “left”. the plausibility of getting an observation
depends on the current state.

Coping with this issue results in a natural waysecond-
order uncertaintywhen projecting a belief state by a BBP: in
our example, the agent is able to predict beforehand some-
thing like “after asking 5 pedestrians, normally I'll have a
very firm belief about the direction to the station, although
| cannot totally exclude the possibility that I'll have only a
weak, or even a totally void belief”. Such a complex belief
state is a belief state about (future) belief states, that is, a
second-order belief state. Thus, the main concern of this pa-

er is how to d@ priori reasoning about the possible states of
elief produced by executing the program: uncertainty about
which of these states of belief will result is itself represented
as a ranking over states of belief.
After recalling some background in Section 2, belief-based

complex belief stateand their progression by actions and
programs. In Section 5 we show how to compute progres-
sion syntactically. Related work is discussed in Section 6.

2 Background

placed by graded belief modalities, whose semantics reliel this Section we briefly recall some notions frghaverny

on belief states defined as ranking functions, which can band Lang, 2004 Let PS be afinite set of propositional sym-
revised by observations and progressed by physical actionbpls. Lps is the (non-modal) propositional language gener-
which enables the agent to maintain his current belief statated fromP.S, the usual connectives and the Boolean con-

about the worldwvhile executinga BBP. Note that BBPs ex-

tend a restricted class of KBPs, in which (a) there is a singlePS.

stantsT and L. S = 279 is the set oktatesassociated with
Formulas ofLpg are saidobjective If ¢ € Lpg

agent, (b) the agent has perfect recall and (c) branching cotthenMod(p) = {s € S|s = ¢}. ForA C S, Form(A) is
ditions concern the agent’s knowledge about the present stathe objective formula (unique up to logical equivalence) such

of the world.
However,[Laverny and Lang, 20@34cannot deal withoff-

that Mod(Form(A)) = A.
Belief statesare identified withordinal conditional func-

line reasoning about the effects of a belief-based programtions (OCF) [Spohn, 198 a belief state is a functior :
Assume for instance that agent A is looking for the way toS — N, whereN = NU{+c0}, such thainin,c g x(s) = 0.

the railway station in a foreign town; her initial belief state is

k is lifted from S to Lpg by k() = min{k(s) | s = ¢},

void, and she follows a plan consisting in sequentially askingwith the conventiommin(§)) = +oo (we will use this conven-
to several pedestrians about the direction to follow, until sheion throughout the paper without recalling it}:(s) can be
has acquired a sufficient level of certainty. Assume moreoveseen as thexceptionality degreef s. In particulark(s) = 0



means that is a normal state anel(s) = +oo thatsisto- By, A ... A Bips; without loss of generality we can as-
tally impossible. For anyy € Lpg, the belief statec, is  sumey; = ¢;11, sinceBpo A Bapn A ... A By is

i 0 if sk=¢ , equivalent toB.c@oo A Bu(poo A ©n) A .o A Bi(poo A
defined byk,, (s) = { oo ifskE-p In particularsT A" A o). There is a one-to-one correspondance be-
is thevoid belief stateVs, x(s) = 0. tween belief states and satisfiable PC formulas (modulo log-

Beliefs are expressed syntactically in a graded extensiof¢@l €quivalence): for each, the PC formulaG(r) = @,
KD45¢ of KD45, whose languag€ ps is defined as fol- 1S defined asBoowoo A Ban A ... A Bigr, wheren =

lows: max{k < oo, 3s such that:(s) = k}, and for everyi € N,
(@) if o € Lps thenByy, Bap, ..., B are inlps; goilz.F_'orm({s,fi(s) < i}). (Note thatn is finite, because
(b) if ®and¥ in Lpg then—®, &V U, & A Vin Lpg. S is finite andminx = 0.) For instance, lek([a,b]) = 0,

