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Abstract 

In this paper we propose a generalisation to multi-stage decision making of Dubois 
and Prade's qualitative decision theory. Our framework is a qualitative, possibilistic 
counterpart to Markov decision processes, and the computation of an optimal policy is 
done in a way similar to dynamic programming. We first study in detail the case where 
uncertainty about the results of actions is represented by possibility distributions and 
goals are described in a non-fuzzy way by a subset of the set of final states. Then we 
extend our framework to the case where goalness is defined fuzzily, by a qualitative 
utility function on the set of final states. © 1998 Elsevier Science Inc. All rights re- 
served. 

1. Introduction 

For  a few years, there has been a growing interest in the Artificial Intelli- 
gence communi ty  towards the foundations and computat ional  methods of  
decision making under uncertainty. This is especially relevant for applications 
to planning, where a suitable sequence of  decisions is to be found, starting from 
a description of  the initial world, of  the available decisions and their effects, 
and of  the goals to reach. Several authors have thus proposed to integrate some 
parts of  decision theory into the planning paradigm; but up to now, they have 
focussed on "classical" models for decision making, based on Markov decision 
processes (where actions are stochastic and the satisfaction of  agents expressed 
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by a numerical, additive utility function), and its computational counterpart, 
dynamic programming. However, transition probabilities for representing the 
effects of actions are not always available, especially in AI applications where 
uncertainty is often ordinal, qualitative. The same remark applies to utilities: it 
is often more adequate to represent preference over states simply with an or- 
dering relation rather than with additive utilities. Recently, several authors 
have advocated this qualitative view of decision making and have proposed 
qualitative versions of decision theory, together with suitable logical languages 
for expressing preferences, namely, Boutilier [5], Tan and Pearl [20], Dubois 
and Prade [13,14]. The latter propose a qualitative utility theory based on 
possibility theory, where preferences and uncertainty are both qualitative. Our 
purpose is to extend Dubois and Prade's possibilistic framework for qualitative 
decision theory so as to enable multiple-stage decision making [10,17]. 

In order to have a synthetic view on problems and approaches pertaining to 
decision making under uncertainty, we may consider the following taxonomy, 
which gives various classes of problems (from elementary to more complex 
ones) when the different criteria vary. To the very general class of problems we 
consider, we give the generic name of "generalized Markov decision processes" 
(GMDP for short), since we always make the Markovian assumption that the 
past of the system cannot influence the choice of the policy at a given time 
point. 
• Temporal structure of the decision stages. There may be only one decision 

stage, or there may be an ordered set of time points (stages) where decisions 
are to be made; this set may be either finite (finite horizon decision making) or 
discrete infinite (infinite horizon decision making). 

• Available knowledge of  the initial state. This knowledge may be precise (thus 
described by only one possible initial state), probabilistic (probability distri- 
bution on the set of possible states), or possibilistic (possibility distribution 
on the set of possible states). At this point we recall that a possibility distri- 
bution on a set of states S is a mapping n : S ~ [0, 1], where n(s) measures to 
what extent s is likely to be the actual state, ranging from 1 (completely pos- 
sible) to 0 (impossible). A possibility distribution is generally assumed to be 
normalized (and we will make this assumption throughout the paper), i.e. 
3s such that rt(s) = 1. When zt takes its value in {0, 1}, the possibility distri- 
bution is said to be crisp and is equivalent to a classical set. Thus, a descrip- 
tion of the initial state by a crisp possibility distribution comes down to 
specifying a set of possible initial states. 

• Knowledge on the effects of  actions. Actions may be deterministic, meaning 
that for a given state s and an action a allowable in s, there is only one pos- 
sible subsequent state Result(s, a) C X, where X is a set of consequences; they 
are nondeterministic iff for each state and each action there is a set of possible 
subsequent states; they are stochastic (resp. possibilistic) when their effects 
are described by probability (resp. possibility) distributions. These probabil- 
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ity (resp. possibility) distributions are denoted by pr(s'ls, a) (resp. z~(s'ls, a)) 
where s is a state and a an action, these quantities being respectively the 
probability (resp. possibility) of reaching the state s' from state s when action 
a is performed. For each fixed state s and each fixed action a, pr(. Is, a) (resp. 
rc(.Is, a)) is a probability (resp. possibility) distribution, namely, 
~ ,pr ( s ' i s ,  a) = 1 (resp. maxs, pr(s'[s,a)= 1). From the possibilistic case 
we recover the nondeterministic case by allowing only crisp possibility distri- 
butions: n(s'[s, a) = 1 if and only if the transition from s to s' when a is per- 
formed is a possible transition, zc(s'Js, a) = 0 otherwise. 

• Descriptionofthegoals. Inthecaseoff ini te-horizondecisionmaking,  thefinal 
state reached is often of primary importance for the global satisfaction of  the 
agent (it may even be the only criterion). The agent may have to achieve a 
crisp, non-flexible goal, i.e., to reach one of the goal states; the notion of goal 
is sometimes defined in a more flexible way, by a utility function or more gen- 
erally a function on an arbitrary ordered satisfaction scale. Sometimes, several 
heterogeneous quantities are needed to evaluate the quality of a consequence 
(such as cost and time); this gives rise to multicriteria decision making. 

• Role o f  intermediate states and actions in the global satisfaction o f  the agent. 
Intermediate states may also receive a utility degree, or more generally a sat- 
isfaction degree, which is taken into account when computing the global sat- 
isfaction attached to a path (a succession of states). The same remark applies 
to actions which may have a cost which also has to be taken into account. 
The satisfaction degrees and costs of the different states and actions may 
be aggregated additively as in classical utility theory, or qualitatively by 
the minimum, or by other operators. The utilities of the different states 
reached may be weighted by a discounting factor, especially in the case of 
infinite horizon decision making [19]. 

• Choice criterion for the policy. An optimal policy consists in attaching to 
each reachable state the best action, following a criterion which has to be de- 
fined. In classical decision theory, this criterion consists in maximizing the 
expected utility. As to qualitative approaches, a possible criterion (which 
is used by Dubois and Prade [13,14]) consists in making an assumption of 
commensurability between the uncertainty and the satisfaction scales and 
then maximizing a "pessimistic" qualitative utility (see Section 3) - but alter- 
native methods are possible, including partial ordering relations. 

• Observability. A G M D P  is fully observable if the state of the world is known 
at each step of the process, non-observable iff no further knowledge can be 
gathered about the state of the world after each action is performed, and 
partially observable if the agent may only have an incomplete knowledge 
of  the state of the world. In the latter case, some tests (or knowledge-gath- 
ering actions) may be available to the agent, who uses their results to main- 
tain his/her beliefs about the current state (represented by a set of states, or a 
probability distribution, or a possibility distribution...). 
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We name the different models we are going to discuss according to four of 
the above mentioned criteria, namely, the temporal structure of the decision 
stages (respectively 1, N and c~ for one/a finite number/an infinite discrete 
number of  decision stages), the uncertainty model for the results of actions (D 
for deterministic, ND for non-deterministic, pr for stochastic, 7r for possibilis- 
tic), the description of the goals (G for crispness, + for additive utilities, min for 
qualitative utilities combined by rain), and the choice criterion (for instance 
for maximum expected utility; others criteria are considered later on). Full 
observability is assumed everywhere (and therefore omitted). With these nota- 
tions, the "standard" approach to multi-stage decision under uncertainty, 
namely, fully observable Markov decision processes, correspond to the 4-tuple 
(N,pr, +, ~). 

When both uncertainty and goalness are represented by means of  fuzzy sets 
(over a universe of  states and consequences, respectively), the quality of  a 
decision may be evaluated, in the general case, by a fuzzy qualitative utility 
degree fi(a), where #~a)(~) (for 0 ~< 0~ ~< 1) represents the possibility that decision 
a leads to a consequence whose utility degree is ~. In the following, S is the 
universe of  all possible initial states, X the universe of all possible conse- 
quences, and a decision a is a mapping from S to X. 1 Uncertainty about  the 
initial state is represented by a normalized possibility distribution 

re: S---[0,1]  

while goalness is represented by a qualitative utility function 

u:  X ~  [0,1], 

where u(x) = 0 (resp. u(x) = 1) means that x is completely unsatisfactory (resp. 
satisfactory). 

