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Abstract. Belief update is usually defined by means of operators act-
ing on belief sets. We propose here belief update operators acting on
epistemic states which convey much more information than belief sets
since they express the relative plausibilities of the pieces of information
believed by the agent. In the following, epistemic states are encoded as
rankings on worlds. We extend a class of update operators (dependency-
based updates) to epistemic states, by defining an operation playing the
same role as knowledge transmutations [21] do for belief revision.

1 Introduction

While belief revision is meant to integrate new knowledge about a static world,
belief update is usually thought of as taking account of a piece of information
representing the effect of an evolution of the world (which may be caused by an
event or an action) [13]. It has been shown in many places (e.g., [2] [5]) that
iterated applications of belief revision operations need a representation of initial
beliefs more informative than flat belief sets, namely, epistemic states. A (flat)
belief set is a closed logical theory, which, when the language is propositional
and generated by a finite number of propositional symbols (which is assumed
here), is equivalently expressed by a propositional formula. An epistemic state
is a full encoding of what the agent believes and how she is likely to revise her
beliefs accordingly, which calls for a gradation of beliefs. This gradation is usually
expressed by a preorder on formulas, i.e.; a reflexive and transitive relation, or
more specifically by a ranking function on formulas.

Oddly enough, while the distinctions between revision and update have been
extensively studied, as well as postulates and strategies for iterated belief re-
vision, the KR community has devoted much less attention on iterated belief
update (exceptions being [9], [17] and [19]) and even less on update on epistemic
states. This raises the following questions, in order.

1. Is iterated belief update as worth investigating as iterated belief revision?

2. Can usual update operators, mapping a pair (belief set, input formula) to a
belief set, be applied iteratively without trivialization?

3. If so, does iteration sometimes need belief update operators acting on epistemic
states rather than on belicf sets?
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The answer to Question 1. is obvious when one thinks of a belief update
operator as a tool for computing the effects of an action given the initial beliefs
of the agent. Actions are meant to be performed in sequence, especially when it
comes to planning, and in this context, iterate dupdates naturally arise.

Question 2. is more complex. We propose the following answer. The process
of belief revision acting on belief setsis not Markovian, because revising a belief
set by an input formula will not lead to the same result whether it comes from
a certain sequence of revision or from another one. This can be overcome either
by storing the whole history of the revision process or by representing knowledge
by epistemic states, which actually amounts to the same kind of information (see
[14] for a general discussion), namely, not only the pure beliefs are stored but also
the way they should be revised; now, belief revision acting on epistemic states or
on sequences of belief sets can be seen as Markovian. That belief revision on belief
sets should not be a Markovian process is not surprising, since belief revision is
concerned with a static world and “old” beliefs still play an important role since
they bear on the very same world as new ones. The latter intuition does not
carry on to belief update, or at least not with the same strength. Indeed, since
iterated belief updates amount to performing successive actions, the obtained
belief states represent the beliefs after each action is performed, and considering
this process as Markovian is generally harmless.

Now, the paper could well stop at this point, since updating epistemic states
could be seen as a formal exercise with no other interest than making students
work with worlds, formulas, rankings and so on. As the reader expects, this is
not the case, and here is our answer to Question 3: there are some contexts where
belief update on flat belief sets is insufficient. We give here two such contexts:

Context 1: Successive applications of belief revisions and updates: Planning
with nondeterministic actions in partially observable environments calls for plans
that interleave “traditional” (or ontic) actions acting on the world only and
knowledge-gathering (or epistemic) actions that do not change the state of the
world, but the beliefs of the agent, only — their role is to render the agent in-
formed enough so as to help her choose what to do next. Therefore, it may well
be the case that a belief update will be followed by a revision, or even a sequence
of revisions, which obviously calls for the need of working on rich structures such
as epistemic states rather than on flat belief sets.

Example 1 (Saturday night shooting).

Buill is a good shooter but he is sometimes drunk. When he is not drunk, shooting
at a turkey results in the turkey being dead. When he is drunk, however, shool-
mng at a turkey results in the turkey hiding. Today, Bill does not look drunk  so
that in the initial belief it is more plausible, yel not totally certain, that he’s not
drunk; the turkey is initially alive and not hidden (and these latter beliefs are
certain). Bill shoots, which may be expressed by updating the initial belief by the
formula (drunkAhidden)V (—~drunkA—alive), with the further constraint that
drunk (as well as ~drunk) cannot be changed by the action of shooting. After a
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few seconds, one hears the turkey goobling, which leads to a revision by alive.
Is the turkey hidden in the final state?