Note that’ p considers onlgubjectiveandflatformulag.  #([a, b)) = 1, k([-a,b]) = 3 andx([-a, —b]) = oo, then
Formulas ofCps are denoted by capital Greek lettébs¥  ®. = By (aVb)ABsaABzaAB; (aAb) —which is equivalent
etc. while objective formulas are denoted by small Greek letf0 Bw(a V b) A Bga A B;b. Conversely, for each satisfiable
tersy, ¢ etc. By intuitively means that the agent believes PC formulaV there is a belief statey = H(V) such that
with strengthi. The largeti, the stronger the belief expressed G(H (¥)) = . G(x) representsll the agent believels 2,

by B;, andB, is aknowledggtrue belief) modality. We will sometimes make the following slight abuse of nota-
The truth of a formula of ps in an belief state: is defined ~ tion: when a PC formula’ is equivalent to a shorter (but not
by: PC) formula¥’, we writexy. instead ofcy. For instance, the
(a) for o objective and € N, » |= Bip iff #(-p) > i; PC formula¥ = Bypoo T ABsT A Byr A Byris equivalent
)k E®VUIff kl=dork =U; to Byr, therefore we write:g, . instead of<y .
(b)k EPATIff k= ®andk = T;
(©) k =~ iff & [~ ®. 3 Belief-based programs

Thus,x = Big holds as soon as any countermodelzof
is exceptional at least to the degrgeor, equivalently, that
all states such that(s) < i are models ofp. In particular,

Belief-based programs (BBP) are built up from a set of ac-
tions AC'T and program constructors:

B, ¢ is satisfied when all normal states satigfyandB. ¢ is e the empty plam\ is a BBP;
E?Elpsﬂed when all possible states (to any degree) are models. foranya € ACT, o is a BBP:
An observationis a belief state:,;s, representingll we o if 7 andn’ are BBPs thefr; 7’) is a BBP;

observewhen getting the observation. Observations can be
incomplete and partially unrellable_ (sHeaverny and Lang, (if @ then = else «') and(while @ do =)
2004 for examples). The agent revises her current belief state
. - ] . are BBPs.

by an observation by combining both: the revisionxoby
Kobs IS Undefined wheming (s + r0ps) = 0o, and otherwise  Thus, a BBP is a programwhose branching conditions are
is the belief state defined by doxastically interpretablethe agent can decide whether she

_ . believedo a given degree that a formula is true (whereas she
Vs € 5, (5 @ Fops)(5) = (5) + Hobs(s) mén(ﬁ + Fovs) is generally unable to decide whether a given objective for-
mula is true in the actual world). For instance, the agent per-
forming the BPP

oif # and n’ are BBP and® & Lps, then

In particular, kT @& kops = Kobs aNd (K & Kky,) = K(.|p),
wherex(.|¢) is Spohn’s conditioningSpohn, 1988

A physical actiona is a feedback-free action (that is, it = while —(ByrV-By-r) do ask;
possibly changes the state of the world but does not give any if B,r then goright else goleft
feedback), defined by a transition model consisting of a col-
lection of belief stategx,(.|s),s € S}. ka(s'|s) isthe ex- performs the sensing actioask until she has a belief
ceptionality degree of the outcomséwhen performingy in  firm enough (namely of degree 2) about the way to follow
states. Theprogressiorof a belief state:y by « is the belief  (whetherr is guaranteed to stop is a good question!).
statex o a = x(.|ko, o) defined (cf.[Boutilier, 1998) by Progression and revision [haverny and Lang, 20Q4are
used for maintaining the agent’s current belief staltde the
program is being executedHowever, predicting the future
possible states resulting from the execution of a B@freit

A positive formulaof L£ps is a formula where ndB; has started to be executaff(line evaluation) cannot be done
appears in the scope of negation. p@sitive conjunctive in a satisfactory way. Consider= ask; ask; ask; ask, con-
(PC) formula of Lps is a formula of the formB.,y. A sisting in asking in sequence to 4 pedestrians about the way
- to the station. Assume that each occurrencesaf can send

Vs € 5, (ko a)(s) = k(s|ko, ) = 31612 {K(5") + Kal(s]s)}

1This restriction is made for the sake of simplicity; itwouldbe —__
possible to consider nested modalities, and then prove, as it is the 2This could be formalized by extending our language with
case inKD45, that each formula is equivalent to a flat formula, but graded doxastic versior®, ..., O of theonly knowingmodality
this issue has no relevance to the issues dealt with in this papefe.g. [Levesque and Lakemeyer, 2GR00; meaning thaall the
Likewise, combinations of objective and subjective formulas do notagent believes to the degrées . Due to space limitations we must
play any role either for expressing belief-based programs. omit the details.



