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Abstract

We investigate two forms of dependence between variables
and/or formulas within a propositional knowledge basen-
trollability (a set of variables( controls a formuld” if there

is a way to fix the truth value of the variables ¥ in order

to achieve to have a prescribed truth value) agefinability

(X defines a variablg if every truth assignment of the vari-
ables inX enables us finding out the truth valuedf Several
characterization results are pointed out, complexity issues are
analyzed, and some applications of both notions, including
decision under incomplete knowledge and/or partial observ-
ability, and hypothesis discrimination, are sketched.

Introduction

For many reasoning tasks which make use of propositional
logic, exhibiting structure can be of a great help. By “struc-
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are, they enable us finding out the truth valueyofThis
notion has many applications, including designing test
policies in order to discriminate among hypotheses (such
as plausible diagnoses).

For these two kinds of dependence, several definitions are
introduced together with their specific interest, some char-
acterizations are given, computational complexity issues are
investigated, and some applications ranging from decision
under partial observability to fault isolation in model-based
diagnosis, are also sketched. As to definability, this paper
completes a companion paper (Lang & Marquis 1998) in
several directions, including the practical computation of de-
finability relations.

Formal Preliminaries
Let PS be a countable set of propositional variables and

ture” we mean some relationships that exist between some PRO Ppg the propositional language built up framS, the

sets of variables and/or formulas within a propositional
knowledge bas&. A nice example of such structure, which
has received much attention recentlyindependencéDar-
wiche 1997) (Lakemeyer 1997) and related structural prop-

connectives and the boolean constants: and false. For
X C PS, PROPx denotes the sublanguage 8RO Ppg
generated from the variables &f only. Elements (resp.
subsets) ofPS are denoted:, y, etc (resp. X, Y, etc)

erties such as relevance (Lakemeyer 1995), or causal inde-Full instantiations of variables ok C PS (called X—

pendence (Darwiche & Pearl 1994). Revealing indepen-
dence relations irE not only helps understanding bet-

worlds) are denoted by and their set is denote@ x.
Y denotes a finite propositional knowledge base, i.e., a

ter but also is a great help for making easier some reasoning conjunctively-interpreted finite set of propositional formu-
tasks such as satisfiability, deduction, abduction or diagnosis las fromPROPps. Var(X) is the set of propositional vari-

(Darwiche 1997). Apart from independence other kinds of
structural properties are worth investigating, especially dif-
ferent kinds oflependenciavolving sets of variables and/or
formulas. In this paper, two particular forms of dependence
are studied:

¢ controllability: a set of variables( controls a formuld
w.r.t. X if it is always possible to fix the values of some
of the variables inX in order to achievé to have a given
truth value (true or false); the particular case where one is
only interested i being true corresponds to achieving
a goal and relates to qualitative decision making under
incomplete knowledge.

¢ definability a set of variableX defines a variablg w.r.t.
Y if whatever the observed values of all variables)of
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ables appearing in formul.

For every formula® and everyxz € PS, ®,. o (resp.
®.. 1) is the formula obtained by replacing # every oc-
curence ofc by false (resp.true).

Given a propositional knowledge baSethe set of prime
implicants moduloX of a formula® over PROPx will
be denoted byPIX (®); this set is defined by’ I (®)
maz({PI(X = @) N PROPx},|=) where PI(®) de-
notes the set of prime implicants @ for every formula
®. PIX(®) (= PI%,. (®)) denotes the subset @t(®)
consisting of the terms built upoX’, only. IP(®) de-
notes the set of prime implicates @. For instance, if

Yy = {a Vb-aAc=eds e} then Pléa7b,c,d} (6)
{d,~anc,~an-b}, PI"(e) = {-anc}, PL{")(e) =

0, Pléa’b’c’d}(a Vv b) = {true}, IP(X) ={aVb,aV-cV
e,~dVe,dV-eaV-cVd}.



In this paper we refer to some complexity classes above
NP and coNP, details about which can be found in Pa-
padimitriou’s textbook (Papadimitriou 1994).

Conditional controllability

Let X be a propositional knowledge basg, Z C PS, and

I be a formula. Intuitively,X positively controld" given Z
w.r.t. ¥ means that for any observeftworld w there is

a X-world wx which certainly achieveE. A very intuitive
interpretation of positive controllability relates to decision
under incomplete knowledge and partial observabilityis
the set of observable variable®; the observation space,
X the set of controllable variableQ,x the action space (an
action being the composition of elementary actions, an ele-
mentary action assigning a variable ®fto eithertrue or
false), andl” the goal.