The fuzzy utility degree evaluating the goodness of the decision a : S ~ X is 
defined exactly the same way as Zadeh's compatibility degree between a fuzzy 
statement and an uncertain state of facts [25,12]: 

m/o~(~) = sup ~(s). 
sES 

i This assumes that decisions are deterministic, the only source of  uncertainty bearing on the 
initial state (1); however, if the initial state is precisely known and actions have possibilistic effects 
(2), this can be rewritten equivalently in the previous framework (1): to a given action a and an 
initial state so whose possible effects are described by the possibility distribution 
rr(silso,a), i = 1 . . .  n, we associate an abstract uncertain initial state described by the possibility 
distribution no: n0(s/0) = rr(silso, a) and the (deterministic) effect o f  action a on state s~ is sl; this is 
then easily generalized without difficulty to the case of  several non-deterministic actions. 
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In the general case, this fuzzy utility is any fuzzy number on the utility scale 
[0, 1]. Let us look briefly at particular cases obtained by adding some restrictive 
hypotheses on the nature of the uncertainty on the initial state and/or the 
expression of the goals. 
• No uncertainty, binary goals. In this case the initial state So is known with a 

complete precision, and goalness is defined by a partition of the set of conse- 
quences into goal states (G c_ X) and non-goal states (G). When evaluating the 
quality of a decision a, there are only two possible cases: either a(so) ~ G, and 
in this case #~(~/(1) = 1 and V~ ¢ 1, #~(~/(c~) = 0 (a is a good decision) or 
a(so) q~ G, and in this case #~(~)(0) = 1 and Va ¢ 0, p~(~)(~) = 0 (a is a badde- 
cision). Now, the ranking of available decisions is obvious: good decisions are 
preferred to bad decisions, two good (resp. bad) decisions being equivalent. 

• Qualitative uncertainty, binary goals. Now we have a non-empty set of pos- 
sible initial states S* c_ S, and a set of goal states G c_ X. There are now three 
different cases for a given decision a: let a(S*) = {a(s), s C S*}, then either 
a(S*) C_ G, which means that whatever the initial state, the decision a is guar- 
anteed to lead to a goal state (a is a good decision), either a(S*) N G = O, 
which means that whatever the initial state, the decision a is guaranteed 
to lead to a non-goal state (a is a bad decision), or a(S*)N G ~ ~, 
a(S*) N G ¢ 0, which means that a is ambiguous (it is completely possible 
that it leads to a goal state and also completely possible that it leads to a 
non-goal state). This last case corresponds to the following fuzzy utility: 
#fi(a)(0)  = ~a(a)(1)  = 1,/~a(o)(~) -- 0 Vu E (0, 1). The ranking of available de- 
cisions is still obvious: a good decision is preferred to an ambiguous one, an 
ambiguous one to a bad one, two good (resp. ambiguous, bad) decisions be- 
ing equivalent. 

• Possibilistic uncertainty, binary goals. Now the knowledge about the initial 
state is described by a normalized possibility distribution n, and goalness 
by a set of goal states G _C X. The quality of a decision a will be evaluated 
by two numbers, namely the possibility and the necessity that a leads to a 
goal state: 

II(Good(a))= sup re(s), 
sESla(s)CG 

N(Good(a))= inf 1-re(s) .  
sES[a(s)e¢~ 

This corresponds to the following fuzzy utility: #~(a)(O) = 1 -N(Good(a)) ,  
/.l~(a) : I-l(Good(a)), and /za(~)(~ ) = 0 V~ E (0, 1). These degrees are stan- 
dard possibility and necessity degrees, and verify thus N(Good(a)) > 0 
1-l(Good(a)) = 1. They evaluate the extent to which the set of possible con- 
sequences of a, has a non-empty intersection with the goals, and is included 
in the set of goals, respectively. Obviously, when the possibility distribution 
rc is crisp we recover the previous case (qualitative uncertainty, binary goals) 
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where the three possible evaluations correspond respectively to H(Good(a)) 
= N(Good(a) )  = 1, n ( G o o d ( a ) )  = N(Good(a) )  = 0 ,  and O(Good(a))  = 
1, N(Good(a)) -- 0. The ranking of available decisions is still easy: a is at 
least as good as a' iff Fl(Good(a))>1 H(Good(a')) and N(Good(a))>~ 
N(Good(a')); this is a complete ranking, because N(Good(a))> 0 
H(Good(a)) = 1 holds for all decisions. 

• No uncertainty, fuzzy  goals. Here the knowledge about the initial state is rep- 
resented by a single state so and the goalness by a fuzzy subset G of  the set of 
consequences#~ : X ~ [0, 1]. The membership degree ##(x) o fx  to the fuzzy 
set of  goals G represents the qualitative utility resulting from the obtention 
of  consequence x (in particular, #6(x) = 0 (resp. = 1) means that x is com- 
pletely undesirable (resp. desirable)). Note that #~(x) does not have to be 
normalized, since it may be the case that no consequence is fully satisfactory. 
Now, the quality of  a decision a is evaluated by a single value, namely the 
goalness degree of the consequence obtained by applying a to the only pos- 
sible initial state, i.e., #e(a(s0)). This corresponds to a crisp qualitative util- 
ity, namely, #a(~)(pd(a(s0))) = 1, #ti(a)(0~) = 0 V0~ ~ #~(a(so)). The ranking 
of  available decisions is still easy: a is at least as good as a' iff 
#d(a(so) ) <<, #d(a' (so) ). 

• Qualitative uncertainty, fuzzy  goals. The knowledge about the initial state is 
represented by S* q S and the goalness by #6 : X ~ [0, 1]. The evaluation of 
the quality of  a is evaluated by a non-empty set of  possible qualitative util- 
ities, namely, {#~(a(s)) Is c S*}. 

• The general case (possibilistic uncertainty, fuzzy  goals). Now the quality of  a 
decision is evaluated by the fuzzy goalness degree 

#~(~)(~) = sup re(s). 
sES ~(~(s)) 

While the ranking of  available decisions can be done in an obvious way in 
the first four cases, this is far less obvious for the last two ones. Comparing two 
fuzzy quantities can be done in several different ways. We first eliminate partial 
orderings (such as ~/>/~ iff m-'~(~,/~) = ~) since they have an insufficiently 
discriminating power among decisions. We also eliminate "quantitative" de- 
fuzzification methods such as averaging, since they are not in the spirit of  our 
qualitative modelling of  uncertainty and flexibility of  decision processes. We 
are left with two remaining possibilities: 
* Using Dubois and Prade's comparison indices introduced in [11]. The use of  

these indices assumes that the fuzzy quantities involved are fuzzy intervals, 2 

2 A fuzzy quantity is a fuzzy subset of a real scale, here [0, 1]; a fuzzy interval is a convex fuzzy 
quantity, or equivalently, a fuzzy quantity whose all ~t-cuts are intervals; a fuzzy number is a 
unimodal fuzzy interval, i.e., with a single value having a membership degree of 1. 
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which is far from being guaranteed! (In particular, this is never the case if the 
decision space is discrete, unless all possible consequences of a given decision 
have the same satisfaction degree.) However it is possible to take the convex 
closure of the involved fuzzy quantities, which gives fuzzy intervals, and then 
to compute the comparison indices. These four indices, measuring to what 
extent ~ is greater than fl, are recalled below: 

o H~([/~,+oo)) = supu~v ° min(p~(u),#~(v)) measures to what extent the 
least possible values~6f fl are smaller or equal to the greatest possible 
values of ~. 

o H~(]]~, +oo)) = supu info~ u min(#a~u), 1 - / ~ ( v ) )  measures to what ex- 
tent the greatest possible values of fl are smaller or equal to the greatest 
possible values of ft. 

o Na([fl, +~z)) = infu supv~" max(1 - #a(u),/~/~(v)) measures to what ex- 

tent the least possible values of/} are smaller or equal to the least pos- 
sible values of ~. 

o Na(]/~,+oc)) = 1 - supu,<v min(pa(u),#~(v)) measures to what extent 
the least possible values of ~ are greater to the greatest possible values 
of ]~. 

These indices can then be used in order to rank n fuzzy intervals, by comput- 
ing for each of them a possibility and a necessity degree of dominance. De- 
tails can be found in [11]. 