backobs; = kg, Or obss = kg, -, COrresponding respec-

Definition 2 LetOBS C Bg be afinite set of possible ob-

tively to a pedestrian telling that the station is on the rightservations (recall that observations are belief states).oBn
(resp. left), taken with some limited reliability (for the sake servation modeis a collection of functions

of simplicity we exclude “don’t know” answers). Then all
we can predict is that after doingthe agent will be in one
of the 5 belief stategp,,, KB,—r+ FByr» KBy—r» KT°. The
point now is thabbs; andobss cannot always be considered

as likely as each other: for instance, we may wish to express
that accurate observations are more frequent than inaccurate, for everyobs € OBS, if obs(s)
ones. Therefore, observations should be ranked by their plau-
sibility of occurrence given the current state and the sensing
Then, the projection of an initial belief

action performed.
state by a program results irsacond-ordefor compleX be-

lief state: in our example, one would expect to obtain that&l
after asking to two persons, then normally the agent is the bet-
lief statex g, or in the belief stateg, ..., and exceptionally d

in the void belief statec+. This issue is developed in next
Section.

4 Complex belief states and progression

4.1 Complex belief states

Definition 1 Let Bg be the set of all belief states gh A
complex belief statdCBS) is an ordinal conditional func-
tion © on Bg, i.e., a functiony Bs — N such that
mingeps (k) =0

1 1s a second-order belief state expressing the beliefs, befo

executing some given program about the (future) possible
belief states resulting from its execution.

Example 1 LetS = {r, —r}.
i [ r:0 ] ]

L s p(ko) =1
r:0 |
L B T : pu(ks) =0
ro: 2
raso| 0 : pu(ka) =0

is a CBS (by convention, for any belief stateaot mentioned
we haveu(x) = +o0); it intuitively represents a situation

kops(.|s,a) : OBS — N
for everya € ACTs and everys € S, such that:
1. foreverya € ACTs and everys € S,
mingyscons kops(obs|s,a) =0
oo then for every

a € ACTs, kops(obs|s, a) = oo.

rops(obs|s, «) is the exceptionality degree of getting ob-
servationobs as feedback when executing the sensing action

in states. This definition first appears ifBoutilier et al,,
994, and is similar in spirit to correlation probabilities be-
ween states and observations in partially observable Markov
ecision processes. Condition 1 expresses that there is always
at least one normal observation; Condition 2 is a weak con-
sistency condition between states and observations (an obser-
vation totally excluding a state cannot occur in that state).

Example 2

LetS = {r,—r}, obsy = kB, r, 0bsa = kB, -, and let
kops(obsi|r,ask) =0  kopg(obsa|r,ask) =1
kops(obse|—r,ask) =0 kopg(obsy|—r, ask) =1

(all other observations being impossible, i.e., fars #
obs1, 0bsa, Kk(obs|s,a) = oo; by convention we omit these

YWhen specifying:(.|s, «)). This means that accurate obser-

vations are the normal ones, whereas incorrect obervations
are 1-exceptional.

Definition 3 Let kg be a belief state and € ACTs. Given
obs € OBS, the plausibility of obtainingbs after « in belief
stateky is defined by

kops(obs|kg, a) = meig[no(s) + kops(obsls, a)]
The progressionof ko, by « is the complex belief state
prog(ko, ) = p(.|ko, ) defined by: for alk € Bg,

(kKo a)
min{rops(0bs|ko, @) | obs € OBS and k = ko @ obs}

Thus, « is all the more normal in the projected CBS

where the agent expects the resulting belief state to be either(.|x0, @) as there exists a normal statend a normal ob-

Ko, k3 OF k4, these last two beingormalresults andsg being
exceptional. Note thaty = kT, k3 = kB, ANdK4 = KB, .

We define u,, as the (degenerated) CBS defined by

tx(k) = 0andu, (k') = oo for all " # k.
Note that since, unliké&, Bg is not finite, some CBSs can-
not be finitely represented. We say thahas dfinite support

iff only a finite number of belief states have a finite plau-

sibility, i.e, {x € Bg|u(k) < oo} is finite; in this case
we definen,, (or simply n where there is no ambiguity) as
max{i < oo | Ik such thafu(x) = i}.