Controllability in a logical setting has not received much
attention so far. The first approach we know is in (Boutilier
1994) where an action model for qualitative decision the-
ory is based on a partition between controllable and uncon-
trollable variables. While inspired by the latter, this study
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Figure 1: A circuit.

Positive controllability intuitively means that there is a
way to fix the values of variables iX in order to make
the goall’ true; full controllability means that both and
—I' can be achieved. Note that the technical difference be-
tween this definition of positive controllability and the defi-
nition given above without consistency conditions does not
rely on whether impossible observations are taken into ac-
count or not; indeed, i’z A X is inconsistent, theBwy S.t.
wz Nwx AX | Tis trivially satisfied (anywyx does the

extends it in several directions, especially regarding to ob- job). So the only difference is requiring the actiog as-

servability and complexity (some of our results applying to
Boutilier’s framework). Controllability appears also in the
independent choice logic (Poole 1997), where each variable
is assigned a specific agent controlling it, and in (Fargier,
Lang, & Schiex 1996) in a constraint satisfaction frame-
work.

We may think of defining conditional positive controlla-
bility as follows:

X positively controld” givenZ w.r.t. X iff Vwz € Q4
Jwx € Qx suchthatvy Awx AX =T.

Now, there are two points which must be considered be-
fore going further:

1. What ifwz A X is inconsistent@ his means that observa-
tion wy is impossible: it can merely not happen. Hence
assigning an action to is needless.

. What ifwz A X is consistentandz A wx A X is incon-
sistent?This is more difficult to interpret, or at least more
ambiguous. The most intuitive interpretation is that when
wz is observed, the actiany is simply not availablé

We now have the elements for defining formally condi-
tional controllability and related notions:

Definition 1 (conditional controllability)

LetX,I' e PROPps andX,Z C PS.

e X positively controls I" given Z w.r.t. ¥ (denoted by
X <€ 1) iff Vuz € Qz sit. wz A ¥ is consistent
Jwx € Qx s.t. (Hwz Awx A X is consistent and
(i) wz Awx AN ET.

e X fully controls T givenZ w.rt. ¥ (denoted byX <%
I)iff both X <& I't andX <& (-I)*.

2As noticed by Fargier (personal communication), in the case
where it is guaranteed that any action can always be performed
then the specification of the decision problemstbe s.t. for any
wz, if wz A X is consistent, then for evetyx, wz A wx A X is
consistent.

signed to an observation to be available, i.e. consistent with
the observation and the knowledge base.

As an illustration, let us consider the circuit depicted on
Figurel. leE = {z © aVby & (bo ),z & (z &

-y)}. We have{a, c} <<{Eb} zt butnot {a, c} <<§b} x; We

also have{a, c} <<{Eb} y and{a, c} <<g’} z. Note that we
donothave{a,c} <% y* (nor(=y)*, norz*, nor (=z)")

(we only have{a, ¢} <2 z7).

Now, positive controllability can be characterized by
means of prime implicants (similar results follow easily for
other forms of controllability).

Proposition 1
X <Z Tt iff Vwyz € Qy s.t. wy A X is consistentds €
P[X):(UZ(F) \ PIXUZ(ﬂE) s.t.d Dwyx andd D wy.

As already said, a practical application area of control-
lability is decision under incomplete knowledge and partial
observability: P = (X, Z,X,T) can be seen as a logical
specification of a qualitative, single-step decision problem
with incomplete knowledge and partial observability. The
set of possible observations BossObs(P) = {wz €
Qy | wz A X is consistent and asound policyfor P is
a mappingr from PossObs(P) to Qx such thatvw, €
PossObs(P), (i) wz A m(wz) A X is consistent, and (ii)
wz AN m(wz) AN X | I. Clearly, X positively controlsI
givenZ w.r.t. X iff there exists a sound policy fgp.

We turn now to complexity issues. We first give a straight-
forward result which avoids studying separately positive and
full controllability.

Proposition 2
X <& TTiff X U {new} <& T A new, wherenew €
PS\ (Var(Z)UVarT)UX U Z).



This reduction from full to positive controllability is
clearly polynomial, and a polynomial reduction from posi-
tive to full controllability is a trivial consequence of the def-
initions. Thus, both notions are polynomially related. Con-
sequently:

Corollary 1 (FULL) CONDITIONAL CONTROLLABILITY
and POSITIVE CONDITIONAL CONTROLLABILITY are in
the same complexity classes.