• Making a qualitative commensurability assumption between the uncertainty 
scale and the satisfaction scale, leading to the computation of the possibility 
and the necessity degree of the fuzzy event "the consequence resulting from 
decision s is a goal". This principle is the core of Dubois and Prade's 
possibilistic decision theory [13,14]. Let S and A the set of possible states 
and available actions, respectively. The possible consequences of action a 
from So is described by the possibility distribution re(.la, so) on X. The qual- 
itative utility is a mapping u from X to [0, 1]. Then the qualitative value of a 
is measured by two qualitative utility functions (which plays the same role as 
expected utility in standard decision theory), defined by 

ueeS(so, a) = min max(1 - ~(sls0, a), u(s)), 
sES 

u°er (So, a) = max min(re(slso, a), u(s) ). 
sES 

These two quantities are respectively the necessity and the possibility of a 
fuzzy event, namely, it can be viewed as a degree of inclusion (resp. non- 
empty intersection) of the fuzzy set of more or less possible situations in 
(resp. with) the fuzzy set of preferred outcomes [14]. uPeS(so, a) is thus a pes- 
simistic criterion, while u°er(so, a) is an optimistic one. 
Note that in the abovementioned particular cases, ueeS(so, a) and u°er(So, a) 

generalize the quantities proposed for evaluating decisions. Namely: 
• no uncertainty, crisp goals: u°er(So, a) = uPeS(so, a) = 1 if a is good, = 0 if a 

is bad; 
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• qualitative uncertainty, crisp goals: idem, plus u°er(so, a) = 1 and urnS(so, a) 
= 0 if a is ambiguous; 

• possibilistic uncertainty, crisp goals: u°er(So, a) = 1-l(Good(a)), ueeS(so, a) : 
N(Good(a)); 

• no uncertainty, fuzzy goals: u°er(So, a) = urnS(so, a) = #~(a(s0)); 
• qualitative uncertainty, fuzzy goals: 

u°er(So, a) : max #~(a(s0)), uP~S(so, a) = min/~(a(s0)).  

This deserves further comments, u°er(so, a) is the utility of  the best possible 
outcome when performing a, and ueeS(so,a) is the utility of  the worst 
possible outcome, also known in decision theory as the WaM index (see 
[131). 

Let us give some more details about Dubois and Prade's framework for 
qualitative decision theory. First, the framework can be defined with a higher 
level of generality, by allowing for the use of  utility values not necessarily in 
[0, 1] but in any completely ordered lattice L, where u(s) -- 1L and u(s) = OL 
respectively mean complete satisfaction and dissatisfaction, equipped with an 
order reversing function n from L to L satisfying n(0L) ---- 1L and n(1L) = 0L 
(when L = [0, 1] the prototypical order reversing function is n(x) = 1 - x ) .  

The use of  the indices uPeS(so, a) and u°er(So, a) to rank decisions is similar to 
the use of  the necessity and possibility of  pattern matching in fuzzy databases 
[15]. Both couples of  indices are actually the necessity and the possibility of  a 
fuzzy event given an uncertain initial fact modelled by a possibility distribu- 
tion; in the case of  qualitative decision, this fuzzy event is "a goal state is 
reached from the uncertainly known initial state when action a is performed"; 
while in the case of  a fuzzy database, the fuzzy event is "the uncertain data 
concerning a given object satisfy the flexible request". 

Now, how can we use the optimistic and pessimistic indices to rank deci- 
sions? Following Dubois and Prade, we give priority to the pessimistic index, 
which generalizes the well-known Wald index. The best action in so is then the 
action a maximizing uPeS(so, a). It is also possible to use the optimistic index to 
refine the ordering among decisions (see Section 4). 

Using our notations, Dubois and Prade's framework corresponds to the 
4-uple (1,~,min, u PEs) where u pes is the pessimistic utility with a commen- 
surability assumption. Note that a similar pessimistic criterion has been pro- 
posed by Whalen [21], in terms of  "disutility". 

Dubois and Prade's qualitative decision theory only applies to the single- 
step decision case. In this paper we aim to generalize Dubois and Prade's 
framework to multistage decision, first (Section 2) assuming full observability, 
possibilistic uncertainty and crisp goals, and then (Section 3) assuming full 
observability, possibilistic uncertainty and qualitative utility with the above- 
mentioned commensurability assumption. An alternative multistage general- 
ization of  qualitative decision theory has been proposed by Da Costa Pereira 
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[8], in which the environment is non-observable - thus the policiea are un- 
conditional sequences of  actions, 

We will first consider the use of  the multi-stage generalisation of  the pessi- 
mistic index, and we will then discuss about the possible refinement by an 
optimistic index (which is not as obvious as it may appear at a first glance). We 
will propose sketches of  algorithms, in the spirit of  dynamic programming. We 
will relate our work with some other approaches to qualitative multi-stage 
decision making, and we will briefly give some hints on how to further gen- 
eralize our framework in several ways. 

2. Multi-stage decision making with possibilistic uncertainty and crisp goals 

2.1. States, policies and trajectories 

Following Puterman [19], T = {1 ,2 , . . .  ,N} denotes the finite set of  time 
points (or stages) at which decisions are to be made. 3 The set of possible states 
at stage t E T is denoted by St. 4 The initial state is Sl; since the last action takes 
place at time N, the last state obtained (i.e., the final state, about which goals 
are expressed) is SN+I. 

Under our assumption of  full observability, at stage t, the decision maker 
observes the system in state s E St and chooses an action a from the set of  
allowable actions at t in state s, denoted by As, t. 5 Since the effects of  the actions 
are ill-known, the agent's knowledge about the subsequent state is described by 
a transition possibility function rrt: rrt(s'ls, a) is the possibility that the state 
reached at stage t + 1 is s' E St+l knowing that the state obtained at stage t was 
s and that action a E As,t has been performed at stage t. 

A policy consists in a collection, for each t, of  a decision rule dt mapping 
every state s from St to an action dr(s) in .4s, t. The set of  allowable decision 
rules at stage t is denoted by D t  and called the decision set at t. It is the set of  
all the mappings from St to As,t. A partial policy dt~N ={dt, dr+l,..., dN} 
specifies the sequence of  decision rules to be used by the decision maker from 
the stage t E T to the end of  the planning horizon. The set of  all allowable 
partial policies from t to N will be denoted by Dt-~N. A (full) policy 

3 Infinite horizon G M D P  are not  considered in this paper. 

4 It often happens that  the set o f  possible states does not  vary over time, i.e., St = St, Vt, t ~ but we 
prefer to keep the subscript in all cases, to make it easier to distinguish between two identical states 
obtained at two different time points. 

5 It may  happen that  As, t is independent from s, f rom t or both. 
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d = {dl, dr+l , . . . ,  dN} completely specifies the sequence of  decision rules to be 
taken from the beginning. 6 

A (full) trajectory z is a sequence of  states obtained from stage 1 to stage 
N + 1. Thus, • = (s l , . . .  ,SN+l); we will sometimes make use of the notation 
s / =  r(i). The set of  all conceivable trajectories $1 × . . .  × SN+I will be denoted 
TRAJ. Given two stages tmin and tma~ such that train < tm~x, a par t ia l  t ra jec tory  
from train to tma~, denoted by Ztm,n~t~¢~ is a sequence of states 
(Sire,o, Stm,n+~,''', Stma~) obtained from stage tmin t o  stage t~¢~; the set of  all con- 
ceivable trajectories from tmi, to tm~x, i.e., St,,n x . . .  × S t ~ ,  will be denoted by 

Lastly, in Section 2, the set of  goal states is defined by a (crisp) subset G of  
SN+I. This definition does not allow for a gradation of  goals: states in G are 
good states (any two states in G being equally good) while states in SN+1\G are 
bad states (any two of these being equally bad). 

The rest of  Section 2 is organized as follows. First we focus on the simple 
case with a single decision stage (thus considering only stages N and N + 1); we 
will define, for each state s in SN, the possibility and the necessity that a given 
action a performed in s leads to a goal state, which will lead us to the definition 
of  an optimal action for each state. Then, we will switch to the general case; we 
will see that a given policy induces in a natural way a possibility distribution on 
the set of  trajectories, which will lead us to the definition of  an optimal policy. 
Then, we will see how it is possible to compute an optimal policy recursively, in 
a way much similar to dynamic programming. This backwards algorithm will 
be based on the computation, for each t from N downto 1, for each s E St and 
for each a EAs,t ,  of  the two quantities l I ( G o o d t ( s , a ) )  and N(Good t ( s ,a ) )  
measuring respectively the possibility and the necessity that performing a in 
state s will eventually lead to a goal state provided that an optimal policy is 
performed from stage t + 1 on. 

2.2. The  s ingle-s tage case 

We first consider a state s at stage N, and an action a E As,N to be per- 
formed in s. Since the subsequent state is described by the possibilistic tran- 
sition function n(.Is, a), it is possible to compute the possibility and the 
necessity of  the event "the subsequent state will be a goal state", denoted by 
GoodN (s, a): 

6 In the Markov Decision Processes literature, policies are usually denoted by n; unfortunately, 
in the fuzzy set literature, possibility distributions are usually denoted by n as well. We had to make 
a choice, which has been guided by the belief that readers of this journal are more familiar with 
fuzzy sets than with MDPs. 
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Definition 1. Il(GoodN(S, a)) = maxs, ea rcu(s'ls, a); N(GoodN(S, a)) = 
rains, ca (1 - rCu(s'ls, a). 