4.2 Progression by sensing actions

Consider a finite sed C'Ts of sensing actionghat send feed-

back to the agent, under the formalfservationsEach sens- ;.
ing action is defined by a state-dependent plausibility assign-

ment on possible observations.

3The notation<s has been introduced at the end of Section 2.

servationobs (given s) such thatx is the revision ofkg by
obs. Condition 2 in Definition 2 guarantees thaf @ obs is
defined whenevetp gs(0bs|ko, a) < oo, which ensures that
u(.|ko, ) is a CBS.

Example 3 The figure on the left (resp. right) shows the pro-
gression of<q (resp. 1) by ask.

r:0 . r:0
O:|:—|7”20:| Kl'[ﬁfrzl]
obsy 2“10()82 obsli,«/‘// i‘\‘\10b32
r:0 . r 01 r:0 r:0
—r:1 | F2r ) o || B8 ror 2 Fo- | —r 20
p(k1) =0 n(k2) = 0]  p(ks) = p(ko) =1



(.0, ask) — { o 8 } (|11, ask) = [ o 0 ] 4.5 Two particular cases
An unobservable environmegbnsists of a set of physical

4.3 Progression by physical actions acgofn?l Onlt))' (40Tst,)l= 0). _ ot hard ]

" . . . - ully observable environmem somewhat harder to de-
Ior} aﬁdgi'ggl t?ezzgigg_f?ggc;r;é}’%ﬁ‘g‘:ﬁiiggﬁmfﬁg@ rl'je s- fine formally because of the separation between physical and
sior; )(/)f a b'elief state by a phy§ical action w:as dgfiagda sensing actions, which prevents us to say that all actions send
belief state For the sake of homogeneity, we have now o2 full feedback. To cope with this, we assume tHafT's

A . . . contains one actiogense(z) for each propositional variable,
define it as a CBS: the progressip(i|ro, o) of a belief state \pion vetyme the truth value of with full certainty, and we
ko by a € ACTp is defined byu(.|ko, @) = trgoas i-€.,

require that in a program, any physical actieshould be fol-

0 ifr=rooo lowed by all actiongense(x) —which means that afterand
p(klko, o) = { co otherwise this sequence of sensing actions, the state is known with full
certainty. Any program of this kind is said to bemissible
44 Progressn)n by bellef_based programs The initial state is also required to be known with Certainty.
The progression of a belief stateby a BBPx is thecomplex  Proposition 1
belief stateu(.|x, 7) defined inductively by 1. in an unobservable environment, for ayyand any pro-

gramm for whichu(.| kg, 7) is defined, there exists a be-

if T=M\th . = L, -
o if m=Athenu([r, ) = pu; lief stater such thatu(.|ko, 7) = juc;

e if m = athenu(.|k, ) is defined in Section 4.3 ik

ACTp and in Section 4.2 iy € ACTs: 2. in a fully observabl_e environment, for any belief state
. ko and any admissible program such thatu(.|xo, 7)
o if m = (my;m2) then , o is defined,u(k|rq, 7) < oo implies thatx is a precise
p(k' |k, m) = mingreps (k" [k, m1) + p(K'|5", m2)) belief statej.e., k = x, for somes € S.
o if T=if ®then m else mythen
/ H . . - .
(e, ) = pK' |k, m) f k= @ 5 Progression: syntactical computation
u(k'|k, m3)  otherwise . . o i i
Applying progression as it is defined above has a prohibitive
e if 7 =while & do /77’ the/n ) complexity, since it amounts at iterating over all belief states,
(5, ) = p(k' |k, (rs ) if k=@ states, and observations. In this Section we give a more
’ tus (K) otherwise friendly, syntactical way of computing progression, based on

a compact representation of complex belief states.
So as to be able to reason about the resulting belief states,
e now introduce a new family of modalitid®;, Ps, ...,

If = contains nowhile construct then this definition is
well-founded (it can be proved that it results a SBS which
moreover does not depend on the order in which the abov . " . o