Since the reduction given by Proposition 2 preserves the
restrictions that are considered in the following (i2.= 0
andX U Z = Var(X)), both problems remain in the same
complexity classes for each of these restrictions. Accord-
ingly, in the rest of the section, we will mainly focus on the
complexity of full conditional controllability.

Proposition 3
CONDITIONAL CONTROLLABILITY is Hg-complete

We are now going to investigate some particular restric-
tions of controllability, each of which corresponds to a par-
ticular type of decision problem. We start witmcondi-
tional controllability, obtained by lettingZ = (.

Proposition 4
UNCONDITIONAL CONTROLLABILITY is Eg-complete.

Intuitively, unconditional controllability means that there
is no observable variable — thus the action to be under-
taken must be taken unconditionally, which corresponds to
non-observability. InterestinglyJNCONDITIONAL POSFK
TIVE CONTROLLABILITY can be abductively characterized,;
indeed, X <% T't holds iff there exists an abductive ex-
planation forl® givenX, where the set of possible individual
hypotheses is the set of literals built up frakh Accord-
ingly, theEE—compIeteness afNCONDITIONAL POSITIVE
CONTROLLABILITY is recovered as a consequence of Theo-
rem 4.2 from (Eiter & Gottlob 1995). Thanks to such an ab-
ductive characterization, the complexity of many restricted
subcases 0NCONDITIONAL POSITIVE CONTROLLABIL-

ITY can be easily derived from (Eiter & Gottlob 1995).

Another particular case is obtained by lettingu Z =
Var(X). We call the corresponding probleseteris paribus
controllability.

Proposition 5
CETERIS PARIBUS CONTROLLABILITYIS Hg—complete.

Propositions 4 and 5 are similar to some complexity re-
sults in (Fargier, Lang, & Schiex 1996) for mixed constraint
satisfaction. Intuitivelyceteris paribusconditional control-
lability means that all variables are either controllable or ob-
servable (full observability)Ceteris paribuscontrollability
has been first proposed by Boutilier (Boutilier 1994) for
¥ = ). His appealing characterization of controllabilit¥ (
controlsT iff PIX(T') # ¢ and anys € PI(T') mentions a
variable ofX) is equivalent to ours wheR = (), using the
fact thatl" is equivalent to the disjunction of all its (standard)
prime implicants. Despite the additional restrictlin= 0,
the complexity of checking this form akteris paribugon-
trollability does not fall down.

Proposition 6
Boutilier's controllability isHE-complete.

Definability
Definitions and characterizations

Definabilityis a stronger form of dependence than control-
lability: while the latter states that there is a way to fix a
variabley to the desired truth value, definability imposes
that for everyX—world, the truth value of; is determined.
The computational complexity of definability has been in-
vestigated in a companion paper (Lang & Marquis 1998);
herefater, the focus is mainly led on the practical computing
of definability. We start by a series of definitions concerning
definabilityand later on we give a closely related definition,
hypothesis discriminability

Definition 2 (definability) (Lang & Marquis 1998)
Let¥ € PROPps, X C PSandy € PS.

e X definesy w.rt. ¥ (denoted byX Cy y) iff Vwx €
Qx,wx N Eyorwx AL E .

e X defines minimallyy w.r.t. ¥ iff X Cx y and no proper
subset ofX does it.

e X defines nontrivially y w.rt. ¥ iff X Ty, y and X is
consistent.

e X is abasisfor y w.r.t. X iff X defines minimally and
nontrivially y w.r.t. .

While everyX —world that is not consistent with can be
considered impossible, requiringe A X to be consistent in
the definition above would be useless singeAn Y = y and
wx AX E -y hold whenevewx A X is inconsistent. When
no X-world consistent witt: can be foundy. is inconsis-
tent. In this case, definability trivializes, i.€X, Cyx, y holds
for every X and everyy, and no basis fog can be pointed
out.

Clearly enough, the four definability relations given above
can be easily extended to s&iof variables byX Cy Y iff
X Cy yforeveryy € Y, as well as to formulaE (replacing
y by T in the definitions above, see (Lang & Marquis 1998)
for details).