With belief change operators on flat belief sets, the initial beliefis alive A—hidden
A—drunk, which after update according e.g. to Forbus’ operator leads to the be-
lief set —drunk A—hidden A—alive; after revision by alive, the new belief set is
—drunk A—hidden Aalive while the intended result is drunk Ahidden Aalive.

Context 2: Fvaluation of the satisfaction of a goal after a sequence of updates.
After a sequence of updates, we may want to evaluate to what point a given goal
is satisfied (this is typically looked for in decision-theoretic planning). What we
want at the end is an epistemic state where the worlds violating the goals are
the least entrenched ones, which needs of course to work on epistemic states.
Consider the same example as above, with the goal of having the turkey dead at
the end, and suppose that we have also the action bomb always resulting in the
turkey being dead — thus performing bomb amounts to updating by —alive. We
should be able to conclude that the plan shoot normally succeeds but sometimes
fails, while the plan bomb always succeed.

We choose to model epistemic states by ranking functions on the set of propo-
sitional worlds, or Ordinal Conditional Functions (OCF)  sometimes called
kappa functions. This model is among the simplest ones, and it is frequently
chosen for modelling epistemic states. For computational efficiency reasons,
OCFs will not be represented explicitly but by a more compact way, namely, by
means of stratified belief bases that induce a full OCF (see for instance [22]).

In Section 2, we give the necessary background about OCFs and stratified
belief bases; next, we give the necessary background about dependency-based
update. In Section 3, we show how epistemic states are updated, not only
by single propositional formulas but more generally by pairs consisting of a
propositional formula and a rank, and we thus propose a counterpart to belief
update of what is known under the name of transmutation for belief revision.
We proceed first by extending the notion of variable forgetting to epistemic
states, and then we are in a position to define transmutations for belief update.
We briefly show that our update operators on epistemic states are relevant for
reasoning about action, and we conclude by discussing related work.

2 Background and notations

Let VAR be a finite set of propositional variables and Ly 4gr the propositional
language built upon these variables and the usual connectives. For every X C
VAR, Lx denotes the sublanguage of Ly 4r generated from the variables of X
only. For every formula ¢ of Ly ar, Var(yp) is the set of variables occurring in
©. g1 (resp. @zq) denotes the formula from Ly 4r obtained by substituting
in a uniform way the variable # € VAR by the boolean constant T (resp. L) in
. Full instantiations of variables of VAR are called worlds, and are denoted by
w, W’ ete. Full instantiations of variables of X C VAR are called X-worlds, and
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are denoted by wx, w’ etc. 2% denotes the set of all possible truth assignments
of variables of X. Mod(y) is the set of models of ¢, i.e., the worlds satisfying ¢.

Let X and Y be two disjoint subsets of VAR, and let wx € 2%, wy € 2¥. We
define the concatenation of wx and wy as the world wx . wy € 2X%Y assigning
to each variable of X (resp. Y) the same value as wx (resp. wy). If w is a world
from 2V4F and © € VAR then we define switch(w,z) as the world obtained
from w by switching the truth value of the variable z. If X C VAR, we say that
w and w’ agree on X, denoted by w ~x «’, if and only if w and &’ assign the
same truth value to every variable of X.

2.1 Ordinal conditional functions and stratified belief bases

Definition 1

— An ordinal conditional function (OCF) r is a mapping from 2VA% to IN U oc.
r is said to be normalized if and only if 3w € 2Y*F such that rw)=0;
A normalized OCF r induces an entrenchment ranking E, on Ly ar defined
by Er(p) = ming=, r(w);

— Ifr and r' are two normalized QCFs, r is said to be at least as specific as r/,
noted r > ', if and only if for every world w € 2VAE we have r(p) > r'(y).

Unless the contrary is explicitly stated, all OCFs considered in this paper will
be normalized.

The higher r(w), the less plausible w represents the actual state of the world.
Tn particular, if 7(w) = oc then w is totally impossible. The usual interpretation
of OCFs is in terms of order of magnitude of infinitesimal probabilities [20]:
r(w) = i < 0o means that the order of magnitude of the probability of w being
the actual world is in O(e') where ¢ is an infinitesimal, and r(w) = oc if w is
an impossible world. This interpretation implies that r should be necessarily
normalized.

From a practical point of view, it is not possible to ask the agent to express
her beliefs under the form of a full OCF explicitly, since it is exponentially large
in the number of propositional variables. Instead, it is more efficient and natural
to represent them implicitly by means of stratified belief bases.