II(Goods(s, a)) and N(GoodN(S, a)) are respectively the possibility and the 
necessity of  the (crisp) subset G of  Sn+l induced by the possibility distribution 
n(.ls, a). Thus, H(GoodN(S, a)) and N(Goods(s, a)) are standard possibility and 
necessity degrees, which satisfy the following property: 

N(aOOdN(S,a)) > 0 ::~ H(aoodN(s,a)) = 1 (1) 

A cautious, pessimistic approach consists in preferring an action which 
maximizes the necessity to reach a goal state. While this criterion seems rather 
natural, it is however often not discriminating enough since there may often be 
no action at all leading to a goal state with some strictly positive certainty. The 
idea is then to discriminate further among the actions using II(GoodN(S, a)), 
which is an optimistic index. This leads us to the following ranking over ac- 
tions, where a >~ a' (respectively a >s a') reads "a  is at least as good as (resp. 
better than) a' in state s": 

Definition 2. 1. a >s aqf and only if one of  these two conditions holds: 
• N(Good~(s,a)) > N(Cood~(s,a')) 
• N(GoodN(S, a)) = N(GoodN(S, al)) and H(Goodx(s, a)) > II(GoodN(s, a')); 

2. a ~>~ a' if and only if a t >s a does not hold; 
3. a ~s a' if and only if a >>.~ a' and a' >~ a. 

Obviously, the following properties hold: 
• >~s is a complete preorder; 
• a ~>s a' iff N(GoodN(S,a)) >>- N(GoodN(S,a')) and 17(Goodu(s,a)) >~ 

H ( GoodN(S, a')); 
• a ~ s a '  iff N(GoodN(S,a))=N(GoodN(s,a')) and I-l(GoodN(S,a))= 

n ( aood  ( s, a') ) . 
An action a will then be optimal for s iff there is no action a' such that 

a' >~ a. The set of  optimal actions for s (at stage N) will be denoted by A*~v. 
Due to Eq. (1), optimal actions can be characterized more intuitively by the 
following property: in case there is an action a leading from s to a goal state 
with some positive certainty, i.e., N(GoodN(s,a)) > 0, then A*,N is the set of 
actions for which N(GoodN(s,a)) is maximal; otherwise, if it is the case that 
N(GoodN(S, a)) = 0 for each action a, then A~,~ is the set of  actions for which 
H(GoodN(S, a) ) is maximal. 

Now, for a given state s at stage N, an optimal policy will assign an arbitrary 
action in A*,N. Then, we can define the possibility and the necessity that a goal 
state can be reached from s, being the corresponding possibility and necessity 
degrees obtained for an optimal action for s. 
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Definition 3. Let a* be an arbitrary action in A~v; then H(GoodN(S))= 
H(GoodN(s, a*)), N (GoodN(S)) = N(GOOaN(s, a*)). 

This definition is well-founded since H(GoodN(S,a*)) and N(GoodN(S,a*)) 
are constant for all actions a* in A*.N. Due to Eq. (1), it can be checked easily 
that the definition is equivalent to II(GoodN(S)) = maxacAs,v H(GoodN(s, a)) 
and N(GoodN(S))= maxaos.N N(GoodN(s,a)). In other terms, H(GoodN(s)) 
(resp. N (GoodN (s))) is the possibility (resp. the necessity) of the event "there is a 
policy which leads from s to a goal state", or equivalently, "performing an 
optimal action in s leads to a goal state". Knowing that for any s, II(GoodN(S)) 
and N(GoodN(S)) are equal to H(GoodN(s, a)) and N(GoodN(S, a)) for a given 
a E A*~v (namely, an optimal action for s), it follows that II(GoodN(s)) and 
N(GoodN(s)) are standard possibility and necessity degrees, i.e., 

N(GoodN(s)) > 0 ~ H(GoodN(S)) = 1. 

2.3. The multistage case: optimal policies 

We are now going to generalize the notion of optimal policy to the multi- 
stage case. For this we first need to define the possibility (resp. the necessity) 
that a given policy leads from an initial state s to a goal state. 

Definition 4. Let st be a state from St, dt--*N a policy from Dt--,N and 
Zt+l~N+l = (St+l,. . . ,  SN+I) a trajectory from TRAJt+I~N+I. The possibility that 
trajectory Zt+l--.N+l results from performing dt-~N from st on is defined by 

~("Ct+I~N+I [St, dt~N) = min rc(si+l [si, di(si)).  
i=t..N 

This definition deserves some comments. First, 7r(.]st, dt~N) is a normalized 
possibility distribution on TRAJt+I_~N+~, because all transition possibility 
functions are normalized, and consequently, any trajectory composed only of 
elementary transitions with possibility 1 is itself of possibility 1. Then, defining 
a possibility distribution on trajectories from transition possibilities (i.e., from 
possibilities on elementary transitions) is equivalent to defining a joint possi- 
bility distribution on a Cartesian product of sets, to each of which is attached a 
possibility distribution. Indeed, a trajectory can be seen as a tuple of elemen- 
tary transitions (sl, si+l) which are furthermore non-interactive, because of the 
Markov-like assumption that the transition possibility distribution at stage t 
only depends on st and the action performed, and not on the history of the 
system (namely, the previous transitions). The most usual choice is the mini- 
mum [12]; the intuition which lays behind it is that a trajectory is exactly as 
possible as the less possible of its elementary transitions. For the sake of 
simplicity, this choice will not be questioned again (except in Section 4); it is 
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important noticing any T-norm would be a valuable choice, 7 and furthermore 
the results and algorithms in the rest of  the paper generalize easily. 

It remains now to define the possibility and the necessity that a given policy 
applied from an initial state leads to a goal state. It is induced from the pos- 
sibility distribution on trajectories by considering the possibility and the ne- 
cessity measures of the set of  good trajectories: 

Definition 5. A trajectory "Ct~N+ 1 is good iff its last state r(N + 1) is in G. 
GoodTrajt-.N+l C_ TRAJt~N+I denotes the set of  all good trajectories from t to 
N + I .  

Definition 6. 
• II(Goodt(st, dr--N)) = II(GoodTrajt_N+l [st, at--N), 
• N(Good,(s,, d,-~N)) = N(GoodTrajt_N+~ Is,, d,+N). 

Using the expression of  the possibility of  a trajectory given a policy, the 
complete expression of  these degrees is 

FI(Goodt(st,  dt--,N)) = max n("Ct---~N+l Ist, dt~N) 
"~t~N+ I E G o o d T r a j t + N +  1 

= max min g(Si+l [si, di(si)), 
(s t+I, . . ,SN+I)ETRAJt~N+ 1 i = t . . . N  

SN+ 1 ~G 

N( Goodt(st, dt+N ) ) -~- min 1 - 7[("Ct~N+ 1 ]St, dt+N ) 
~ t~N  + l E T R A J t ~ N  + 1 \ G o o d T r a j t ~ N  + l 

= min 1 - min g(Si+liSi,di(si) ). 
(st+ I ,"'.~N+ 1 ) E TRAJt~N+ 1 i = t . . . N  

SN+ I ESN+ 1 \G 

This enables us now to rank policies and define optimal ones. 

Definition 7. Let two policies dt_+ N and d[___,N , and s E St. dt---*N ~'s d~___~ N if and 
only if one of  these two conditions holds: 
• N(Goodt(s, dt~N)) > N(Good,(s,d:~N) ), 
• n(aood,(s, > n(Cood,(s, dZN)). 

The relations ~> s and ~ are defined in a similar way as they were defined in 
the single-stage case. Likewise, H(Goodt(s, dt_~N)) and N(Goodt(s, dt_N)) are 
standard possibility and necessity measures. 

7 A T - n o r m  • is a m a p p i n g  f rom [0, 1] × [0, 1] to [0, 1] sat isfying commuta t iv i ty ,  associativity,  
mono ton ic i ty  and  hav ing  1 as neut ra l  e lement .  T h e  m o s t  usua l  T - n o r m s  are the m i n i m u m ,  the  
product ,  and  the Lukasiewicz  T - n o r m  a, b ~ max(0 ,  a + b - 1). 



454 R. Sabbadin et al. I Internat. J. Approx. Reason. 19 (1998) 441-471 

Definition 8. dt~N is an optimal policy for s C St if and only if there is no policy 
d;~ u such that d[~ s >s dt~s.  