As an illustration, let us step back to our example (Fig. 1).
We have{a,b} Cyx. z, {b,c} Cx y, {a,b,c} Cx, {z,y,2};
note that{a, b, ¢} defines minimallyz and also{z, y} w.r.t.
¥ butnotz nory. Here is the list of all bases far w.r.t.

2 {y}, {b, ¢}, {z,2} and{a,b, z}; for z we get the fol-
lowing bases{z}, {a,b,c}, {z,y}, {a,b,y}, {z,b,c} and
a,c,y}.

There is a clear link between (full) unconditional control-
lability and definability, which states that except in “patho-
logical” cases, definability is stronger than unconditional
controllability; indeed X Cy. yimplies (X <% yorS =y
or X |= —y). Furthermore, it is easily shown that¥f de-
finesminimallyy w.r.t ¥, thenX andy are marginally de-
pendent in the sense of (Darwiche 1997) and that forany



in X then{z} is relevant tofy } in the sense of (Lakemeyer
19975,

While definability has been intensively studied in mathe-
matical logic (see e.g., (Beth 1953)), propositional definabil-
ity (and its computational complexity) has received much
less attention in Al, up to now. Let us nevertheless men-
tion that similar notions have been introduced in the re-
cent literature on causal reasoning (Darwiche & Pearl 1994)
(Geffner 1996b), and especially (Geffner 1996a) who pro-
poses a framework for ramification which makes use of a
causality principle

the values that a variable may take (...) is a function of
the values of its causes

that is very similar to our notion of definability Another
closely related work is by Ibaraki et al. (Ibaraki, Kogan, &
Makino 1998), where the focus is laid on functional depen-

Interestingly, whenevek defines nontriviallyy, the ex-
plicit definition of y from X in ¥ can be derived thanks to
the following result, that makes use of the notiorfaet-
ting introduced by Lin and Reiter (Lin & Reiter 1994). Let
us recall thatforget(X, X) is defined inductively by: (i)
forget(X,0) = %; (i) forget(E,{z}) = (BrcoVZre1);
(iii) forget(X,X U{z}) = forget(forget(XL, X),{z}).
Proposition 7
X Cyyiff X = (®, & y), where®, € PROPx is
defined by, = forget(X, Var(X) \ (X U{y}))yc1.

The above result proves particularly helpful wh&nh
is given by its prime implicates. In this situation,
forget(L,Var(X) \ (X U {y})) can be computed effi-
ciently by selecting fron7 P(X) the prime implicates from
PROPxy,; (see Lemma 8 from (Lakemeyer 1995)). Once
this formu{la has been computed, provided thads consis-
tent, the truth value of can be computed in linear time as

dencies for Horn knowledge bases (functional dependency ine truth value offorget(S, Var(S) \ (X U {y}))ye for

is definability).

The fact that definability has not yet been fully investi-
gated by the Al community is somewhat surprising since it
proves helpful for many Al applications. For instance, when

everywy € Qx.

Definability can be characterized in several other ways.
In (Lang & Marquis 1998), we show how checking defin-
ability comes down to a deduction check thanks to Padoa’s

reasoning about change, a way to address the well-known method (Padoa 1903). Hereafter, we show how definabil-

frame problemconsists in finding out fluents that can be
derived from primitive ones (called a frame, or a defining
family in our framework) within the knowledge base, and

to apply change on reduced world descriptions (composed

of primitive fluents) (Lifschitz 1990). Many formalisms for

reasoning about change, adhere to this approach that has¥ Ex yiff X =
been implemented in various planning systems (e.g., in the

early systensuILD (Fahlman 1974)). The notion of ba-

ity can also be characterized by means of prime implicants
(where\/ PIX (y) denotes the disjunction of all prime im-
plicants inPIJ (y)).

Proposition 8
(V PIZ () vV (V PI (—y)).
Of course, in the general cagd (y) and PIX (—y) can
be exponentially long. However, provided that these prime

sis can also prove valuable in automated reasoning. For implicants have been computed off-line (and thais con-

instance, identifying functionally dependent variables is a
way to find out variable orderings that may prevent the Bi-
nary Decision Diagram (BDD) representation of a formula
from an exponential size blowup (Hu & Dill 1993). More

recently, (Kautz, McAllester, & Selman 1997) have shown

sistent), the truth value af can be computed in polynomial
time for everyX-world.

Computing bases
In this section, we propose an algorithm for computing

how variable dependency can be exploited in local search pases. The following result shows that computing a basis

for the satisfiability problem.