Definition 2 (stratified belief bases)

— A stratified belief base (SBB) B is a finite sequence (B, ..., By, Beo) of propo-
sttional formulae B;. Eachi in {1,... n oo} is called arank. B, represents
fully certain beliefs, B,, the most entrenched among the uncertain beliefs and
By the least entrenched ones;

— The cut of level i of a SBB B is defined by Cut(B,i) = /\jZi Bj: B is said
to be consistent if and only if Cut(B, 1) is consistent;

— The OCF rp induced by the SBB B is defined by Yw € 2VAE rp(w) =
max{i | w = = B;} if such an index exists, and 0 otherwise; rg is normalized
if and only if B 1s consistent.
if B is a SBB, ¢ a formula and i a rank in {1,...,n,00} then we let

Add(B, ¢,1) = (B1,.., Bi_1,Bi A ¢, Biy1, ..., By, Boo).
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2.2 Formula-variable independence and variable forgetting

Definition 3 (FV-independence) [16] Let ¢ be a formula from Ly ap and
X C VAR. ¢ is said to be independent from X if and only if there exists a
formula ¢ from Ly ag logically equivalent to ¢ which does not mention any
vartable from X.

It is shown in [16] that ¢ is independent from X if and only if ¢ is independent
from {z} for each & € X; we denote by DepVar(yp) the set of variables ¢ is
dependent on. It is also shown in [16] that ¢ is independent from z if and only
if ppeo and @y are logically equivalent, from which it can be derived that
checking whether # € DepVar(p) is coNP-complete.

The notion of variable elimination (also referred to as forgetting, projection
or marginalization) is central in the following:

Definition 4 (variable forgetting) [18] Let ¢ be a formula from Ly ap and
X CVAR. Forget(p, X) is the formula inductively defined as follows:

(i) Forget(p,0) = ¢;

(i) Forget(p,{x}) = ¢z V @ueo;

(iii) Forget(e,{z} U X) = Forget(Forget(p, X),{x}).

The following characterization of variable forgetting [15] helps to understand
how it works in practice: if ¢ is under DNF ie., ¢ = 1 V...V, where each
vi is a conjunction of literals, then Forget(e, X) can be obtained by deleting
from the 4;’s all occurrences of literals 2, —z for all # € X. For instance, let
p=(-aVbA(aVe)A(bVeVd) and X = {a,d}. Since ¢ is logically equivalent
to (maAc)V(aAb)V (bAc), we have Forget(g, X) = (bV ). Forget(p, X) is
the strongest consequence of ¢ being independent from X [16].

2.3 Belief update

A belief update operator o maps the propositional belief base (a formula) K
representing the initial beliefs of a given agent and an input formula a reflecting
some explicit evolution of the world [13], to a new set of beliefs K ¢ o held by
the agent after this evolution has taken place.

Katsuno and Mendelzon [13] proposed a general semantics for update. The
most prominent feature of KM-updates (distinguishing updates from revision)
is that update must be performed modelwise, i.e., Mod(K ¢ a) = le:Kw o .
Given that updates are performed modelwise, what remains to be defined is the
way models are updated, i.e., how w ¢ a is defined.

Update operators proposed in the literature can be (roughly) classified in
two main families. Minimisation-based updates opr;, (such as Winslett’s PMA
[23]), stemming from the direct instantiation of the Katsuno-Mendelzon seman-
tics, compute woprin @ by selecting the models of a “closest” to w (this notion of
closeness being modelled by a collection of preorders >, on QVAH)A Dependency-
based updates op., ([10], [11], [6], [24], [12]) compute woe by first forgetting (from
w) the truth value of all variables that are “relevant” to « (leaving unchanged the
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truth value of variables not relevant to the update), and then expanding the re-
sult with «; the notion of “being relevant to” is modelled by a mapping Dep from
Ly ar to 2VA% Many choices for Dep are possible (see [11] for details). The most
frequent choice for Dep is semantical dependence: Dep(a) = DepVar(e), and
by default we let Dep = DepV ar. Whatever the choice of Dep, the dependence-
based update w opep a of a world w by a formula o w.r.t. Dep is the set of all
worlds w’ such that w’ |= «, and for every propositional variable 2 from VAR
such that # € Dep(a), w and w’ assign the same truth value to .