2.4. Backwards computation o f  an optimal policy 

By backwards induction, we are now going to compute, for every stage t, for 
every s E St and every a c As,t: 

(i) the possibility and the necessity degrees that performing a in s, followed 
by an optimal policy for stages t + 1 to N, will eventually lead to a goal state; 
this event will be denoted by Goodt(s, a); and 

(ii) the possibility II(Goodt(s)) and the necessity N(Goodt(s)) that a goal 
state can be reached from s following an optimal policy from stage t to stage N. 

Definition 9. 

Fl ( Goodt(s, a)) = max min(Tzt(s'ls, a), l I  ( Goodt+l (s'))), 
s'~St+l 

N(Goodt(s, a)) = min max(1 - ~t(s'ls, a), N(Goodt+l (J))).  
s~ ESt+ l 

Hence we can compare actions with respect to a given state s E St in the 
same way as done for states in Ss. Namely, 

Definition 10. a >s a' if and only if one of  these two conditions holds: 
• N(Goodt(s,a')) > N(Goodt(s,a')), 
• N(Good~(s, a)) = N(Goodt(s, a')) and H(Goodt(s, a)) > H(Goodt(s, a')). 

An action a is optimal for s iff there is no action a' such that a' >s a. The set 
of optimal actions for s (at stage t) will be denoted by A~. t. An optimal policy 
assigns to each stage s an optimal action. 

Lastly, we define II(Goodt(s)) and N(Goodt(s)), which are meant to mea- 
suring to what extent applying an optimalpolicy from s will lead possibly (resp. 
certainly) to a goal state at stage N + 1. They are actually the possibility and 
necessity measures of  the event "there is a policy which leads from s to a goal 
state". 

Definition 11. Let a* be an arbitrary action in A*,r Then, 
H(Goodt(s) ) = II(Good,(s, a*)), 
N( Goodt(s) ) = N( Goodt(s, a* ) ). 

Proposition 1. II  ( Goodt ( s , a ) ) , N ( Goodt ( s , a ) ) , II  ( Goodt ( s ) ) and N ( Goodt ( s ) ) are 
standard possibility and necessity degrees. 

We show now that this backward computation of  a policy always gives an 
optimal policy. 
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Proposition 2. 
(a) II ( Goodt(s) ) = maxa,_Nco,_jI ( Goodt(s, dt~N ) ), 
(b) N( Goodt(s) ) = maxa,~o,_~ N( Goodt(s, dt~N ) ). 
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Corollary 1. Any policy computed by backwards &duction is optimal. 

This comes directly from the previous result and the definition of an optimal 
policy. 

Thus, Algorithm 1 (see below) is sound. Note that there are optimal policies 
that cannot be computed by the previous backwards induction. As an example, 
consider the following problem with N = 2 and G = {s6} (Fig. 1). 

In Fig. 2 we show four possible policies (the assigned action figures below 
each state, and transition edges are labelled by the corresponding possibility 
degrees). 

In the four cases, the most plausible trajectory leading to a bad state is 
(sl, s2, s4). The possibility of this trajectory when respectively d, d', d" or d" is 
applied is respectively 0.8, 0.7, 0.7 and 1. Therefore, 

N(Goodl (s, dr-3)) = 0.2; 
N(Good, (s, d~_3) ) = N(Good, (s, d~'~3) ) : 0.3; 
N(Good~ (s, d'('~3) ) = 0 (and n(Good, (s, = 1)). 

d ~ and d" are optimal trajectories. Note however that d" cannot be obtained by 
the backward computation, because of the subpolicy of d" from stage 2 to 3, 
assigning a suboptimal action to s3. This shows that subpolicies of an optimal 
policy may be suboptimal, which is a consequence of the use of the idempotent 
operator min for computing the possibility of a trajectory. 

Now, using the above results, an optimal policy can be computed by a 
possibilistic variant of dynamic programming [2]; it computes the policy 
backwards (from later stages to earlier ones). The correctness of the algorithm 
comes straightforwardly from the recursive definition of an optimal policy. 

a,l 
Sl ~ 0 . 7  F 

a/b,1 ~ 

a,0.8 
s2 \ b,1 :~ s4 

~ , 1  a,0.5 .. 

s3 ~ N ~ , 0 . 4 -  s5 

a/b,l ~ s6 

Fig. 1. An action model. 
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1 0.8 0.7 0.8 
S l ' ~ . a  a s2~l 0.5 " s4 S l ~ . b  aS2~l 0.5 m s4 

s 3 s 5 ~ s 5 
a a 

s 6 s 6 policy d poficy d' 

0.7 0.8 s 4 1 1 
Sla 1 ~  b s2 ~ 1  > s4 

\ 0 . 4  

bS3d,,, 1 ~ [ ~  6 

policy 

0.4 
b s3 1 ~  s5 

s 6 poficy d" 

Fig. 2. Four policies. 

Algorithm 1 
d ----- 0; {the policy} 
for s E SN+1 loop { initialisation} 

if s E G then {good final state} 
N(GoodN(S)) = 1; II(GoodN(S)) = 1; 

else {bad  final state} 
N(Goodlv(s)) = O; n(GoodN(s)) = o; 

endif; 
end loop; 
for t := N downto 1 loopl {backward computing} 

for s E St loop2 
for a E As,t loop3 

compute N(Goodt(s, a)) = min~,~s,+~ max(1 - nt(s'[s, a), N(Goodt+l 
(~'))) 

compute H(Goodt(s, a)) = maxims,+, min(nt(s'ls, a), H(Goodt+l (sl))) 
{choose the best action } 

end loop3; 
dr(s) = a* { a* maximizes [N(Good,(s, a)), H(Goodt(s, a))] } 
N( Goodt(s) ) = N( Goodt(s, a* ) ) 
17 ( Good,(s) ) = rl  ( Good,(s, a* ) ) 

end loop2; 
add the decision rule dt to the policy d. 

end loopl;  
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Interestingly, the use of qualitative operators (min and max) - instead of + 
and product for classical MDP - gives us more opportunities to avoid un- 
necessary computations; thus, a given action may be detected to be sub-optimal 
w.r.t, a given state before the whole computation of II(Goodt(s,a)) and 
N (Goodt(s, a)) is completed (*). This leads to the following improved version of 
the algorithm: 

Algorithm 1 / 
d = O; {the policy} 
for s E SN+I loop {initialisation} 

if s E G then {good final state} 
N(GOOdN(S)) = 1; l I (GooaN(s) )= 1; 

else {bad final state} 
N( GOOdN(S) ) = O; [] ( GoodN(s)  ) = O; 

endif; 
end loop; 
for t := N downto 1 loopl {backward computing} 

for s E St loop2 
nopt = 0; piopt = 0; 
for a E A~,t loop3 {compute N and H } 

n = 1;pi = 0; 
for s' E St+l loop4 

if piopt < 1 then 
pi = max(p/, min(nt(s'ls, a), 1-I( Goodt+i (s'))); 
if pi > piopt then 

piopt : pi; aopt : a; 
{else, piopt cannot be improved, and II(Goodt(s, a)) is useless} 
end if; 

end if; 
n = min(n, max(1 - nt(s'[s, a), N(Goodt+l (s')))); 
if n < nopt then EXIT loop4 (*) endif; 
{in this case a is sub-optimal, since n can only decrease} 

end loop4; 
if n > nopt then 

nopt = n; aopt = a; 
end if; 

end loop3; 
II  ( aoodt(s) ) = piopt; N( Goodt(s) ) = nopt; a ( s )  = aop,; 

end loop2; 
end loopl; 
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As for traditional dynamic programming, the complexity of this algorithm 8 
is in O(N.IS[21AI). 

3. Taking flexible goals into account 

3.1. The fuzzy set o f  good trajectories 

Up to now, we have taken into account only two types of final states: those 
which satisfy the goals, and those which do not. This dichotomy is inadequate 
to model many real decision problems, where the actor only expresses pref- 
erence or indifference between states of the world: goals are flexible. To this 
purpose we assign to states a qualitative utility degree (as introduced in 
Section 1). 

In many problems, only final states (at stage N + 1) are assigned a quali- 
tative utility. This utility is interpreted as a goalness degree, i.e., u(s) = #G(s) 
where #G is the membership function of the fuzzy set of goal states. Thus #G is a 
mapping from SN÷I to [0, 1] (not necessarily normalized), #c(s) being the degree 
to which s is an admissible final state. 

Now, more generally, qualitative utilities are assigned not only to final states 
but to intermediary states as well. 9 

The global utility of a trajectory is then defined from the utilities of the states 
it contains: 

Definition 12. Given a qualitative utility function ut : St ~ [0, 1] for each t, the 
global utility of a trajectory z = ( s l , . . . ,  SN+l) is 

N+I 
= m i n  u, (s , ) .  

Note that we could have chosen another triangular norm than min to ag- 
gregate elementary utilities into a global one. 