P ' in addition toBy, ..., B... While theB; modalities deal

rules are applied). This is not so withhile constructs, : :
since the (recursive) definition leads to a fixpoint equationWIth uncertainty gbout the current stajePy , Py, ..., Poo

whose solution, when defined, is taken to be its least fixpoinf/€a! With second-order uncertainiy,, uncertainty about the
when the latter is a CBS, which is not necessarily the casé?rolg"a?d belief statgwith respect to some program).
considersy = T andr = while T do ask; applying the Lps is the language defined by:

above definition leads ta(x|xo, ™) = oo for all x, which is e if ®is aformula ofLpg then for alli, P;® is a formula
not a CBS. Moreover, when(.|xq, 7) is defined, it does not of £%;

necessarily have a finite support. e if © and©’ are formulas of£%, then® A ©/, O v €/

Example 4 and-© are formulas of’%, ;.
o p(|rT, (ask;ask)) = [r3: 05 ka1 05 ko = 15 Like for B; modalities, we need not consider nestBd
o u(.|kT, (ask; ask; ask; ask)) modalities, neither heterogeneous combinatiorB;@&nd B;
=[kByr 105 KBy—r 1 05 K3 : 15 ket 15 Ko @ 2]; modalities (resp. o_bjecti_ve formulas). Satisfaction @
o m; = (ask;ask;if ByrV By—r then ) else ask). formula by a CBS is defined by
Thenu(.|sT,m1) = [k3: 05 ka: 0; k1 : 15 Koo 1]; o i = P2 iff forall x € Bg, k = ~® impliesu(x) >

e 7o = while —(Byr vV By—r) do ask. Applying the e uEOAO Iff u =0 andy E O
definition gives a fixpoint equation whose solution is (and similarly for the other connectives).

— .0 - . 5
p([ko, m2) = [r3 : 05 g : O]. Validity, satisfiability and logical consequence are defined in

4Such a partition between purely sensing and purely physical act-he usual way. IntUItlverP1<I>. means thasll belief stqtes
tions is usual and does not induce a loss of generality. that do not satisfyb are exceptional at least to the degree
5The question whether this program can run forever is similar to. VWhen reasoning about CBS, we are mainly concerned with
that of whether it is possible that a fair coin tossed repeatedly alway#ferring positive formulas- inferring negative formulas such
turns up heads, and this is thus related to an OCF version of the la@s—~P;® is somewhat derivative. We defingasitiveL%
of large numbers. formula as follows:



o if ® is a positiveL ps formula andi € N thenP;® is a
positive L% ¢ formula;
¢ if ©; and©, are positiveL? s formulas ther©; A ©,
and©; Vv O, is a positiveLs, ¢ formula.
Moreover, acanonical(% ¢ formula is al% ¢ formula of the
formO =P & APy Oy A L. . AP®P, AP P, Whered,
., D, P are positivecps formula§.
Given a CBSu with finite support, the canonic#l? 4
muIaG+(M) = ©,, associated witf is defined by

(v (1o
1 w(k)<i w(k)<oo

wheren = n, andG(k) is the canonical ps formula cor-
responding tos (cf. Section 2).

Proposition 2 For any CBSy with finite support and any
positive conjunctivel? ¢ formula®, p = © if and only if
0, = ©, that is, ©, is the strongest positive conjunctive
L% formula satisfied by..
Example 1 (continued)
0, =Pi(BerVB;—r) AP (Bar VBy—r VB, T)
=P (Byr v By)

for-

O,

>n

.
Il

We are now in position to give a syntactical characteriza-

tion of progression.

Definition 4 Let ® be a positive conjunctivé€ pg formula
and o be any action. The progression &f by « is the
canonical £%4 formula Prog(®,a) corresponding to the
CBSu(.|ke, ), i€,

P'rog(‘l)’a) = G+(M('|H‘I”O‘)) = @M(-\qu,a)
We now show how the formul®rog(®, a) can be com-
puted without first generating the corresponding

Proposition 3
Leta be a sensing action anbl = By A. . .ABpypp ABop
a positive conjunctive pg formula. We define:

e foranyobs € OBS andi € N,
Vi obs,a = Form{s € S| pops(obs|s,a) < i};
o X; 0,0 ={obs € OBS | (v1 ANYiobs,a) V...V
wl,obs,a) fi— J—}.
o Xoo.o,0 ={0bs € OBS | o AYoo,obs,a L}
e n is the largest integei such thatX; o & Xoo,®,a-
Then