Interestingly, op¢p operators can be characterized through the notion of vari-
able forgetting defined above. Indeed, the following holds [6]:

K opep o = (Forget(K, Dep(a)) A

This result gives an intuitive understanding of how dependency-based update
works: first, one forgets the variables concerned by the update, and then one
expands by the input.

3 Updating OCFs

We are now going to apply the principle “forget, then expand”, at work in
dependency-based update, to epistemic states consisting of OCFs. Therefore
what we have to do first is to generalize variable forgetting to OCFs.

3.1 Independence of an OCF from a set of variables

Recall that variable forgetting can be characterized by the following result:
Forget(p, X) is the strongest consequence of ¢ that is independent from X.
We may thus define variable forgetting from an OCF by a similar construction,
which requires first to define independence of an OCF from a set of variables.

Definition 5 Let X C VAR.

— An OCF r 1sindependent from X if and only if there is a SBB B inducing
r not mentioning any variable from X.
A SBB B is independent from X if and only if its generated OCF rg s
independent from X .

Example 2: B = (By, By, By) with Boo = a — b, Ba = (a — —b) A (a —
bVe)A(b—d), Bi =b. The OCF induced by B is the following:

r(w) = oo for each w |E a A=b |r(w) =2 for each w = b A —d
r(w) =1 for each w |E —a A =bjr(w) =0 for each w |E=a ANbAd

The following simple result states that it is sufficient to focus on independence
from a single variable.

Proposition 1 r (resp. B) is independent from X if and only if v (resp. B) is
independent from {z} for all z € X.
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Therefore, all the information about sets of variables an OCF r is depen-
dent on which can be summarized by the set of variables DepVar(r) = {z €
VAR | v depends on {x}} (and we define DepVar(B) similarly).

It is not difficult to verify that the SBB B’ = (B}, B}, B..) with B} = By,
B} = (a = =b) A (b — d) and B., = B, induces the same OCF, i.e., rg = rp.
Therefore, B and B’ are equivalent, and since ¢ is not mentioned in B’ B is
independent from {¢} (and so is the OCF rg). On the other hand, it is dependent
on {a}, {b} and {d}, i.e., DepVar(B) = {a,b,d}.

The following result gives semantical characterizations of independence of an
OCF from a variable.

Proposition 2 Letr be an OCF and X C VAR. The following four statements
are equivalent.

1. » 1s independent from X.

2. Forany X -worlds wx ,w'y € 2X . we have rwyarx -wx) =r(wyarx - wy).
3. For any variable x € X and any w € 2VAE we have r(w) = r(switch(w, z)).
4. For any nontautological ¢ such that Var(g) C X, we have F,(¢) = 0.

In the case where the OCF is defined implicitly by a SBB, the next result
gives a practical way of computing whether it is independent from {2} without
having to write r explicitly.

Proposition 3
The SBB B is independent from X if and only if for all i € {1,...,n,00},
Cut(B. ) is independent from X.

Therefore, the problem of checking independence of a SBB from a variable
can be reduced to a linear number of “classical” independence problems. This
result enables us to draw generalizations of several results about formula-variable
independence stated in [16]. In particular, determining whether B is independent
from X is coNP-complete.

3.2 Forgetting in OCF's

Definition 6 Let X C VAR and r be an OCF . Forget(r, X) is the minimal
OCF v’ (w.r.t. <) such that v > r and v’ is independent from X.

The following result gives a semantical characterization of forgetting.
Proposition 4 Let r be an OCF and X C VAR. Then
Forget(r, X)(w) = min{r(w') | o’ € 2V*F and v’ my amx w}

Note that when X is a singleton {z}, the latter identity becomes
Forget(r,{x})(w) = min(r(w), r(switch(w,z))). The previous definition and
characterization are not operational when the OCF is represented implicitly
under the form of a SBB. The next result tells us how to implement variable
forgetting from a SBB in practice, namely by forgetting from the n classical
propositional formulas Cut(B,1).
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Proposition 5 Let B be a SBB and X C VAR. Let
BForget(B, X) = (Forget(Cut(B,i), X))i=1,2,...n,cc- Then we have

Forget(rp, X) = TBForget(B,X)

Example 3: Let B = (Bq, By, Bo) with Boo = T, Bo =aAc¢, By =a = b
We have BForget(B,{a}) = b/\c,c,T); BForget(B,{b}) = (a Aec,aNe, T);
BForget(B,{a,c}) = (e, T, T).

Note that it is important to take the conjunction of the strata before forgetting:
since Forget(By,{a}) = ¢ and Forget(By,{a}) = T, BForget(B,{a}) is not
equivalent to (Forget(By,{a}), Forget(Ba, {a}), Forget(Bo,{a})).