The qualitative utility u on trajectories induces a fuzzy set of good trajec- 
tories, such that #Goodrr~:(Z) = U(Z). This fuzzy set is not necessarily normalized, 
since there may be stages where no state is completely satisfactory. 

8 Assuming for simplifying the notations that St = Se = S for any t, t ~ and that As,t = A~,e for any 
s, s t, t, ft. 

9 We might as well assign qualitative utilities to actions. These utility degrees would them be 
meant to be "qualitative anti-costs", with the convention that the higher u(a), the cheaper 
a - u(a) = 1 meaning that a is free and u(a) = 0 that a costs so much that a policy containing a is 
not admissible at all. However, without loss of  generality, and for the sake of brevity, we omit them. 
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3.2. Optimal policies according to the pessimistic utility 
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Now, from the possibility distribution and the qualitative utility function 
defined on trajectories, we are able to compute the pessimistic and the opti- 
mistic counterparts to expected utility, as discussed in Section 1 . We start by 
the pessimistic index. 

Definition 13. The pessimistic utility associated to a policy dt---rN is defined by 

uPES(dt~lst) = min max(1 - n(rlst, d,-~u), u(z)). 
" c E T R A J t ~ N +  1 

dt~N is uPeS-optimal iff it maximizes u Pes. 

The intuition underlying the definition of pessimistic utility is that a policy is 
all the better as the most plausible trajectories all have a high utility. 

Two particular cases are noticeable. First, if the transition possibilities 
rCu(s'l(s, a)) only involve 0 or 1 possibility levels, we recognize here the usual 
Maximin Criterion of decision theory (also known as Wald criterion), which 
chooses the policy maximizing the utility of the worst possible trajectory. 
Secondly, if u only uses 0 or 1 utility levels, the set of good trajectories becomes 
crisp and uPES(dt~N[S) is nothing but N(Goodt(s, dt~N)) defined in Section 2. 

We show that a urnS-optimal policy can be computed by backwards in- 
duction. 

Definition 14. 
• Vs E SN+1, ees UN+ 1 (s) = UN+I (S), 
• Vs E St, Va E As,t, ~eS(s,a) = mins,~s,+l max(1 - nt(s'l(s,a)), Ut+lms(s,)), 
• Vs E St, u~eS(s) = min(ut(s), maxa~As., uPteS(s, a)). 

Moreover, we say that a is at least as good as a' in state s E St, denoted by 
a >~sPESu,-' if and only if uPeSCst ~ , a~j >>, ueteS(s, a'). Now, we define A~e.t as the set of 
optimal actions for s, i.e. the set of all actions a in As,t maximizing ueteS(s, a). We 
get easily that Vs E St, u~S(s) = ~eS(s, a*) for an arbitrary a E ,~,ms i - s ,  t • 

A backward computed policy then consists in applying Definition 14 by 
choosing, at each stage t and for each state s E St, an action a in a E/f,ms - A S ,  t • 

u~eS(s) is actually the necessity of the fuzzy event "there is a policy which 
leads from s to a good trajectory". In other terms: 

Proposition 3. utmS(s) = Supa~o ' uetES(s, dr(s)). 

Its proof is omitted because it is very similar to the proof of Proposition 2. 

Corollary 2. Any policy computed by backward induction following Definition 14 
is ueES-optimal. 
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Hence, as in the case of  binary utilities on the final states, policies maxi- 
mizing the necessity to eventually lead to a goal state may be computed 
backwards, assigning to each state s in stage t, an action in ,4 *Pes 

" ~ s , t  " 

3.3. Optimal policies according to the optimistic utility 

In a similar way, we can rank policies according to the optimistic utility 
index already discussed in Section 1. According to an optimistic point of  view, 
a policy is considered all the better as the fuzzy set of  possible trajectories 
having a high utility is not empty. 

Definition 15. The optimistic utility associated to a policy dt~N is defined by 

uOt'T(dt~NlSt)= max min(n(vlst, dt~N),U(r)). 
"tETRA.IroN+ 1 

d~-~N is u°Pr-optimal iff it maximizes u °pr. 

The intuition underlying the definition of  the optimistic utility is that a 
policy is all the better as the (fuzzy) set of  possible trajectories having a high 
utility is not empty. If  the transition possibilities rCN (s'[(S, a)) only involve 0 or 1 
possibility levels, we recognize maximax criterions. I f  u only uses 0 or 1 utility 
levels, then u°er(dt~mlsls) = II(Goodt(s, dt~u)). This criterion Uoer is a gener- 
alisation to multi-stage decision of  the index E(z 0 = maxx~ rain(re(x), u(x)) 
first proposed by Yager [22] and later used by Kacprzyk [18] (see also Con- 
clusion). 

As for u ms, we show that a u°er-optimal policy can be computed by 
backward induction. 

Definition 16. 
• Vs E SN+I, U01~I (S) = UN+I (S), 
• VS E St, Va EAst ,  u°er(s,a) = maxs,~s,+l min(z,(s'](s, aa~ u°errs '~ , I1~ t+l \ J]~ 
• Vs E St, u°er(s) = min(ut(s), maxa~,4,.,~eS(s, a). 

/> oer is defined in a similar way as > ees A.oer is the set of all actions a in 
A,,t maximizing ut°er (s, a). We get easily that Vs E St, u°t er (s) = u°er , , a* ~j for an 

A *OPT arbitrary a _ -s,t • 
A backward computed policy then consists in applying Definition 16 by 

d*OPT choosing, at each stage t and for each state s E St, an action a in a C --s,t • 
u°ter(s) is actually the possibility of  the fuzzy event "there is a policy which 

leads from s to a good trajectory": 

Proposition 4. u°er(s) = Supa~o, u°er(s, dr(s)). 
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Corollary 3. Any policy computed by backward induction following Definition 16 
is u°er-optimal. 

3.4. On flexible and non flexible goals 

In the two previous sections, we made a distinction between the cases where 
the goals posted at stage N + 1 were flexible or not. We will show here that the 
latter case can be reduced to the former, supposing that the utility of  state SN+~ 
is respectively a degree of  necessity or possibility to reach a (binary) goal state 
at stage N + 2. This leads to consider an additional decision stage, leading from 
SN+~ to SN+2 where only binary goal states are posted, and only one action is 
available. 

However, the transition possibilities from stage SN+~ to stage SN+2 will be 
different depending on whether we wish to compute backwards pessimistic or 
optimistic utilities. 

Suppose that we have a utility function u on SN+~. I f  we define a new 
problem with an additional stage N + 2 by: 

• SN+ 2 = {g,g}, 
• Goalx+2 : {g}, 
• VS E SN+I,As,N+I = {a*}, 
• Vs E SN+I,Z~N+,(g]s,a*)= 1, 7CU+l(g]s,a*) = 1 --U(S). 

Then we can prove the following proposition. 

Proposition 5. Vs E SN+I, U(S) : ~ (  GoodN_;_ l (s) ). 

Proof. According to the definition of  N(Goodu+l (s)), we have: N(Goodu+l (s)) 
= supa~s~+l mins'~GoalN+2 1 - rCN+1 (S'I(s, a)). 

So, N(Gooax+,(s)) = 1 - (1 - u(s)) = u(s). [] 

In the same way as before, extending the horizon of the problem by: 
• sN+2 = { g , g } ,  
" GoalN+2 : {g}, 
• VS E SN+I ,As,N+I : {a*}, 
• Vs E SN+~, rex+, (g]s, a*) = u(s), teN+1 (g]S, a*) = 1. 

We can prove: 

Proposition 6. Vs E SN + I , u ( s ) = Fl ( GoodN + l ( s ) ) . 

Proofi According to the definition of  H(Goodu+l (s)), we have: II(Goodu+l (s)) 
= suPaCAs.N+ 1 max~,cGOatN+Z nU+l (stIs, a). 

So, n ( 6 o o d N + , ( s ) )  = u(s).  [] 
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Then u(s) can be obtained either as a necessity degree, or as a possibility 
degree, considering an additional stage N + 2, and a unique available decision 
at stage N + 1, which will either be a, or a'. 

It is important to notice that pessimistic and optimistic utilities are not dual 
necessity and possibility degrees in so far as H(GoodN+l (s)) < 1 does not imply 
N( Good,(s) ) = O. 

3.5. Refining the pessimistic criterion by an optimistic one 

There are many reasons for preferring to use the pessimistic utility index 
rather than the optimistic one. Indeed, the former is more cautious, more 
reliable, since it takes account of  all cases, focusing on the worst ones, while 
the optimistic index takes account of one state only (the best one). However, 
using only u ees for ranking policies may have a weak discrimination power, 
because the set of  ueeS-optimal policies may be too large. We may then think 
of  refining u eEs by u °er, in a way recalling how we ranked policies in Sec- 
tion 2. 