(i A

Prog(®,a) = /:\ \/ DR Dops)
i=1 obsEXMq)’Q
/\Poo( \/ 0] ® (Dobs)

obsEXoc.’q,’a

where® is the syntactical revision operator (Proposition 1
of [Laverny and Lang, 20Q4, which satisfiesp @ ®,,, =

Example 2 (continued) Let @ B;r. We get
X1,<I>,ask = {obsl}, X2,<I>7ask = {ObSl,ObSQ} and for

all n > 2, X,, ¢.asc = {obs1,0bsz}. Proposition 3 gives
Prog(®, ask) Pi(Bir ® Bir) A Poo((Bir ® Byr) vV

(Bir @ Bi—r)) = P1Bar APy (Bar VB, T) = Py Bor.

The characterization for physical actions is much easier.

Proposition 4 For any physical actionx and any PCLpg
formula®, Prog(®, a) = P.G(ke © ).

Moreover,G (ke © o) can be computed efficiently using
Proposition 2 of Laverny and Lang, 2034

Lastly, the progression of a positive conjunctige g for-
mula® by a BBPr is the canonical’% ¢ formulaProg(®, )
defined inductively as follows:

Prog(®,\) = Po ®;
e Prog(®, ) is defined at Definition 4 i& is an action;

e Prog(®,if Wthen m else )
| Prog(®,m) if®ET
| Prog(®,m) otherwise

Prog(®,my;m3) =

i=n

/\ B

i=1

\/ [Prog([Prog(®,m1)]u, 72)]v)
utv=i+1

APoo ([Prog([Prog(®,m1)]ec, 72)]oc)

e Prog(®,while W¥then ') =
Prog(®,n";7) if®ET
Prog(®, \) otherwise

where

1. for any canonical’%, formula®, [6]; is the strongest
positive Lpg formula ¥ (unique up to logical equiva-
lence) such thad = P, ¥ .

2. for any positive conjunctiveLpg formulas ®; and
Oy [Prog(®y vV Py, 7)) [Prog(®y,m)]; V
[Prog(®s,m)];.

Proposition 5 Prog(®,,m) =

©

w(.|k,m)

Example 5

Letr = (ask;ask;if BprV Be—r then )\ else
andn’ = (while  —=(BzrV B;—r) do ask).

Prog(Bs T,ask) = Poo (Bir V By =)

Prog(Bs T,ask;ask) = Py (Ber V By—r).
Prog(BoT,7) = P1(Bar VBe—r) AP (Byr VB —7)
o Prog(BoT,m) = Poo(Bar vV Ba—r)

ask)

6 Related work
Partially observable Markov decision processes

G(H(®) @ obs). POMDPs are the dominant approach for acting under partial

observability (including nondeterministic actions and unreli-
able observations). The relative plausibility of observations
given states, as well as the notion of progressing a belief state
by an action, has its natural counterparts in POMDPs. Now,

Notice that canonical 5 formulas are positive% 5 formulas
in which there is no disjunction at the level of tRemodalities (but
disjunctions may appeanr the scopef a P, modality, and of course
in the scope of 8; modality too).



there are two important differences between POMDPs andevision and do not consider physical actions nor programs,

our work. nor do they give a syntactical way of computing their revision
First, in POMDPs policies, branching is conditioned by functions.

the observation sequence that has lead to the current beli

state; the policy is therefore directly implementable, without‘élf_?ulmerf"’wtléa:vlbe“ef'bz"’losf)a d pro%rarrés lief-based
the need for an on-line reasoning phase. In our framework.12/Pern and Moses, 20D&onsider belief-based programs

branching conditions are expressed logically, which may a|yvith counterfactuals whose semantics, like ours, is based on

low for much more compact policies than branching on ob-anking functions. They do not allow for graded belief in
servations. In this view, BBPs can be seen as high-level, Confgran(_:hmg conditions, nor unreliable observations (ranking
pact specifications of POMDP policies (the policy being thefunctions are used for evaluating counterfactuals), but they
implementation of the program®ur work can thus be seen allow for counterfactual branching conditions, possibly refer-

as a first step towards bridging knowledge-based programgind 10 future belief states, such as "if | believe that if | were
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