3.3 Updating an epistemic state by a formula and a rank

Let’s remind that a transmutation operator maps an OCF 7, a consistent formula
@ and a rank i to a new OCF r*(p, ) such that .., )(¢) =i (see [21]). On
this ground, we define the update of » by a with rank 7 as the transmutation
of Forget(r, Dep(a)) by the new belief o together with its OCF degree 4. This
supposes that a transmutation operator has been previously fixed.

Definition 7 (U-transmutation)

Let x be a transmutation operator, Dep a dependency function, r an OCF, o a
consistent, nontautological formula and i a rank. The U-transmutation of r by
(o, i) with respect to Dep and * is defined by

r®(a,i)(w) = Forget(r, Dep(a))*(a, 1)

After the forgetting process has pushed Eporget(r, Dep(a)) (@) down to 0 (see
last point of Proposition 2), the transmutation process pushes it up to the spec-
ified level i, i.e., enforces Fo(4)(a) = 4. Importantly, note that the higher ¢,
the less entrenched a and the more entrenched —a. Hence, when learning a new
fact ¢ with some entrenchment degree 2 reflecting the evolution of the world,
the initial knowledge base has to be U-transmuted by (-, 4). The higher i, the
more entrenched the new information ¢ and the more unlikely the more plau-
sible —¢-worlds. The limit case of updating by a certain input ¢ consists in
U-transmuting by (—¢,00) which enforces r°(—p, 00)(w) = oo for all models of
=@, 16, FBro(ag o) (m9) =

We consider now two of the most common transmutation schemes, namely
conditionalization [20] and adjustment [21]. The following expressions can be
derived from the above definition, the general formulations of conditionalization
and adjustment (omitted for the sake of brevity), and the fact that for any consis-
tent, nontautological formula a, Epgrgei(r, Dep(a)) (@) = EForget(r,Dep(a)) () =
0 (last point of Proposition 2):
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* = conditionalization [20]

o/ _ [ Forget(r, Dep(a))(w) ifw = -a
rleni)w) = {Forget(r, Dep(a))(w) +iifw = a

* = adjustment [21]

o/ _ [ Forget(r, Dep(a))(w) ifw = -
ro(eni)(w) = {max(i, Forget(r, Dep(a))(w)) ifw E «

Two limit cases are worth considering:
1. When 7 = oc — meaning, as said above, that the information —a is certain in
the new state of affairs — then 7°(«, )(w) is independent from the choice for *:

Forget(r, Dep(a))(w) if w E —a

r»o —_ . H

o) = { e

2. When ¢ = 0, the transmutation step (whatever the choice of %) has no effect
on Forgel(r, Dep(a)) since Epopget(r, Dep(a)) = 0. This merely means that every-
thing about the variables concerned with a has been forgotten. Note that, as a
consequence, r°(a, 0) and r°(—a, 0) coincide and are equal to Forget(r, Dep(«)).

Now, when the initial OCF r is given implicitly under the form of a SBB, its
U-transmutation by («, i) can be computed without generating r explicitly, in
both particular cases where * is a conditionalization and an adjustment.

Proposition 6 Let B be a consistent SBB. Let r be an OCF, a a consistent,
nontautological formula and i a rank.

1. if x = conditionalization then r§ (o, 1) = T 44d(BForget(B, Dep(e)),ma i)

2. 4f ¥ = adjustment and i # oo then T‘% (OZ, l) = TShiftAdd(BForget(B,Dep(a)),ma,i)
where Shift Add(K, o, 1) = (K1 V—o, .., Ki1 Voo, KiAa, (Kip1 Voa) A (K V
), ., (Kp Vo)A (KpoiVa), Kn_iz1 Va, ... K, Va, Ky).

Example 4 (Door and window)
Suppose that initially, the agent knows for sure that the door is open or the win-
dow 1s open, and that normally the door is open. Thus, the initial epistemic state
rg is induced by the SBB

B = (By = door-open, B,, = door-openVwindow-open)
Closing the door amounts to update the epistemic state by the certain piece of
information —door-open. We get: (i) DepV ar(—~door-open) ={door-open};
(it) BForget(B, {door-open}) = (T,T); (iii) ry(door-open,oc) is the OCF
induced by the SBB (T ,—door-open). Now, closing the window amounts to
update the epistemic state by the certain piece of information —window-open,
i.e., to U-transmute it by (window-open, o0): (i) DepVar(—window-open) =
{window-open}, (ii) BForget(B,{window-open}) = (door-open, T);
(i1) r (window-open, co) is associated to the OCF induced by the SBB
(—window-open,door-open). Note that whereas we do not know anything more
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about the window after we closed the door, we still know that the door is normally
open after we closed the window — which is intended.