Definition 17. 1. dt_. N ~ s  d[_. N iff one of these two conditions holds: 
• u~fS(s,d,_~N) > ~S(s ,d ,~N) ,  
• uPeSCst , , dt~N) = uPteS(s, dt~u) and u°er(s, dt~N) > u°er(s, dt~N). 

2. dt~N is optimal iff there is no d~__+N such that d ~  N >s dt~N. 

It is then easy to show that dt~N is optimal if and only if it is urnS-optimal 
and it maximizes u °er among the set of all ueeS-optimal policies. 

Since u~ES(s, dt~u) and u°er(s, dt~N) are respectively the necessity and the 
possibility of a fuzzy event, generally they do not verify umS(s d~-.N) > 0 t k 

~ u ° t ' r ( s ,  d t ~ N ) = l  (but only the weaker relationship u°er(s, dt~N)>~ 
u°er(s, dt~N)). As a consequence, optimal actions with respect to u ees are not 
necessarily optimal with respect to u °er. For  instance, let T = 1, $1 = {So}, 
$2 = {sl,s2,s3}, Aso,1 = {a ,b ,c}  with Ul(S0) = 1 and 

/~(S 1 IS0, a) --  1 

rc(sl Is0, b) = 0.7 

~(s l  Is0, c) = 1 

~(s21s0, b) = 0 

7t(s2ls0,b) = 1 

~(s2Lso, b) = 0 

~(s31s0, a) = 0.2 

rc(s31so,b) = 0.1 

7~(s3ls0, b) = 0 

Uz(Sl) = 1 

u2(s2) = 0.6 . 

u2(s3) = 0.2 

The policies d, d' and d" assigning respectively a,b and c to So have the 
following indices: 

u~eS(d) = 0.2 

u~ES ( d ' ) = 0.6 

uP~S ( d " ) -- 0.6 

u U ( a )  = l . 

u U ( d ' )  - -  o.7 
u~r(  a ") - -  0 . 6  
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Thus, d' and d" are urnS-optimal; the optimal policy according to the refined 
criterion is d'. d 't is u°er-optimal. 

Now, we show that an optimal policy for the refined criterion can be 
computed again by backwards induction. 

Definition 18. 
• Vs E SN+I, , o ~  UN+ 1 (S) = UN+, (S), 
• VS E S,, Va E As,, u;°l~(s,a) = Sups,~s,, min(zt(s'ls, a),u;°g(s')),  
• a >s a' iff uetESis, a) > u~eS(s, a') or (uetES(s, a) ----- uetES(s, a') and ufer(s ,  a) 

> u;°'C(s, a')), 
• A* = {a EAst  ] there is no a' EAst  such that a' >s a}, s , t  , 

• Vs E St, ut°er(s) = min(ut(s), u frr(s ,  a*)) for an arbitrary a* E A*~, r 

Thus, ufer(s)  (resp. u~eS(s)) stands for the possibility (resp. the necessity) to 
reach a goal state when applying an optimal policy. Note that we have the in- 
equalities, for all T and s: u°er(s) >~ ufer(s)  >>. uefS(s) and that generally, these 
inequalities are strict. In particular, u *°er should not be confused with u°er: 
while u°er(s) is the possibility of  the fuzzy event "a good trajectory results from 
t when applying an optimal policy according to the pure optimistic criterion", 
ufer(s)  is the possibility of  the fuzzy event "a good trajectory results from t 
when applying an optimal policy according to the refined criterion". 

Proposition 7. ut°er (s) = SUpd~D,i a is upES-optimal u?PT ( S, dt(s) )" 

Corollary 4. Any policy computed by backward induction follow&g Definition 18 
is optimal for the refined criterion. 

In the light of  this backward induction computation, the following variant 
of  dynamic programming computes an optimal policy for the refined criterion. 
As in Section 2, it is possible to avoid unnecessary computations (we omit the 
details for the sake of  brevity). 

Algorithm 2 
{initialization } 
d : 0 {the policy} 
for s E SN+11oop 

: u ( s ) ;  

(s)  : u ( s ) ;  

end loop; 
{Backward computing } 
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for t := N downto 1 loopl 
for s ~ St loop2 

for a E A~,tloop3 
Compute(u~S (s, a) ) 
Compute(ut °er (s, a)) 

end loop3; 
dt(s) = a*{a* maximizes ~eS(s, a) and then u*°er(st , , a~X,, 
uPeS (s) = min(ut(s), ueteS (s, a* ) ) 
u7°er (s) = min(ut(s), ut°Pr (s, a* ) ) 

end loop2; 
Add dt to the policy d 

end loopl; 

An alternative way of refining the pessimistic ordering would consist in 
replacing the minimum operator in the computation of the possibility of a 
trajectory from the possibility degrees of its elementary transitions by a lex- 
icographic minimum. This would consist in storing, for each trajectory, not 
only the minimum r~(St+l [si, di(si)) but all of them, ranked increasingly. Then, 
two trajectories are compared by comparing first their lowest components, 
and in case of equality, their second lowest components, etc. Details are 
omitted. 

4. Example 

A robot is moving in a room in which it entered by the top-left square. Its 
objective is entirely satisfied if it finishes in the down-right square and partly if 
it finishes in one of the neighbor squares. The state-space, starting square and 
the utility function on the objective states are depicted in Fig. 3. 

1 2 3 

1 

2 

3 

Fig. 3. State space and utility function. 
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The available actions are to move (T)op, (D)own, (L)eft, (R)ight or to (S)tay 
in place. I f  the robot  chooses to stay, it will certainly remain in the same square. 
If  it goes T, D, L or R it will (entirely) possibly reach the desired square (z~ = 1) 
if it is free but there will be some possibilities that it reaches a neighbor square, 
as depicted in Fig. 4 for the action R. The other transition possibility functions 
are of course symmetric to these. 

Now, suppose that the horizon of  the problem is 5, that is goals are set at 
step 6. Fig. 3 resumes the utility function u, so it also resumes u~eS: 
~ES(s33) = 1, u~6ES(s32 ) = u~ES(s23 ) = 0.5 and u2ES(s) = 0 for every other s. Let 
us now compute the optimal actions for the states in $5. For  every action a and 
state s, we have u~S(s,a)= min~,~s6 m a x ( 1 -  ~(s'[s,a),~es(s')) (~ does not 
depend on the step) and ~eS(s) = maxa~ir,o,L,R,s} u~ES(s, a). 

Fig. 5 summarizes the utility of  each state in $5 as well as the optimal 
action for each state with a non-null pessimistic utility. The optimal action is 
unique, except for state $33 for which D and R would be optimal actions as 
well. 

0.4 

0 > 1 

0.4 

II 

i o 1 o 

0.2 

Fig. 4. Transition possibilities for moving right. 

,q 
" ' 5  1 2 3 

1 

2 

3 

Fig. 5. An optimal policy at step 5. 



466 

$6 

1 

2 

3 

R. Sabhadin et al. / hlternat. J. Approx. Reason. 19 (1998) 441-471 
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2 
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I 2 1 2 3 3 $2 

1 

2 

3 

1 2 3 ~ 1  

1 

2 

3 

Fig. 6. Pessimistic optimal policy computation. 

Now we can iterate the process and get an optimal policy. The iterated 
process is described in Fig. 6. Note that after four iterations, the utility of each 
state and the associated optimal action do not change any more. 

5. Re la ted  work  and c o n c l u s i o n  

The main contribution of this article consisted in extending Dubois and 
Prade's possibilistic decision theory from the single-stage to the multiple-stage 
case. We have proposed two successive extensions (the latter generalising the 
former), corresponding, in our notations, to the 4-tuples (N, n, G, maximise 
(N./7)) and (N. n. rain. maximise .e~s  and then u*°er)). We have sketched al- 
gorithms for these extensions, in the spirit of dynamic programming. 

An alternative framework Ibr possibilistic multistage decision making has 
been intensively developed by Da Costa et al. [6-8]. Their work share with ours 
the use of possibility distributions for representing uncertain effects of actions. 
The main difference between both approaches relies on observability: while our 
approach assumes that the environment is fully observable, theirs assume non- 
observability. Consequently, rather than computing policies, they compute 
unconditional plans (or sequences of actions) which maximize the necessity or 
the possibility to reach a goal state. They use a STRIPS-like representation of 
possibilistic actions, which avoid an explicit enumeration of states as we do; 
they developed an algorithm for computing optimal plans which is in the spirit 
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of traditional AI planning, while our algorithms are in the spirit of dynamic 
programming. Lastly, their approach is generalized in order to handle flexible 
goals in approximately the same way of us, thus leading to an alternative ex- 
tension to multi-stage decision theory of Dubois and Prade's qualitative de- 
cision theory [8] in the case of non-observability. 