We now turn back to logical characterizations of defin-
ability. As a corollary of Beth's theorem (Beth 1953) (stated
in the more general framework of first-order logic), we get
the equivalence between thmplicit form of definability
given above and the followingxplicit form: X (explicitly)
definegy w.r.t. X iff there is a formulab, s.t. Var(®,) C X
andX = (®, & y); when it exists®,, is clearly unique up
to X—equivalence (i.e., evey, s.t. XA @, = X A @ holds
does the job).

For instance, considering our circuit example again, we
know that{a, b, c} Cx z; the corresponding formul&, is
Y—equivalenttda V b) < (b & c).

3Similar results would hold with a notion efinimalcontrolla-
bility which is omitted for considerations of space.

*From a practical point of view, in the literature on causal rea-
soning, searchingfor bases is a priori useless — they are induced
from the causal structure of the knowledge base.

(resp. the set of all bases) for séfsof variables comes
down to compute it (resp. them) for each variable individu-
ally.

Proposition9 X Cs {y1,...,yp} iff 3X1,..., X, st
X =X1U...UX,andX; Cyx. y; foreveryi € {1,...,p}.

As a corollaryBases (Y') denoting the set of all bases for
Y w.rt X, Bases ({y1,...,yp}) is the minimization w.r.t.
setinclusion ofU;—; . ,B; | B; € Bases ({y;})}.

Thanks to Proposition 9, focusing on bases for individual
variables is sufficient; this is the purpose of the algorithm
below. Without any loss of generality, we assume tkiat
contained in a fixed set of “relevant” variablgs. The util-
ity of V* is to focus on relevant bases, only; for instance, in a
discriminability problem}/* is the set of testable variables.

This is a greedy algorithm which considers all the vari-
ables ofX in any order and throws them away when they
are not necessary for forming a basis from the current set of
relevant variables.



Proposition 10 Provided that the functioefines re-
turnstrue iff X definesy w.r.t. ¥, the algorithm returns a
V*-relevant basis foy w.r.t. 3 if there exists one, “failure”
otherwise.

There are several possible ways to implement the function
Defines . In the case where the syntactic restrictions on
¥ makes definability testable in polynomial time, the search
for a V*-relevant basis is itself polynomial because it con-
sists in|V*| definability tests (plus one consistency test). In
the general case, an approach to compfdéines that
takes advantage of Proposition 8 consists in compilihg
under the form of its prime implicants. Thus, the prime im-
plicant listsPI," (y), P1)" (-y) andPIV" (=%) (for iden-
tifying impossiblel *-worlds) are computed off-line. These
lists are updated each time a variable is picked up (namely,
prime implicants mentioning these variables are filtered out
from the lists). NowDefines makes use of this updated

Hypothesis discriminability

We investigate now a notion, slightly generalizing defin-
ability, which has many practical applications ranging from
fault isolation in diagnosis to decision under partial ob-
servability. Intuitively, given a set of hypotheses variables
H = {hy...hy}, X discriminatesd w.r.t. ¥ if knowing
the truth values of variables of helps finding oubne of
the h; being true This statement may look strange — one
may have preferred to read “finding owhich one of thé;

is true’. However, while for many problems hypotheses are
mutually exclusive w.r.t¥ (Yh; # hj, ¥ = ~(h; Ahj;)) and
covering all possible caseE (= hy V ... V hy}, this is not
always the case (see below).

Definition 3 A discrimination problem consists in a con-
sistent knowledge bade X C PS and a set of hypotheses
variablesH = {hy,...h,}. X discriminates H w.r.t. ¥ iff
Ywx € Qx Jh € H s.t. wx A X = h. X discriminates

prime implicant lists and explores a search tree the leaves minimally H w.rt.  iff X discriminatesd w.r.t. ¥ and no

of which correspond to (partial or complete) instantiations
over X, labelled by the corresponding valuegotvhenever
possible. Not only this function checks whethiédefinesy

but it also generates a “definition tree” fgpifrom X .