Let us now consider the action “do something with the window” which results
nondeterministically in the window being closed or open, none of these results be-
ing exceptional. We U-transmute the initial belief base by (window-open,0) (note
that, obviously, it would work as well with (-window-open,0)): 7% (window—open, 0)
is the OCF induced by the SBB (door—-open, T).

3.4 Application to reasoning about action

When reasoning about action, the formula representing the knowledge about
the initial state of the world is updated by the explicit changes caused by the
actions. Now, it is often the case that the possible results of a nondeterministic
action do not all have the same plausibility. Rather, typical nondeterministic
actions have, for a given initial state, one or several normal effects, plus one
or several exceptional effects, with possibly different levels of exceptionality. In
this case, one has to update the initial belief base by a SBB rather than with a
single formula. For the purpose of applying U-transmutations to reasoning about
action, we extend U-transmutations to the case where some of the variables are
not allowed to be forgotten, because they are static. We first need to partition the
set of literals between static and dynamic variables,i.e., VAR = SVARUDV AR.
Static variables are persistent, i.e., their truth value does not evolve. Such a
distinction is meant to forget only dynamic variables relevant to the update
(static variables should not be forgotten). These static and dynamic variables
may depend on the action performed and be specified together with the action
description (see [12]). Note that the standard case is recovered when SV AR = .

Definition 8 The U-transmutation of B by (o,i), w.r.t. the static variables
SV AR, a dependency relation Dep and a gwen transmutation x, is defined by
r°(av, i) (w) = Forget(r, Dep(a) \ SVAR)*(a,1).

Example 5 (Saturday night shooting).
Let us consider the problem mentioned in the introduction. Let the initial epis-
temic state rg be represented by the SBB

B = (By = aliveA-hidden, B, = —drunk)
Furthermore, drunk is a static variable: SV AR = {drunk}, which means that
none of the actions considered in the action model can influence the truth value
of drunk. Updating by the result of the action shoot, namely

¢ = (drunk—hidden)A(—drunk—-alive)
gives the following result: 73y 4z (=g, 00) is the OCF induced by the SBB

(—drunk), (drunk — hidden)A(—drunk——alive))
which is equivalent to (i.e., induced the same OCF) this other SBB:
(—drunk A-alive, (drunk—hidden)A(—drunk——alive).

Thus, in the final belief state, it is believed (yet with no certainty) that the turkey
15 dead, which is intended.
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4 Related work

Changing epistemic states has been considered many times for belief revision,
especially when it comes to iteration. In particular, the recent work of Benferhat,
Konieczny, Papini and Pino-Perez [1] investigates the revision of an epistemic
state by an epistemic state.

As to belief update, the closest approach to ours is Boutilier’s generalized
update [3]. Generalized update is more general than both belief revision and
belief update. Tt models epistemic states by OCFs. A generalized update oper-
ation considers (i) the (explicit) description of the initial epistemic state; (i)
the dynamics of a given set of events (each of which having its own plausibility
rank) expressed by a collection of transition functions mapping an initial and a
final world to a rank; (iii) a formula representing an observation made after the
evolution of the dynamic system; now, the output consists of the identification
of the events that most likely occurred, a revised initial belief state and an up-
dated new belief state. In the absence of observations (i.e., when updating by
T), generalized update merely computes the most likely evolution of the system
from its dynamic and the initial belief state, which is not far from the goals of
our approach. The crucial difference is in the way this most likely evolution is
computed: in [3] epistemic states are represented explicitly (by fully specified or-
dinal conditional functions), while in our approach the dynamics of the system
is represented in a very compact way: requiring that fluents dependent (resp.
independent) of the input formula be forgotten (resp. remain unchanged) is a
compact way to encode the dynamics of the system it is a kind of a solution
to the frame problem. In further work we plan to integrate observations (as in
generalized update) in our model, and thus develop an efficient way, based on
dependence relations, of performing generalized update.

Another related line of work is [7] who show that Tewis’ imaging operations
can be viewed as belief updates on belief states consisting of probability dis-
tributions. They propose a counterpart of imaging to possibility theory. Both
classes of operations map a belief state and a flat formula to a belief state, and
they are based on minimization.
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