Apart from Dubois and Prade's possibilistic approach to one-stage decision 
making, some authors have considered more or less qualitative approaches to 
decision, either one-stage or multi-stage. Yager [22] proposed to use the opti- 
mistic criterion defined by 

u°er(so, a) -- max min(z~a,~0 (s), u(s)) 
sES 

which is the optimistic counterpart of Dubois and Prade's u eEs. As observed by 
Dubois and Prade [14], this criterion can be overoptimistic. More general 
criteria for one-stage decision making, recovering optimistic and pessimistic 
criteria as particular cases, have been proposed by Bolafios et al. [4] and more 
recently by Yager [23], Yager and Lamata [24]. Extending these general 
frameworks to multi-stage decision is worth considering for further research. 

Several fuzzy extensions of dynamic programming have been proposed, a 
review of which is in [16]. The seminal one is Bellman and Zadeh's [3] which 
assume a qualitative utility function (where intermediate utilities of different 
states of a both are aggregated by min) and transition functions which are 
either deterministic, either stochastic - these two approaches corresponding 
thus to (N, D, min, u) and to (N, pr, min, ft), respectively. This last approach can 
be seen as a semi-qualitative, semi-quantitative approach to decision making - 
the selection criterion for the optimal policy consists in maximizing the ex- 
pected qualitative utility. On the contrary, our framework is fully qualitative 
(both on the uncertainty and the utility side). Other significant work about 
using possibility theory for multi-stage decision making has been done by 
Kacprzyk [18] and also Baldwin and Pilsworth [1]. Kacprzyk [18] defines an 
optimal policy by maximising the aforementioned optimistic criterion u °er at 
each stage - his approach corresponds thus to the 4-tuple (N, r~, min, u°er); he 
computes it with a branch and bound algorithm; however, as noticed by Du- 
bois and Prade [14], maximizing u °er is practically not reasonable; to make the 
argument simpler, suppose that all transition possibilities are binary 
~/s,s,s' ,  ~(s'l(s,a)) E {0, 1}), then maximizing u °ev comes down to assume at 
each stage that the best possible outcome occurs (in other words, the agent 
takes its desires for reality). The author also proposes extensions of his ap- 
proach to the cases where termination time is fuzzy, or infinite. The alternative 
approach of Baldwin and Pilsworth [1], similar to dynamic programming, also 
consists in maximising an optimistic criterion, but the search is performed over 
a set of fuzzy states and the maximisation over a set of fuzzy decisions, which, 
as noticed by Kacprzyk [18], makes the approach practically unreasonable due 
to its computational complexity. 
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Further work would consist first in implementing the proposed algorithms, 
taking account of the suggested techniques (and possibly others) for avoiding 
unnecessary computations. Next, we think of generalising our framework in 
several directions: 
• Considering the contribution of intermediate states and actions performed 

to the global utility function: the most natural way to do it in a purely qual- 
itative way consists in combining these qualitative utilities by the minimum, 
for instance for u ees we get 

'ES t ueteS(s, a) = min(u(s), u(a), min max(1 - z(s'L(s, a)), ~+E 1 (s)) 
$1ESI+I 

and u~ es (s) = maxa~As., ~es (s, a). Integrating these intermediate utilities in the 
framework described in Section 3 does not present any particular difficulty. 

• Retracting the commensurability assumption between possibility degrees 
and utility degrees. This would enable us to consider mixed qualitative/quan- 
titative frameworks, with, for instance, additive utilities and possibilistic 
transition functions - the latter would probably lead us to rank fuzzy num- 
bers in order to define optimal policies. 

• Retracting the assumption of full observability. To this purpose we may 
adapt some methodologies and results from partially observable Markov de- 
cision processes. In this case we would have to consider the presence of in- 
formation-gathering actions in policies. Now, some work has been done in 
the field of possibilistic planning [6-8], where, under the assumption of no 
observability, one looks for an unconditional sequence of actions leading 
to a goal state with a maximal necessity degree. This has lead to the imple- 
mentation of a possibilistic planner. 

Another direction for further research would consist in assessing automatically 
the possibility distributions describing the uncertain effects of actions, from a set 
of qualitative, non-monotonic rules. Namely, it has been shown in [9] that from 
a set of hard and defeasible dynamic laws describing the effects of actions, it is 
possible to build a possibility distribution taking account of the specificity of the 
rules; namely, an effect given by a more specific rule will get a higher possibility 
than an effect given by a less specific one. See also [8] for such a use of qualitative 
default rules in the context of possibilistic planning. 

Appendix A 

Proof of Proposition 1. We prove by backward induction, that Vt, II 
(Goodt(s)) < 1 ::~ N(Goodt(s)) = O. We have already proved that this is true 
for t = N, we now show that if this is true for t + 1, it is true for t. 

Let s E St and assume that H(Goodt(s)) < 1. By definition of l-l(Goodt(s)), 
this is equivalent to maxa~as., l-l(Goodt(s, a)) < 1, i.e., Va E As.t, II(Goodt(s, a)) 
< 1, which, using the definition of II(Goodt(s, a)), is equivalent to: 
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Va EA~,t, Vs' E St+l ,Xt (s t ]s ,a) -~  1 ~ II(Goodt+l(s')) < 1 (A.1) 

Now,  the induct ion hypothesis  and  Eq. (A.1) entail  that  Va E A~,t,Vs'E S t + l ,  

rct(s'ls, a ) ----- 1 ~ N(Goodt+l(J)) = O. 
Then,  let a E As,t and s' E St+l such tha t  rtt(s'Js, a) -- 1 (the existence o f  such a 

state is guaran teed  by the normal i sa t ion  o f  the possibili ty dis tr ibut ion nt), then 
we have N(Gooclt+t (s')) = O, and thus N(Goodt(s, a)) = mine~s,+, m a x ( l -  rct(s'l 
s, a),  N(Good,+, (s'))) -- 0. 

This is t rue Va E A~,t, hence we conclude tha t  N(Goodt(s)) = O. [] 

Proo f  of  Proposit ion 2. First, notice tha t  

II(Goodt(s)) = max  Fl(Goodt(s, a))  = m a x  Fl(Goodt(s, dr(s))), 
aEAs,t dtEDt 

N (Goodt(s)) = m a x  N (Goodt(s, a)) = max  N(Goodt(s, de(s))). 
aEAs,t dtEDt 

(a) Let  us prove  by  backwards  induct ion that  

H(Good~(s) = max  m a x  min r~(ss+l[sj, d(ss) ). 
dEDt~N(St+I ,...,SN+ I )ETRAJt+I~N+lj=t..N 

SN+IEG 

I t  is obvious  for  t = N ( f rom the definition oflI(Goods(s))) .  Let us prove  that  
if  the result is true for  stages t +  1 E 2 . . N +  1 it is true for  stage 
t: II(Goodt(s)) = maxd,~O, max~,+lcs,+ , min(rct(st+l Is, dr(s)), 1-l(Goodt+l (St+l))). I f  
we suppose  that  the result is true at  stage t +  1, we get: II(Goodt(s))= 
maxa,~D, max,,+~s,+~ min(nt(st+l Is, dr(s)), maxa~D,+~N max~,+2,..~u+,~s,+2 ....... su+,. 

SN+ 1 EG 
minj=t+l..N rc(sj+l Isj, d(ss) ) knowing  ( f rom the M a r k o v i a n  assumpt ion)  that  z, 

(st+l Is, dr(s)) does not  depend on fur ther  stages, we get: II(Goodt(s))---- 
maxa,~o, maxst+lCSt+l maxa~Dt+~_~ maxs,+2,.,,~+,,s,+2 ....... s~+, minj=,..Nrc(sj+l Isj, d(sj)) 

SN~IEG 
We can swap max~,+~ ~S,+l and maxa~o,+l~: 11(Goodt (s)) = maxa,~z), maxa~o,+~,, 
maxs,+~c St+l max~,+>.~u+~s,+2 ....... Su+l minj=t..urc (Sj+llSj, d(sj)). A n d  f rom this 

SN+ 1 CG 
comes  the result at  stage t. 

(b) It (an be proved similarly that N(Goodt(s)) -- maxd~o,_u min~,,+l.-¢N+l/ErJW,+l~N+, 
maxj=t..N(1 -- x(Sj+llSj, d (s j ) ) .  [] ~N+~¢c 
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