Begin
If ¥ is inconsistent
then return“failure”;
X+« Vr
If not(Defines (X, y))
then return“failure”
else
Z +— X;
Repeat
pick az in Z;
Z «— Z\{z};
if Defines (X \ {z},y)
thenX « X \ {z};
until Z = 0;
ReturnX;
End

Clearly enough, the worst case complexity of this algo-
rithm is high. The contrary would be surprising, since the
corresponding decision problem is hard:

Proposition 11 (Lang & Marquis 1998)
The results are synthesized in the following table

[ definability
standard
+ Y consistent

[| standard

coNP-complete
BH»-complete

[ + minimality ]
BH»-complete
BH»-complete

Fortunately, some tractable restrictions exist. Especially,
as a consequence of Propositions 33 and 34 from (Lang &
Marquis 1998), our algorithm for computing a basis for
runs in time polynomial in the size &f* plus the size ok
whenever is a set of binary clauses, or a renamable Horn
formula or a DNF formula.

°BH; (also known aP) is the class of all languagds such
thatL, = L; N Ly, whereL; isin NP andL» in coNP.

proper subset ok does it.

Clearly, each variable of X corresponds to an available
test, and performing this test consists in measuring the truth
value ofz.

There is a straightforward link between hypothesis dis-
criminability and definability, in presence of exclusive and
covering hypotheses. Indeed, in this restricted case, finding
out a true variabléy; is exactly as hard as finding out the
truth value of all theh,'s in H, since for anyk # i we have
¥ A h; = —hg. Thus hypothesis discriminability is more
general than definability. However, there is no complexity
gap between both problems:

Proposition 12
HYPOTHESIS DISCRIMINABILITY is cONP-complete.

Thus, when dealing with mutually exclusive and covering
hypotheses, defining families can be used to design minimal
test inputs (Struss 1994) (Mcllraith 1994) in order to isolate
faulty components in model-based diagnosis (in this case
hypotheses are candidate diagnoses, and testable variables
correspond most often to available measurements). Note
that Mcllraith’s notions of relevant or necessary tests (Mcll-
raith 1994) have some counterparts in our framework (for
instance, a necessary test corresponds to a variable with-
out which the hypotheses space cannot be discriminated).
Lastly, the algorithm for computing bases described above
can be used to design conditional test policies (where tests
are performed sequentially and conditioned by the outcomes
of previous tests — see (Lang 1997)).

Another application of hypothesis discriminationds-
cision making (and planning) under partial observability
The logical formulation of a (one-stage) decision problem
consists in a description of the initial state by a proposi-
tional formula, a fixed sefd of available actions together
with the descriptions of their (context-dependent) effects —
for instance by a list o TRIPSlike expressions) and a set of
goals (described for instance by a set of literals). These data
enable computing, for each actianthe context,, in which
performinga certainly leads to a goal state. In order to find



out a satisfying action, we need to discriminate between the
he's, by observing enough of the initial state, knowing that

some variables are measurable and some are not. This is a

discrimination problem, and without the assumption that hy-
potheses are exclusive nor covering all possible situations;
this is important because it is generally useless to find out
the truth value of all they,'s once any of them has been
shown up true — which makes it different (and easier) than
computing a defining family fofh,,a € A}. Now, having

in mind that both conditional controllability and hypothesis
discrimination could be applied to qualitative decision under
partial observability, one may wonder why the complexities
do not coincide. Why the latter is much easier then the for-
mer relies on the fact that the “context” of each action is pre-
computed and part of the input, but also on the structure of
the decision space: the set of possible decisiofs igthus
exponentially large) for the former while it is fixed (and thus
has a constant size) for the latter.

Conclusion

In this paper, a variety of results for conditional controlla-
bility, definability, and closely related problems such as hy-
pothesis discrimination, have been pointed out.

Regarding computational complexity, definability appears
to be much easier than controllability. The high complexity
of controllability is not surprising since decision under in-
complete knowledge with succinct representations (such as
logic) is hard. For instance, Fargier et al. (Fargier, Lang, &
Schiex 1996) give two notions of consistency of a “mixed
CSP” that are close to our notions oéteris paribusand
unconditional controllability, and show them (respectively)
Hg-complete and img. Our results are also related (to some
extent) to recent results about the complexity of probabilis-
tic planning with succinct representations (Littman 1997);
in particular, the latter problem BSPACE-complete if the
number of stages is polynomially bounded (&XPTIME-
complete otherwise); since our notions of controllability cor-
respond more or less to “one-stage” planning under (qualita-
tive) uncertainty, we can expect that the complexity of con-
trollability would climb up in the polynomial hierarchy (up
to PSPACE) if polynomially many stages were allowed.

It is clear that controllability and definability are two
strong forms of dependence. We believe that relating them to
various notions of relevance can be useful. The companion
paper (Lang & Marquis 1998) is a first step in this direction.
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